mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-24 02:35:01 +08:00
CPU KV Offloading: Use more CUDA streams (#29013)
Signed-off-by: Or Ozeri <oro@il.ibm.com>
This commit is contained in:
parent
9ccbf6b692
commit
174e39ead7
@ -9,7 +9,7 @@ import torch
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.v1.attention.backends.flash_attn import FlashAttentionBackend
|
||||
from vllm.v1.kv_offload.mediums import CPULoadStoreSpec, GPULoadStoreSpec
|
||||
from vllm.v1.kv_offload.worker.cpu_gpu import CpuGpuOffloadingHandler
|
||||
from vllm.v1.kv_offload.worker.cpu_gpu import CpuGpuOffloadingHandlers
|
||||
|
||||
BACKENDS_TO_TEST = [FlashAttentionBackend]
|
||||
|
||||
@ -82,7 +82,7 @@ def test_transfer(
|
||||
|
||||
# create handler
|
||||
cpu_block_size = gpu_blocks_per_cpu_block * gpu_block_size
|
||||
handler = CpuGpuOffloadingHandler(
|
||||
handlers = CpuGpuOffloadingHandlers(
|
||||
attn_backends=attn_backends,
|
||||
gpu_block_size=gpu_block_size,
|
||||
cpu_block_size=cpu_block_size,
|
||||
@ -112,8 +112,7 @@ def test_transfer(
|
||||
|
||||
# set transfer direction
|
||||
if gpu_to_cpu:
|
||||
src_kv_caches = handler.gpu_tensors
|
||||
dst_kv_caches = handler.cpu_tensors
|
||||
handler = handlers.gpu_to_cpu_handler
|
||||
src_spec_class = GPULoadStoreSpec
|
||||
dst_spec_class = CPULoadStoreSpec
|
||||
src_blocks = gpu_blocks
|
||||
@ -122,8 +121,7 @@ def test_transfer(
|
||||
dst_blocks_in_gpu_block_size = cpu_blocks_in_gpu_block_size
|
||||
dst_size_in_gpu_blocks = num_cpu_blocks * gpu_blocks_per_cpu_block
|
||||
else:
|
||||
src_kv_caches = handler.cpu_tensors
|
||||
dst_kv_caches = handler.gpu_tensors
|
||||
handler = handlers.cpu_to_gpu_handler
|
||||
src_spec_class = CPULoadStoreSpec
|
||||
dst_spec_class = GPULoadStoreSpec
|
||||
src_blocks = cpu_blocks
|
||||
@ -144,12 +142,12 @@ def test_transfer(
|
||||
dst_spec = dst_spec_class(dst_blocks)
|
||||
|
||||
# clone src and dst tensors before transfer
|
||||
orig_src_caches = [x.clone() for x in src_kv_caches]
|
||||
orig_dst_caches = [x.clone() for x in dst_kv_caches]
|
||||
orig_src_caches = [x.clone() for x in handler.src_tensors]
|
||||
orig_dst_caches = [x.clone() for x in handler.dst_tensors]
|
||||
|
||||
# call transfer function
|
||||
assert handler.transfer_async(1, (src_spec, dst_spec))
|
||||
assert set(handler.transfer_events.keys()) == {1}
|
||||
assert set({x[0] for x in handler._transfers}) == {1}
|
||||
|
||||
# wait for transfer to complete
|
||||
end_time = time.time() + 10
|
||||
@ -161,15 +159,15 @@ def test_transfer(
|
||||
time.sleep(0.1)
|
||||
|
||||
# verify src tensors did not change
|
||||
for orig_tensor, tensor in zip(orig_src_caches, src_kv_caches):
|
||||
for orig_tensor, tensor in zip(orig_src_caches, handler.src_tensors):
|
||||
assert torch.equal(orig_tensor, tensor)
|
||||
|
||||
# verify dst tensors
|
||||
for dst_block in range(dst_size_in_gpu_blocks):
|
||||
src_block_candidate = dst_to_src.get(dst_block)
|
||||
for src_cache, dst_cache, orig_dst_cache, kv_dim in zip(
|
||||
src_kv_caches,
|
||||
dst_kv_caches,
|
||||
handler.src_tensors,
|
||||
handler.dst_tensors,
|
||||
