mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2026-01-04 10:59:39 +08:00
[Bugfix][VLM] Fix mixed-modality inference backward compatibility for V0 (#12313)
Signed-off-by: Roger Wang <ywang@roblox.com>
This commit is contained in:
parent
528dbcac7d
commit
16366ee8bb
@ -816,7 +816,7 @@ class LlavaOnevisionForConditionalGeneration(nn.Module, SupportsMultiModal,
|
||||
return image_feature
|
||||
|
||||
def get_multimodal_embeddings(
|
||||
self, **kwargs) -> Optional[List[Tuple[NestedTensors, str]]]:
|
||||
self, **kwargs) -> Optional[tuple[torch.Tensor, ...]]:
|
||||
modalities = self._parse_and_validate_multimodal_inputs(**kwargs)
|
||||
if not modalities:
|
||||
return None
|
||||
@ -842,8 +842,7 @@ class LlavaOnevisionForConditionalGeneration(nn.Module, SupportsMultiModal,
|
||||
def get_input_embeddings(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
multimodal_embeddings: Optional[List[Tuple[NestedTensors,
|
||||
str]]] = None,
|
||||
multimodal_embeddings: Optional[tuple[torch.Tensor, ...]] = None,
|
||||
) -> torch.Tensor:
|
||||
inputs_embeds = self.language_model.get_input_embeddings(input_ids)
|
||||
if multimodal_embeddings is not None:
|
||||
@ -852,6 +851,34 @@ class LlavaOnevisionForConditionalGeneration(nn.Module, SupportsMultiModal,
|
||||
[self.config.image_token_index, self.config.video_token_index])
|
||||
return inputs_embeds
|
||||
|
||||
def get_input_embeddings_v0(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
image_input: Optional[NestedTensors] = None,
|
||||
video_input: Optional[NestedTensors] = None,
|
||||
) -> torch.Tensor:
|
||||
|
||||
inputs_embeds = self.get_input_embeddings(input_ids)
|
||||
if image_input is not None:
|
||||
image_embeds = self._process_image_input(image_input)
|
||||
inputs_embeds = merge_multimodal_embeddings(
|
||||
input_ids,
|
||||
inputs_embeds,
|
||||
image_embeds,
|
||||
placeholder_token_id=self.config.image_token_index,
|
||||
)
|
||||
|
||||
if video_input is not None:
|
||||
video_embeds = self._process_video_pixels(video_input)
|
||||
inputs_embeds = merge_multimodal_embeddings(
|
||||
input_ids,
|
||||
inputs_embeds,
|
||||
video_embeds,
|
||||
placeholder_token_id=self.config.video_token_index,
|
||||
)
|
||||
|
||||
return inputs_embeds
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
@ -871,13 +898,21 @@ class LlavaOnevisionForConditionalGeneration(nn.Module, SupportsMultiModal,
|
||||
if intermediate_tensors is not None:
|
||||
inputs_embeds = None
|
||||
|
||||
# NOTE: In v1, inputs_embeds is always generated at model runner, this
|
||||
# condition is for v0 compatibility.
|
||||
# NOTE: In v1, inputs_embeds is always generated at model runner from
|
||||
# `get_multimodal_embeddings` and `get_input_embeddings`, this
|
||||
# condition is only for v0 compatibility.
|
||||
elif inputs_embeds is None:
|
||||
multimodal_embeddings = self.get_multimodal_embeddings(**kwargs)
|
||||
inputs_embeds = self.get_input_embeddings(input_ids,
|
||||
multimodal_embeddings)
|
||||
input_ids = None
|
||||
image_input = self._parse_and_validate_image_input(**kwargs)
|
||||
video_input = self._parse_and_validate_video_input(**kwargs)
|
||||
|
||||
if image_input is None and video_input is None:
|
||||
inputs_embeds = None
|
||||
else:
|
||||
inputs_embeds = self.get_input_embeddings_v0(
|
||||
input_ids,
|
||||
image_input=image_input,
|
||||
video_input=video_input)
|
||||
input_ids = None
|
||||
|
||||
hidden_states = self.language_model.model(input_ids,
|
||||
positions,
|
||||
|
||||
@ -55,7 +55,7 @@ from vllm.model_executor.models.module_mapping import MultiModelKeys
|
||||
from vllm.multimodal import MULTIMODAL_REGISTRY
|
||||
from vllm.multimodal.inputs import (ImageItem, ModalityData,
|
||||
MultiModalFieldConfig, MultiModalKwargs,
|
||||
NestedTensors, VideoItem)
|
||||
VideoItem)
|
||||
from vllm.multimodal.parse import (ImageSize, ModalityDataItems,
|
||||
MultiModalDataItems, MultiModalDataParser)
|
||||
