mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2026-01-23 12:44:27 +08:00
[V0 Deprecation] Remove from_seq_group methods (#25330)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
This commit is contained in:
parent
035fd2bd2c
commit
12dbd834cf
@ -2,14 +2,8 @@
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from collections.abc import Sequence
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Generic, NamedTuple, TypeVar
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from vllm.sequence import SequenceGroupMetadata
|
||||
|
||||
from .inputs import MultiModalKwargs, PlaceholderRange
|
||||
from typing import Generic, NamedTuple, TypeVar
|
||||
|
||||
_T = TypeVar("_T")
|
||||
|
||||
@ -53,120 +47,6 @@ class MultiModalPlaceholderMap:
|
||||
self.dest_ranges = []
|
||||
self.dest_len = 0
|
||||
|
||||
@classmethod
|
||||
def from_seq_group(
|
||||
cls, seq_group: "SequenceGroupMetadata", positions: range
|
||||
) -> tuple[MultiModalKwargs, dict[str, "MultiModalPlaceholderMap"]]:
|
||||
"""
|
||||
Returns the multi-modal items that intersect with the portion of a
|
||||
prompt (``seq_group``) represented by ``positions``, as well as a
|
||||
``MultiModalPlaceholderMap`` that relates the multi-modal embedding
|
||||
vectors to their corresponding placeholders.
|
||||
|
||||
Examples:
|
||||
|
||||
```
|
||||
Prompt: |AAAA BBBB What's in these images?|
|
||||
Positions: |.................................|
|
||||
|
||||
images = [A, B]
|
||||
src_ranges = [(0, 4), (4, 8)]
|
||||
dest_ranges = [(0, 4), (5, 9)]
|
||||
|
||||
Prompt: |AAAA BBBB What's in these images?|
|
||||
Positions: | ..... |
|
||||
|
||||
images = [A, B]
|
||||
src_ranges = [(2, 4), (4, 6)]
|
||||
dest_ranges = [(0, 2), (3, 5)]
|
||||
|
||||
Prompt: |AAAA BBBB What's in these images?|
|
||||
Positions: | ......... |
|
||||
|
||||
images = [B]
|
||||
src_ranges = [(0, 4)]
|
||||
dest_ranges = [(0, 4)]
|
||||
|
||||
Prompt: |AAAA BBBB What's in these images?|
|
||||
Positions: | .......................|
|
||||
|
||||
images = []
|
||||
src_ranges = []
|
||||
dest_ranges = []
|
||||
```
|
||||
"""
|
||||
seq_mm_data = seq_group.multi_modal_data
|
||||
seq_mm_placeholders = seq_group.multi_modal_placeholders
|
||||
|
||||
if not seq_mm_data or not seq_mm_placeholders:
|
||||
return MultiModalKwargs(), {}
|
||||
|
||||
placeholder_maps = dict[str, MultiModalPlaceholderMap]()
|
||||
|
||||
for modality, placeholders in seq_mm_placeholders.items():
|
||||
placeholder_map = MultiModalPlaceholderMap()
|
||||
|
||||
if positions:
|
||||
placeholder_map.append_items_from_seq_group(
|
||||
positions,
|
||||
# Dummy, since we don't care about intersecting items
|
||||
[None] * len(placeholders),
|
||||
placeholders,
|
||||
)
|
||||
|
||||
placeholder_maps[modality] = placeholder_map
|
||||
|
||||
return seq_mm_data, placeholder_maps
|
||||
|
||||
def append_items_from_seq_group(
|
||||
self,
|
||||
positions: range,
|
||||
multi_modal_items: list[_T],
|
||||
multi_modal_placeholders: Sequence[PlaceholderRange],
|
||||
) -> list[_T]:
|
||||
"""
|
||||
Adds the multi-modal items that intersect ```positions`` to this
|
||||
placeholder map and returns the intersecting items.
|
||||
"""
|
||||
intersecting_items = []
|
||||
|
||||
if len(multi_modal_items) != len(multi_modal_placeholders):
|
||||
raise ValueError(
|
||||
"Multi-modal placeholders and items must have the same length."