orig_dst_caches,
|
||||
handler.kv_dim_before_num_blocks,
|
||||
):
|
||||
|
||||
@ -13,7 +13,7 @@ from vllm.v1.kv_offload.backends.cpu import CPUBackend
|
||||
from vllm.v1.kv_offload.lru_manager import LRUOffloadingManager
|
||||
from vllm.v1.kv_offload.mediums import CPULoadStoreSpec, GPULoadStoreSpec
|
||||
from vllm.v1.kv_offload.spec import OffloadingSpec
|
||||
from vllm.v1.kv_offload.worker.cpu_gpu import CpuGpuOffloadingHandler
|
||||
from vllm.v1.kv_offload.worker.cpu_gpu import CpuGpuOffloadingHandlers
|
||||
from vllm.v1.kv_offload.worker.worker import OffloadingHandler
|
||||
|
||||
|
||||
@ -32,7 +32,7 @@ class CPUOffloadingSpec(OffloadingSpec):
|
||||
self._manager: OffloadingManager | None = None
|
||||
|
||||
# worker-side
|
||||
self._handler: OffloadingHandler | None = None
|
||||
self._handlers: CpuGpuOffloadingHandlers | None = None
|
||||
|
||||
self.eviction_policy: str = self.extra_config.get("eviction_policy", "lru")
|
||||
|
||||
@ -67,13 +67,13 @@ class CPUOffloadingSpec(OffloadingSpec):
|
||||
kv_caches: dict[str, torch.Tensor],
|
||||
attn_backends: dict[str, type[AttentionBackend]],
|
||||
) -> Iterator[tuple[type[LoadStoreSpec], type[LoadStoreSpec], OffloadingHandler]]:
|
||||
if not self._handler:
|
||||
if not self._handlers:
|
||||
if not current_platform.is_cuda_alike():
|
||||
raise Exception(
|
||||
"CPU Offloading is currently only supported on CUDA-alike GPUs"
|
||||
)
|
||||
|
||||
self._handler = CpuGpuOffloadingHandler(
|
||||
self._handlers = CpuGpuOffloadingHandlers(
|
||||
attn_backends=attn_backends,
|
||||
gpu_block_size=self.gpu_block_size,
|
||||
cpu_block_size=self.offloaded_block_size,
|
||||
@ -81,6 +81,6 @@ class CPUOffloadingSpec(OffloadingSpec):
|
||||
gpu_caches=kv_caches,
|
||||
)
|
||||
|
||||
assert self._handler is not None
|
||||
yield GPULoadStoreSpec, CPULoadStoreSpec, self._handler
|
||||
yield CPULoadStoreSpec, GPULoadStoreSpec, self._handler
|
||||
assert self._handlers is not None
|
||||
yield GPULoadStoreSpec, CPULoadStoreSpec, self._handlers.gpu_to_cpu_handler
|
||||
yield CPULoadStoreSpec, GPULoadStoreSpec, self._handlers.cpu_to_gpu_handler
|
||||
|
||||
@ -1,5 +1,6 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
from collections import deque
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
@ -8,7 +9,7 @@ from vllm import _custom_ops as ops
|
||||
from vllm.attention.backends.abstract import AttentionBackend
|
||||
from vllm.logger import init_logger
|
||||
from vllm.utils.platform_utils import is_pin_memory_available
|
||||
from vllm.v1.kv_offload.mediums import CPULoadStoreSpec, GPULoadStoreSpec
|
||||
from vllm.v1.kv_offload.mediums import BlockIDsLoadStoreSpec
|
||||
from vllm.v1.kv_offload.worker.worker import (
|
||||
OffloadingHandler,
|
||||
TransferResult,
|
||||
@ -51,7 +52,123 @@ def expand_block_ids(
|
||||
output_idx = output_end_idx
|
||||
|
||||
|
||||
class CpuGpuOffloadingHandler(OffloadingHandler):
|
||||
class SingleDirectionOffloadingHandler(OffloadingHandler):
|
||||
"""
|
||||
SingleDirectionOffloadingHandler handles transfers for a single direction,
|
||||
either CPU->GPU or GPU->CPU.