from vllm.multimodal.processing import (BaseMultiModalProcessor,
|
||||
@ -1233,7 +1233,7 @@ class Qwen2VLForConditionalGeneration(nn.Module, SupportsMultiModal,
|
||||
return modalities
|
||||
|
||||
def get_multimodal_embeddings(
|
||||
self, **kwargs) -> Optional[List[Tuple[NestedTensors, str]]]:
|
||||
self, **kwargs) -> Optional[tuple[torch.Tensor, ...]]:
|
||||
|
||||
modalities = self._parse_and_validate_multimodal_inputs(**kwargs)
|
||||
if not modalities:
|
||||
@ -1260,8 +1260,7 @@ class Qwen2VLForConditionalGeneration(nn.Module, SupportsMultiModal,
|
||||
def get_input_embeddings(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
multimodal_embeddings: Optional[List[Tuple[NestedTensors,
|
||||
str]]] = None,
|
||||
multimodal_embeddings: Optional[tuple[torch.Tensor, ...]] = None,
|
||||
) -> torch.Tensor:
|
||||
inputs_embeds = self.language_model.get_input_embeddings(input_ids)
|
||||
if multimodal_embeddings is not None:
|
||||
@ -1270,6 +1269,33 @@ class Qwen2VLForConditionalGeneration(nn.Module, SupportsMultiModal,
|
||||
[self.config.image_token_id, self.config.video_token_id])
|
||||
return inputs_embeds
|
||||
|
||||
def get_input_embeddings_v0(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
image_input: Optional[tuple[torch.Tensor, ...]] = None,
|
||||
video_input: Optional[tuple[torch.Tensor, ...]] = None,
|
||||
) -> torch.Tensor:
|
||||
|
||||
inputs_embeds = self.get_input_embeddings(input_ids)
|
||||
if image_input is not None:
|
||||
image_embeds = self._process_image_input(image_input)
|
||||
inputs_embeds = merge_multimodal_embeddings(
|
||||
input_ids,
|
||||
inputs_embeds,
|
||||
image_embeds,
|
||||
placeholder_token_id=self.config.image_token_id,
|
||||
)
|
||||
|
||||
if video_input is not None:
|
||||
video_embeds = self._process_video_input(video_input)
|
||||
inputs_embeds = merge_multimodal_embeddings(
|
||||
input_ids,
|
||||
inputs_embeds,
|
||||
video_embeds,
|
||||
placeholder_token_id=self.config.video_token_id,
|
||||
)
|
||||
return inputs_embeds
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
@ -1303,22 +1329,25 @@ class Qwen2VLForConditionalGeneration(nn.Module, SupportsMultiModal,
|
||||
if intermediate_tensors is not None:
|
||||
inputs_embeds = None
|
||||
|
||||
# NOTE: In v1, inputs_embeds is always generated at model runner, this
|
||||
# condition is for v0 compatibility.
|
||||
# NOTE: In v1, inputs_embeds is always generated at model runner from
|
||||
# `get_multimodal_embeddings` and `get_input_embeddings`, this
|
||||
# condition is only for v0 compatibility.
|
||||
elif inputs_embeds is None:
|
||||
multimodal_embeddings = self.get_multimodal_embeddings(**kwargs)
|
||||
image_input = self._parse_and_validate_image_input(**kwargs)
|
||||
video_input = self._parse_and_validate_video_input(**kwargs)
|
||||
|
||||
# We need to check for usage of mrope here in case there is
|
||||
# multimodal data.
|
||||
# TODO (ywang96): move this to model runner in V1.
|
||||
if multimodal_embeddings is not None and uses_mrope(self.config):
|
||||
assert positions.ndim == 2 and positions.size(0) == 3, (
|
||||
"multimodal section rotary embedding requires "
|
||||
f"(3, seq_len) positions, but got {positions.size()}")
|
||||
|
||||
inputs_embeds = self.get_input_embeddings(input_ids,
|
||||
multimodal_embeddings)
|
||||
input_ids = None
|
||||
if image_input is None and video_input is None:
|
||||
inputs_embeds = None
|
||||
else:
|
||||
if uses_mrope(self.config):
|
||||
assert positions.ndim == 2 and positions.size(0) == 3, (
|
||||
"multimodal section rotary embedding requires "
|
||||
f"(3, seq_len) positions, but got {positions.size()}")
|
||||
inputs_embeds = self.get_input_embeddings_v0(
|
||||
input_ids,
|
||||
image_input=image_input,
|
||||
video_input=video_input)
|
||||
input_ids = None
|
||||
|
||||
hidden_states = self.language_model.model(
|
||||
input_ids=input_ids,
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user