|
||||
)
|
||||
for placeholder_dict, mm_item in zip(multi_modal_placeholders,
|
||||
multi_modal_items):
|
||||
placeholder = range(
|
||||
placeholder_dict.offset,
|
||||
placeholder_dict.offset + placeholder_dict.length,
|
||||
)
|
||||
intersection = range(
|
||||
max(positions.start, placeholder.start),
|
||||
min(positions.stop, placeholder.stop),
|
||||
)
|
||||
|
||||
if not intersection:
|
||||
# Skip this multi-modal item.
|
||||
continue
|
||||
|
||||
token_embedding_range = range(
|
||||
intersection.start - positions.start,
|
||||
intersection.stop - positions.start,
|
||||
)
|
||||
|
||||
multimodal_embedding_range = range(
|
||||
intersection.start - placeholder.start + self.src_len,
|
||||
intersection.stop - placeholder.start + self.src_len,
|
||||
)
|
||||
|
||||
intersecting_items.append(mm_item)
|
||||
self.dest_ranges.append(token_embedding_range)
|
||||
self.src_ranges.append(multimodal_embedding_range)
|
||||
self.src_len += len(placeholder)
|
||||
|
||||
self.dest_len += len(positions)
|
||||
return intersecting_items
|
||||
|
||||
def extend(self, other: "MultiModalPlaceholderMap"):
|
||||
"""
|
||||
Adds the placeholders from another ``MultiModalPlaceholderMap`` to this
|
||||
|
||||
195
vllm/outputs.py
195
vllm/outputs.py
@ -1,7 +1,6 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import time
|
||||
from collections.abc import MutableSequence
|
||||
from collections.abc import Sequence as GenericSequence
|
||||
from dataclasses import dataclass
|
||||
@ -14,9 +13,7 @@ from vllm.logger import init_logger
|
||||
from vllm.logprobs import PromptLogprobs, SampleLogprobs
|
||||
from vllm.lora.request import LoRARequest
|
||||
from vllm.multimodal.inputs import MultiModalPlaceholderDict
|
||||
from vllm.sampling_params import RequestOutputKind
|
||||
from vllm.sequence import (RequestMetrics, SequenceGroup, SequenceGroupBase,
|
||||
SequenceStatus)
|
||||
from vllm.sequence import RequestMetrics
|
||||
|
||||
logger = init_logger(__name__)
|
||||
|
||||
@ -171,170 +168,6 @@ class RequestOutput:
|
||||
else:
|
||||
self.outputs.append(next_completion)
|
||||
|
||||
@classmethod
|
||||
def from_seq_group(
|
||||
cls, seq_group: SequenceGroup, use_cache: bool,
|
||||
seq_id_to_seq_group: dict[str, SequenceGroupBase]
|
||||
) -> Optional["RequestOutput"]:
|
||||
finished = seq_group.is_finished()
|
||||
|
||||
if seq_group.request_id in seq_id_to_seq_group:
|
||||
group: SequenceGroupBase = seq_id_to_seq_group[
|
||||
seq_group.request_id]
|
||||
assembled_seq_group = group.maybe_assemble_group(seq_group)
|
||||
if finished:
|
||||
group.finish_seq(seq_group)
|
||||
if assembled_seq_group is None:
|
||||
return None
|
||||
|
||||
# clear finished seq in seq_id_to_seq_group
|
||||
if len(group.to_be_finished) == 0:
|
||||
for sub_request_id in list(group.seq_id_to_index.keys()):
|
||||
if sub_request_id in seq_id_to_seq_group:
|
||||
del seq_id_to_seq_group[sub_request_id]
|
||||
|
||||
return cls.from_seq_group(assembled_seq_group, use_cache,
|
||||
seq_id_to_seq_group)
|
||||
|
||||
sampling_params = seq_group.sampling_params
|
||||
if sampling_params is None:
|
||||
raise ValueError(
|
||||
"Sampling parameters are missing for a CompletionRequest.")