|
||||
Transfers are guaranteed to be executed in order of their submission.
|
||||
Each transfer uses a unique CUDA stream, and its stream will start
|
||||
executing only after the streams of previous transfers have finished.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
src_tensors: list[torch.Tensor],
|
||||
dst_tensors: list[torch.Tensor],
|
||||
kv_dim_before_num_blocks: list[bool],
|
||||
src_block_size_factor: int,
|
||||
dst_block_size_factor: int,
|
||||
priority: int,
|
||||
):
|
||||
"""
|
||||
Initialize a SingleDirectionOffloadingHandler.
|
||||
|
||||
Args:
|
||||
src_tensors: list of KV cache tensors to copy from.
|
||||
dst_tensors: list of KV cache tensors to copy to.
|
||||
Order should match src_tensors.
|
||||
kv_dim_before_num_blocks: list of bools, indicating
|
||||
whether the respective KV cache tensor has a KV
|
||||
dimension before its num_blocks dimension.
|
||||
e.g. (2, num_blocks, ...)
|
||||
src_block_size_factor: The number of kernel blocks
|
||||
per KV block in a source tensor.
|
||||
dst_block_size_factor: The number of kernel blocks
|
||||
per KV block in a destination tensor.
|
||||
priority: The priority of the backing CUDA streams.
|
||||
Lower numbers indicate higher priority.
|
||||
"""
|
||||
assert len(src_tensors) == len(dst_tensors) == len(kv_dim_before_num_blocks)
|
||||
|
||||
self.src_tensors: list[torch.Tensor] = src_tensors
|
||||
self.dst_tensors: list[torch.Tensor] = dst_tensors
|
||||
self.kv_dim_before_num_blocks: list[bool] = kv_dim_before_num_blocks
|
||||
self.src_block_size_factor: int = src_block_size_factor
|
||||
self.dst_block_size_factor: int = dst_block_size_factor
|
||||
self.priority = priority
|
||||
|
||||
# queue of transfers (job_id, stream, event)
|
||||
self._transfers: deque[tuple[int, torch.cuda.Stream, torch.Event]] = deque()
|
||||
# list of CUDA streams available for re-use
|
||||
self._stream_pool: list[torch.cuda.Stream] = []
|
||||
# list of CUDA events available for re-use
|
||||
self._event_pool: list[torch.Event] = []
|
||||
|
||||
def transfer_async(self, job_id: int, transfer_spec: TransferSpec) -> bool:
|
||||
src_spec, dst_spec = transfer_spec
|
||||
assert isinstance(src_spec, BlockIDsLoadStoreSpec)
|
||||
assert isinstance(dst_spec, BlockIDsLoadStoreSpec)
|
||||
|
||||
src_blocks = src_spec.block_ids
|
||||
dst_blocks = dst_spec.block_ids
|
||||
assert src_blocks.ndim == 1
|
||||
assert dst_blocks.ndim == 1
|
||||
|
||||
src_sub_block_count = src_blocks.size * self.src_block_size_factor
|
||||
dst_sub_block_count = dst_blocks.size * self.dst_block_size_factor
|
||||
src_sub_blocks_to_skip = -dst_blocks.size % self.src_block_size_factor
|
||||
|
||||
assert dst_sub_block_count == src_sub_block_count - src_sub_blocks_to_skip
|
||||
|
||||
src_to_dst = np.empty((dst_sub_block_count, 2), dtype=np.int64)
|
||||
expand_block_ids(
|
||||
src_blocks,
|
||||
self.src_block_size_factor,
|
||||
src_to_dst[:, 0],
|
||||
skip_count=src_sub_blocks_to_skip,
|
||||
)
|
||||
expand_block_ids(dst_blocks, self.dst_block_size_factor, src_to_dst[:, 1])
|
||||
src_to_dst_tensor = torch.from_numpy(src_to_dst)
|
||||
|
||||
stream = (
|
||||
