mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 01:55:01 +08:00
Add NVIDIA TensorRT Model Optimizer in vLLM documentation (#17561)
This commit is contained in:
parent
3e887d2e0c
commit
182f40ea8b
@ -17,6 +17,7 @@ gptqmodel
|
||||
int4
|
||||
int8
|
||||
fp8
|
||||
modelopt
|
||||
quark
|
||||
quantized_kvcache
|
||||
torchao
|
||||
|
||||
78
docs/source/features/quantization/modelopt.md
Normal file
78
docs/source/features/quantization/modelopt.md
Normal file
@ -0,0 +1,78 @@
|
||||
# NVIDIA TensorRT Model Optimizer
|
||||
|
||||
The [NVIDIA TensorRT Model Optimizer](https://github.com/NVIDIA/TensorRT-Model-Optimizer) is a library designed to optimize models for inference with NVIDIA GPUs. It includes tools for Post-Training Quantization (PTQ) and Quantization Aware Training (QAT) of Large Language Models (LLMs), Vision Language Models (VLMs), and diffusion models.
|
||||
|
||||
We recommend installing the library with:
|
||||
|
||||
```console
|
||||
pip install nvidia-modelopt
|
||||
```
|
||||
|
||||
## Quantizing HuggingFace Models with PTQ
|
||||
|
||||
You can quantize HuggingFace models using the example scripts provided in the TensorRT Model Optimizer repository. The primary script for LLM PTQ is typically found within the `examples/llm_ptq` directory.
|
||||
|
||||
Below is an example showing how to quantize a model using modelopt's PTQ API:
|
||||
|
||||
```python
|
||||
import modelopt.torch.quantization as mtq
|
||||
from transformers import AutoModelForCausalLM
|
||||
|
||||
# Load the model from HuggingFace
|
||||
model = AutoModelForCausalLM.from_pretrained("<path_or_model_id>")
|
||||
|
||||
# Select the quantization config, for example, FP8
|
||||
config = mtq.FP8_DEFAULT_CFG
|
||||
|
||||
# Define a forward loop function for calibration
|
||||
def forward_loop(model):
|
||||
for data in calib_set:
|
||||
model(data)
|
||||
|
||||
# PTQ with in-place replacement of quantized modules
|
||||
model = mtq.quantize(model, config, forward_loop)
|
||||
```
|
||||
|
||||
After the model is quantized, you can export it to a quantized checkpoint using the export API:
|
||||
|
||||
```python
|
||||
import torch
|
||||
from modelopt.torch.export import export_hf_checkpoint
|
||||
|
||||
with torch.inference_mode():
|
||||
export_hf_checkpoint(
|
||||
model, # The quantized model.
|
||||
export_dir, # The directory where the exported files will be stored.
|
||||
)
|
||||
```
|
||||
|
||||
The quantized checkpoint can then be deployed with vLLM. As an example, the following code shows how to deploy `nvidia/Llama-3.1-8B-Instruct-FP8`, which is the FP8 quantized checkpoint derived from `meta-llama/Llama-3.1-8B-Instruct`, using vLLM:
|
||||
|
||||
```python
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
def main():
|
||||
|
||||
model_id = "nvidia/Llama-3.1-8B-Instruct-FP8"
|
||||
# Ensure you specify quantization='modelopt' when loading the modelopt checkpoint
|
||||
llm = LLM(model=model_id, quantization="modelopt", trust_remote_code=True)
|
||||
|
||||
sampling_params = SamplingParams(temperature=0.8, top_p=0.9)
|
||||
|
||||
prompts = [
|
||||
"Hello, my name is",
|
||||
"The president of the United States is",
|
||||
"The capital of France is",
|
||||
"The future of AI is",
|
||||
]
|
||||
|
||||
outputs = llm.generate(prompts, sampling_params)
|
||||
|
||||
for output in outputs:
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
```
|
||||
@ -129,7 +129,17 @@ The table below shows the compatibility of various quantization implementations
|
||||
* ❌
|
||||
* ❌
|
||||
* ❌
|
||||
|
||||
- * modelopt
|
||||
* ✅︎
|
||||
* ✅︎
|
||||
* ✅︎
|
||||
* ✅︎
|
||||
* ✅︎︎
|
||||
* ❌
|
||||
* ❌
|
||||
* ❌
|
||||
* ❌
|
||||
* ❌
|
||||
:::
|
||||
|
||||
- Volta refers to SM 7.0, Turing to SM 7.5, Ampere to SM 8.0/8.6, Ada to SM 8.9, and Hopper to SM 9.0.
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user