|
||||
|
||||
if sampling_params.output_kind == RequestOutputKind.FINAL_ONLY and (
|
||||
not finished):
|
||||
return None
|
||||
|
||||
# Init cache (if needed)
|
||||
if use_cache and seq_group.cached_request_output is None:
|
||||
seq_group.cached_request_output = RequestOutput( # type: ignore
|
||||
request_id="",
|
||||
prompt=None,
|
||||
prompt_token_ids=[],
|
||||
prompt_logprobs=None,
|
||||
outputs=[],
|
||||
finished=False)
|
||||
|
||||
top_n_seqs = seq_group.get_seqs()
|
||||
|
||||
# Create the outputs.
|
||||
# NOTE: We need omit logprobs here explicitly because the sequence
|
||||
# always has the logprobs of the sampled tokens even if the
|
||||
# logprobs are not requested.
|
||||
include_logprobs = sampling_params.logprobs is not None
|
||||
text_buffer_length = sampling_params.output_text_buffer_length
|
||||
delta = sampling_params.output_kind == RequestOutputKind.DELTA
|
||||
|
||||
outputs = []
|
||||
include_prompt = True
|
||||
# num_cached_tokens should be the same for all the sequences
|
||||
num_cached_tokens = None
|
||||
for i, seq in enumerate(top_n_seqs):
|
||||
output_text = seq.get_output_text_to_return(
|
||||
text_buffer_length, delta)
|
||||
|
||||
output_token_ids = seq.get_output_token_ids_to_return(delta)
|
||||
num_output_tokens = 1 if isinstance(output_token_ids,
|
||||
int) else len(output_token_ids)
|
||||
num_cached_tokens = seq.data.get_num_cached_tokens()
|
||||
|
||||
output_logprobs = seq.output_logprobs if include_logprobs else None
|
||||
|
||||
if delta:
|
||||
# Slice logprobs delta if applicable
|
||||
if output_logprobs:
|
||||
# num_output_tokens can be 0 when n > 1 and request finishes
|
||||
# before the others
|
||||
if num_output_tokens > 0:
|
||||
output_logprobs = output_logprobs[-num_output_tokens:]
|
||||
else:
|
||||
output_logprobs = None
|
||||
# Don't include prompt if this is after the first output
|
||||
# containing decode token ids
|
||||
if include_prompt and seq.get_output_len() > num_output_tokens:
|
||||
include_prompt = False
|
||||
|
||||
if use_cache:
|
||||
# Get cached output object
|
||||
cached_outputs = seq_group.cached_request_output.outputs # type: ignore
|
||||
if i >= len(cached_outputs):
|
||||
cached_outputs.append(
|
||||
CompletionOutput(index=i,
|
||||
text="",
|
||||
token_ids=[],
|
||||
cumulative_logprob=None,
|
||||
logprobs=None,
|
||||
finish_reason=None,
|
||||
stop_reason=None))
|
||||
output = cached_outputs[i]
|
||||
|
||||
# Init cached output object
|
||||
assert output.index == i
|
||||
output.text = output_text
|
||||
|
||||
if isinstance(output_token_ids, int):
|
||||
output.token_ids.clear()
|
||||
output.token_ids.append(output_token_ids)
|
||||
else:
|
||||
output.token_ids = output_token_ids
|
||||
|
||||
output.cumulative_logprob = seq.get_cumulative_logprob() \
|
||||
if include_logprobs else None
|
||||
output.logprobs = output_logprobs
|
||||
output.finish_reason = SequenceStatus.get_finished_reason(
|
||||
seq.status)
|
||||
output.stop_reason = seq.stop_reason
|
||||
|
||||
else:
|
||||
output = CompletionOutput(
|
||||
top_n_seqs.index(seq), output_text, [output_token_ids]
|
||||
if isinstance(output_token_ids, int) else output_token_ids,
|
||||
seq.get_cumulative_logprob() if include_logprobs else None,
|
||||
output_logprobs,
|
||||
SequenceStatus.get_finished_reason(seq.status),
|
||||
seq.stop_reason)
|
||||
|
||||
outputs.append(output)