self._stream_pool.pop()
|
||||
if self._stream_pool
|
||||
else torch.cuda.Stream(priority=self.priority)
|
||||
)
|
||||
event = self._event_pool.pop() if self._event_pool else torch.Event()
|
||||
if self._transfers:
|
||||
_, _, last_event = self._transfers[-1]
|
||||
# assure job will start only after the previous one completes
|
||||
stream.wait_event(last_event)
|
||||
with torch.cuda.stream(stream):
|
||||
for src_tensor, dst_tensor, kv_dim in zip(
|
||||
self.src_tensors, self.dst_tensors, self.kv_dim_before_num_blocks
|
||||
):
|
||||
if kv_dim:
|
||||
src_key_cache, src_value_cache = src_tensor
|
||||
dst_key_cache, dst_value_cache = dst_tensor
|
||||
ops.swap_blocks(src_key_cache, dst_key_cache, src_to_dst_tensor)
|
||||
ops.swap_blocks(src_value_cache, dst_value_cache, src_to_dst_tensor)
|
||||
else:
|
||||
ops.swap_blocks(src_tensor, dst_tensor, src_to_dst_tensor)
|
||||
event.record(stream)
|
||||
|
||||
self._transfers.append((job_id, stream, event))
|
||||
|
||||
# success
|
||||
return True
|
||||
|
||||
def get_finished(self) -> list[TransferResult]:
|
||||
results: list[TransferResult] = []
|
||||
while self._transfers and self._transfers[0][2].query():
|
||||
job_id, stream, event = self._transfers.popleft()
|
||||
results.append((job_id, True))
|
||||
self._stream_pool.append(stream)
|
||||
self._event_pool.append(event)
|
||||
return results
|
||||
|
||||
|
||||
class CpuGpuOffloadingHandlers:
|
||||
def __init__(
|
||||
self,
|
||||
gpu_block_size: int,
|
||||
@ -60,27 +177,20 @@ class CpuGpuOffloadingHandler(OffloadingHandler):
|
||||
gpu_caches: dict[str, torch.Tensor],
|
||||
attn_backends: dict[str, type[AttentionBackend]],
|
||||
):
|
||||
assert gpu_caches
|
||||
assert cpu_block_size % gpu_block_size == 0
|
||||
self.block_size_factor = cpu_block_size // gpu_block_size
|
||||
|
||||
# cuda streams for gpu->cpu and cpu->gpu
|
||||
self.d2h_stream = torch.cuda.Stream()
|
||||
self.h2d_stream = torch.cuda.Stream()
|
||||
|
||||
# job_id -> transfer cuda event
|
||||
self.transfer_events: dict[int, torch.Event] = {}
|
||||
# list of cuda events available for re-use
|
||||
self.events_pool: list[torch.Event] = []
|
||||
block_size_factor = cpu_block_size // gpu_block_size
|
||||
|
||||
pin_memory = is_pin_memory_available()
|
||||
|
||||
# allocate cpu tensors
|
||||
logger.info("Allocating %d CPU tensors...", len(gpu_caches))
|
||||
self.gpu_tensors: list[torch.Tensor] = []
|
||||
self.cpu_tensors: list[torch.Tensor] = []
|
||||
self.kv_dim_before_num_blocks: list[bool] = []
|
||||
gpu_tensors: list[torch.Tensor] = []
|
||||
cpu_tensors: list[torch.Tensor] = []
|
||||
kv_dim_before_num_blocks: list[bool] = []
|
||||
kernel_block_size: int | None = None
|
||||
for layer_name, gpu_tensor in gpu_caches.items():
|
||||
self.gpu_tensors.append(gpu_tensor)
|
||||
gpu_tensors.append(gpu_tensor)
|
||||
|
||||
gpu_shape = gpu_tensor.shape
|
||||
attn_backend = attn_backends[layer_name]
|
||||
@ -88,16 +198,21 @@ class CpuGpuOffloadingHandler(OffloadingHandler):
|
||||
num_blocks=1234, block_size=16, num_kv_heads=8, head_size=256
|
||||
)
|
||||
|
||||
has_layers_dim = False
|
||||
if len(gpu_shape) != len(test_shape):
