mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-13 23:55:44 +08:00
[Doc] Update SkyPilot doc for wrong indents and instructions for update service (#4283)
This commit is contained in:
parent
281977bd6e
commit
150a1ffbfd
@ -159,18 +159,7 @@ SkyPilot can scale up the service to multiple service replicas with built-in aut
|
||||
--model $MODEL_NAME \
|
||||
--trust-remote-code \
|
||||
--tensor-parallel-size $SKYPILOT_NUM_GPUS_PER_NODE \
|
||||
2>&1 | tee api_server.log &
|
||||
|
||||
echo 'Waiting for vllm api server to start...'
|
||||
while ! `cat api_server.log | grep -q 'Uvicorn running on'`; do sleep 1; done
|
||||
|
||||
echo 'Starting gradio server...'
|
||||
git clone https://github.com/vllm-project/vllm.git || true
|
||||
python vllm/examples/gradio_openai_chatbot_webserver.py \
|
||||
-m $MODEL_NAME \
|
||||
--port 8811 \
|
||||
--model-url http://localhost:8081/v1 \
|
||||
--stop-token-ids 128009,128001
|
||||
2>&1 | tee api_server.log
|
||||
|
||||
.. raw:: html
|
||||
|
||||
@ -203,8 +192,8 @@ Wait until the service is ready:
|
||||
|
||||
Service Replicas
|
||||
SERVICE_NAME ID VERSION IP LAUNCHED RESOURCES STATUS REGION
|
||||
vllm 1 1 xx.yy.zz.121 18 mins ago 1x GCP({'L4': 1}) READY us-east4
|
||||
vllm 2 1 xx.yy.zz.245 18 mins ago 1x GCP({'L4': 1}) READY us-east4
|
||||
vllm 1 1 xx.yy.zz.121 18 mins ago 1x GCP([Spot]{'L4': 1}) READY us-east4
|
||||
vllm 2 1 xx.yy.zz.245 18 mins ago 1x GCP([Spot]{'L4': 1}) READY us-east4
|
||||
|
||||
.. raw:: html
|
||||
|
||||
@ -232,19 +221,91 @@ After the service is READY, you can find a single endpoint for the service and a
|
||||
"stop_token_ids": [128009, 128001]
|
||||
}'
|
||||
|
||||
To enable autoscaling, you could specify additional configs in `services`:
|
||||
To enable autoscaling, you could replace the `replicas` with the following configs in `service`:
|
||||
|
||||
.. code-block:: yaml
|
||||
|
||||
services:
|
||||
service:
|
||||
replica_policy:
|
||||
min_replicas: 0
|
||||
max_replicas: 3
|
||||
min_replicas: 2
|
||||
max_replicas: 4
|
||||
target_qps_per_replica: 2
|
||||
|
||||
This will scale the service up to when the QPS exceeds 2 for each replica.
|
||||
|
||||
|
||||
.. raw:: html
|
||||
|
||||
<details>
|
||||
<summary>Click to see the full recipe YAML</summary>
|
||||
|
||||
|
||||
.. code-block:: yaml
|
||||
|
||||
service:
|
||||
replica_policy:
|
||||
min_replicas: 2
|
||||
max_replicas: 4
|
||||
target_qps_per_replica: 2
|
||||
# An actual request for readiness probe.
|
||||
readiness_probe:
|
||||
path: /v1/chat/completions
|
||||
post_data:
|
||||
model: $MODEL_NAME
|
||||
messages:
|
||||
- role: user
|
||||
content: Hello! What is your name?
|
||||
max_tokens: 1
|
||||
|
||||
resources:
|
||||
accelerators: {L4, A10g, A10, L40, A40, A100, A100-80GB} # We can use cheaper accelerators for 8B model.
|
||||
use_spot: True
|
||||
disk_size: 512 # Ensure model checkpoints can fit.
|
||||
disk_tier: best
|
||||
ports: 8081 # Expose to internet traffic.
|
||||
|
||||
envs:
|
||||
MODEL_NAME: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
HF_TOKEN: <your-huggingface-token> # Change to your own huggingface token, or use --env to pass.
|
||||
|
||||
setup: |
|
||||
conda create -n vllm python=3.10 -y
|
||||
conda activate vllm
|
||||
|
||||
pip install vllm==0.4.0.post1
|
||||
# Install Gradio for web UI.
|
||||
pip install gradio openai
|
||||
pip install flash-attn==2.5.7
|
||||
|
||||
run: |
|
||||
conda activate vllm
|
||||
echo 'Starting vllm api server...'
|
||||
python -u -m vllm.entrypoints.openai.api_server \
|
||||
--port 8081 \
|
||||
--model $MODEL_NAME \
|
||||
--trust-remote-code \
|
||||
--tensor-parallel-size $SKYPILOT_NUM_GPUS_PER_NODE \
|
||||
2>&1 | tee api_server.log
|
||||
|
||||
|
||||
.. raw:: html
|
||||
|
||||
</details>
|
||||
|
||||
To update the service with the new config:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
HF_TOKEN="your-huggingface-token" sky serve update vllm serving.yaml --env HF_TOKEN
|
||||
|
||||
|
||||
To stop the service:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
sky serve down vllm
|
||||
|
||||
|
||||
**Optional**: Connect a GUI to the endpoint
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
@ -259,18 +320,15 @@ It is also possible to access the Llama-3 service with a separate GUI frontend,
|
||||
.. code-block:: yaml
|
||||
|
||||
envs:
|
||||
MODEL_NAME: meta-llama/Meta-Llama-3-70B-Instruct
|
||||
MODEL_NAME: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
ENDPOINT: x.x.x.x:3031 # Address of the API server running vllm.
|
||||
|
||||
resources:
|
||||
cpus: 2
|
||||
|
||||
setup: |
|
||||
conda activate vllm
|
||||
if [ $? -ne 0 ]; then
|
||||
conda create -n vllm python=3.10 -y
|
||||
conda activate vllm
|
||||
fi
|
||||
|
||||
# Install Gradio for web UI.
|
||||
pip install gradio openai
|
||||
@ -278,9 +336,6 @@ It is also possible to access the Llama-3 service with a separate GUI frontend,
|
||||
run: |
|
||||
conda activate vllm
|
||||
export PATH=$PATH:/sbin
|
||||
WORKER_IP=$(hostname -I | cut -d' ' -f1)
|
||||
CONTROLLER_PORT=21001
|
||||
WORKER_PORT=21002
|
||||
|
||||
echo 'Starting gradio server...'
|
||||
git clone https://github.com/vllm-project/vllm.git || true
|
||||
@ -290,6 +345,7 @@ It is also possible to access the Llama-3 service with a separate GUI frontend,
|
||||
--model-url http://$ENDPOINT/v1 \
|
||||
--stop-token-ids 128009,128001 | tee ~/gradio.log
|
||||
|
||||
|
||||
.. raw:: html
|
||||
|
||||
</details>
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user