|
||||
|
||||
# Every sequence in the sequence group should have the same prompt.
|
||||
if include_prompt:
|
||||
prompt = seq_group.prompt
|
||||
prompt_token_ids = seq_group.prompt_token_ids
|
||||
encoder_prompt = seq_group.encoder_prompt
|
||||
encoder_prompt_token_ids = seq_group.encoder_prompt_token_ids
|
||||
prompt_logprobs = seq_group.prompt_logprobs
|
||||
else:
|
||||
prompt = None
|
||||
prompt_token_ids = None
|
||||
encoder_prompt = None
|
||||
encoder_prompt_token_ids = None
|
||||
prompt_logprobs = None
|
||||
finished_time = time.time() if finished else None
|
||||
seq_group.set_finished_time(finished_time)
|
||||
|
||||
init_kwargs = {
|
||||
"request_id": seq_group.request_id,
|
||||
"prompt": prompt,
|
||||
"prompt_token_ids": prompt_token_ids,
|
||||
"prompt_logprobs": prompt_logprobs,
|
||||
"outputs": outputs,
|
||||
"finished": finished,
|
||||
"metrics": seq_group.metrics,
|
||||
"lora_request": seq_group.lora_request,
|
||||
"encoder_prompt": encoder_prompt,
|
||||
"encoder_prompt_token_ids": encoder_prompt_token_ids,
|
||||
"num_cached_tokens": num_cached_tokens,
|
||||
"multi_modal_placeholders": seq_group.multi_modal_placeholders
|
||||
}
|
||||
|
||||
if use_cache:
|
||||
request_output = seq_group.cached_request_output
|
||||
request_output.__init__(**init_kwargs) # type: ignore
|
||||
else:
|
||||
request_output = cls(**init_kwargs) # type: ignore
|
||||
|
||||
return request_output
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return (f"RequestOutput(request_id={self.request_id}, "
|
||||
f"prompt={self.prompt!r}, "
|
||||
@ -371,19 +204,6 @@ class PoolingRequestOutput(Generic[_O]):
|
||||
self.finished = finished
|
||||
self.outputs = outputs
|
||||
|
||||
@staticmethod
|
||||
def from_seq_group(seq_group: SequenceGroup) -> "PoolingRequestOutput":
|
||||
pooled_data = seq_group.pooled_data
|
||||
assert pooled_data is not None
|
||||
|
||||
data = pooled_data.to(dtype=torch.float32, device="cpu")
|
||||
output = PoolingOutput(data)
|
||||
prompt_token_ids = seq_group.prompt_token_ids
|
||||
finished = seq_group.is_finished()
|
||||
|
||||
return PoolingRequestOutput(seq_group.request_id, output,
|
||||
prompt_token_ids, finished)
|
||||
|
||||
def __repr__(self):
|
||||
return (f"{type(self).__name__}(request_id={self.request_id!r}, "
|
||||
f"outputs={self.outputs!r}, "
|
||||
@ -391,19 +211,6 @@ class PoolingRequestOutput(Generic[_O]):
|
||||
f"finished={self.finished})")
|
||||
|
||||
|
||||
class RequestOutputFactory:
|
||||
|
||||
@staticmethod
|
||||
def create(seq_group: SequenceGroup,
|
||||
seq_id_to_seq_group: dict[str, SequenceGroupBase],
|
||||
use_cache: bool = False):
|
||||
if seq_group.pooled_data is not None:
|
||||
return PoolingRequestOutput.from_seq_group(seq_group)
|
||||
else:
|
||||
return RequestOutput.from_seq_group(seq_group, use_cache,
|
||||
seq_id_to_seq_group)
|
||||
|
||||
|
||||
@dataclass
|
||||
class EmbeddingOutput:
|
||||
"""The output data of one embedding output of a request.
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user