|
||||
# cross-layers tensor
|
||||
# shape is (num_blocks, ...)
|
||||
assert len(gpu_shape) == len(test_shape) + 1
|
||||
num_blocks_idx = 0
|
||||
self.kv_dim_before_num_blocks.append(False)
|
||||
has_layers_dim = True
|
||||
kv_dim_before_num_blocks.append(False)
|
||||
|
||||
# prepend a dummy num_layers=80 to test_shape
|
||||
test_shape = (80,) + test_shape
|
||||
elif test_shape[0] == 1234:
|
||||
# shape is (num_blocks, ...)
|
||||
num_blocks_idx = 0
|
||||
self.kv_dim_before_num_blocks.append(False)
|
||||
kv_dim_before_num_blocks.append(False)
|
||||
else:
|
||||
# shape should be (2, num_blocks, ...)
|
||||
assert test_shape[0] == 2
|
||||
@ -105,13 +220,32 @@ class CpuGpuOffloadingHandler(OffloadingHandler):
|
||||
assert gpu_shape[0] == 2
|
||||
|
||||
num_blocks_idx = 1
|
||||
self.kv_dim_before_num_blocks.append(True)
|
||||
kv_dim_before_num_blocks.append(True)
|
||||
|
||||
try:
|
||||
kv_cache_stride_order = attn_backend.get_kv_cache_stride_order(
|
||||
include_num_layers_dimension=has_layers_dim
|
||||
)
|
||||
assert len(kv_cache_stride_order) == len(gpu_shape)
|
||||
except (AttributeError, NotImplementedError):
|
||||
kv_cache_stride_order = tuple(range(len(gpu_shape)))
|
||||
|
||||
# permute test_shape according to stride_order
|
||||
test_shape = tuple(test_shape[i] for i in kv_cache_stride_order)
|
||||
|
||||
# find block_size (16) dimension index
|
||||
block_size_idx = test_shape.index(16)
|
||||
if kernel_block_size is not None:
|
||||
assert kernel_block_size == gpu_shape[block_size_idx]
|
||||
else:
|
||||
kernel_block_size = gpu_shape[block_size_idx]
|
||||
assert gpu_block_size % kernel_block_size == 0
|
||||
|
||||
cpu_shape = list(gpu_shape)
|
||||
cpu_shape[num_blocks_idx] = num_cpu_blocks * self.block_size_factor
|
||||
cpu_shape[num_blocks_idx] = num_cpu_blocks * block_size_factor
|
||||
|
||||
logger.debug("Allocating CPU tensor of shape %r", cpu_shape)
|
||||
self.cpu_tensors.append(
|
||||
cpu_tensors.append(
|
||||
torch.zeros(
|
||||
cpu_shape,
|
||||
dtype=gpu_tensor.dtype,
|
||||
@ -120,72 +254,27 @@ class CpuGpuOffloadingHandler(OffloadingHandler):
|
||||
)
|
||||
)
|
||||
|
||||
def transfer_async(self, job_id: int, spec: TransferSpec) -> bool:
|
||||
src_spec, dst_spec = spec
|
||||
if isinstance(src_spec, CPULoadStoreSpec):
|
||||
assert isinstance(dst_spec, GPULoadStoreSpec)
|
||||
stream = self.h2d_stream
|
||||
src_tensors = self.cpu_tensors
|
||||
dst_tensors = self.gpu_tensors
|
||||
src_block_size_factor = self.block_size_factor
|
||||
dst_block_size_factor = 1
|
||||
else:
|
||||
assert isinstance(src_spec, GPULoadStoreSpec)
|
||||
assert isinstance(dst_spec, CPULoadStoreSpec)
|
||||
stream = self.d2h_stream
|
||||
src_tensors = self.gpu_tensors
|
||||
dst_tensors = self.cpu_tensors
|
||||
src_block_size_factor = 1
|
||||
dst_block_size_factor = self.block_size_factor
|
||||
assert kernel_block_size is not None
|
||||
gpu_block_size_factor = gpu_block_size // kernel_block_size
|
||||
cpu_block_size_factor = cpu_block_size // kernel_block_size
|
||||
|
||||
src_blocks = src_spec.block_ids
|
||||
dst_blocks = dst_spec.block_ids
|
||||
assert src_blocks.ndim == 1
|
||||
assert dst_blocks.ndim == 1
|
||||
# TODO (orozery): adapt swap_blocks to support gpu_block_size_factor
|
||||
assert gpu_block_size_factor == 1
|
||||
|
||||
src_sub_block_count = src_blocks.size * src_block_size_factor
|
||||
dst_sub_block_count = dst_blocks.size * dst_block_size_factor
|
||||
src_sub_blocks_to_skip = -dst_blocks.size % src_block_size_factor
|
||||
|
||||
assert dst_sub_block_count == src_sub_block_count - src_sub_blocks_to_skip
|
||||
|
||||
src_to_dst = np.empty((dst_sub_block_count, 2), dtype=np.int64)
|
||||
expand_block_ids(
|
||||
src_blocks,
|
||||
src_block_size_factor,
|
||||
src_to_dst[:, 0],
|
||||
skip_count=src_sub_blocks_to_skip,
|
||||
self.gpu_to_cpu_handler = SingleDirectionOffloadingHandler(
|
||||
src_tensors=gpu_tensors,
|
||||
dst_tensors=cpu_tensors,
|
||||
kv_dim_before_num_blocks=kv_dim_before_num_blocks,
|
||||
src_block_size_factor=gpu_block_size_factor,
|
||||
dst_block_size_factor=cpu_block_size_factor,
|
||||
priority=1,
|
||||
)
|
||||
expand_block_ids(dst_blocks, dst_block_size_factor, src_to_dst[:, 1])
|
||||
src_to_dst_tensor = torch.from_numpy(src_to_dst)
|
||||
|
||||
event = self.events_pool.pop() if self.events_pool else torch.Event()
|
||||
with torch.cuda.stream(stream):
|
||||
for src_tensor, dst_tensor, kv_dim in zip(
|
||||
src_tensors, dst_tensors, self.kv_dim_before_num_blocks
|
||||
):
|
||||
if kv_dim:
|
||||
src_key_cache = src_tensor[0]
|
||||
dst_key_cache = dst_tensor[0]
|
||||
ops.swap_blocks(src_key_cache, dst_key_cache, src_to_dst_tensor)
|
||||
src_value_cache = src_tensor[1]
|
||||
dst_value_cache = dst_tensor[1]
|
||||
ops.swap_blocks(src_value_cache, dst_value_cache, src_to_dst_tensor)
|
||||
else:
|
||||
ops.swap_blocks(src_tensor, dst_tensor, src_to_dst_tensor)
|
||||
event.record(stream)
|
||||
|
||||
self.transfer_events[job_id] = event
|
||||
|
||||
# success
|
||||
return True
|
||||
|
||||
def get_finished(self) -> list[TransferResult]:
|
||||
results: list[TransferResult] = []
|
||||
for job_id, event in self.transfer_events.items():
|
||||
if event.query():
|
||||
results.append((job_id, True))
|
||||
self.events_pool.append(event)
|
||||
for job_id, _ in results:
|
||||
del self.transfer_events[job_id]
|
||||
return results
|
||||
self.cpu_to_gpu_handler = SingleDirectionOffloadingHandler(
|
||||
src_tensors=cpu_tensors,
|
||||
dst_tensors=gpu_tensors,
|
||||
kv_dim_before_num_blocks=kv_dim_before_num_blocks,
|
||||
src_block_size_factor=cpu_block_size_factor,
|
||||
dst_block_size_factor=gpu_block_size_factor,
|
||||
priority=-1,
|
||||
)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user