[V1] Decouple GPU and TPU InputBatch (#19778)

Signed-off-by: Andrew Feldman <afeldman@redhat.com>
This commit is contained in:
afeldman-nm 2025-06-18 02:38:13 -04:00 committed by GitHub
parent eccdc8318c
commit 19a53b2783
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 597 additions and 4 deletions

View File

@ -5,7 +5,7 @@ from typing import Optional
import torch import torch
from vllm.v1.worker.gpu_input_batch import InputBatch from vllm.v1.worker.tpu_input_batch import InputBatch
DEFAULT_SAMPLING_PARAMS = dict( DEFAULT_SAMPLING_PARAMS = dict(
temperature=-1.0, temperature=-1.0,

View File

@ -1,6 +1,6 @@
# SPDX-License-Identifier: Apache-2.0 # SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Datastructures defining an input batch # Datastructures defining a GPU input batch
from dataclasses import dataclass from dataclasses import dataclass
from typing import Optional, cast from typing import Optional, cast
@ -453,6 +453,11 @@ class InputBatch:
self.block_table.swap_row(i1, i2) self.block_table.swap_row(i1, i2)
def condense(self, empty_req_indices: list[int]) -> None: def condense(self, empty_req_indices: list[int]) -> None:
"""Move non-empty requests down into lower, empty indices.
Args:
empty_req_indices: empty batch indices, sorted descending.
"""
num_reqs = self.num_reqs num_reqs = self.num_reqs
if num_reqs == 0: if num_reqs == 0:
# The batched states are empty. # The batched states are empty.

View File

@ -5,6 +5,7 @@ Define LoRA functionality mixin for model runners.
""" """
from contextlib import contextmanager from contextlib import contextmanager
from typing import Union
import numpy as np import numpy as np
import torch.nn as nn import torch.nn as nn
@ -15,7 +16,10 @@ from vllm.lora.layers import LoRAMapping
from vllm.lora.request import LoRARequest from vllm.lora.request import LoRARequest
from vllm.lora.worker_manager import LRUCacheWorkerLoRAManager from vllm.lora.worker_manager import LRUCacheWorkerLoRAManager
from vllm.model_executor.models import supports_lora, supports_multimodal from vllm.model_executor.models import supports_lora, supports_multimodal
from vllm.v1.worker.gpu_input_batch import InputBatch from vllm.v1.worker.gpu_input_batch import InputBatch as GPUInputBatch
from vllm.v1.worker.tpu_input_batch import InputBatch as TPUInputBatch
InputBatch = Union[TPUInputBatch, GPUInputBatch]
logger = init_logger(__name__) logger = init_logger(__name__)

View File

@ -0,0 +1,584 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Datastructures defining a TPU input batch
from typing import Optional, cast
import numpy as np
import torch
from vllm.lora.request import LoRARequest
from vllm.sampling_params import SamplingType
from vllm.utils import swap_dict_values
from vllm.v1.outputs import LogprobsTensors
from vllm.v1.worker.block_table import MultiGroupBlockTable
from vllm.v1.worker.gpu_input_batch import CachedRequestState
_SAMPLING_EPS = 1e-5
class InputBatch:
def __init__(
self,
max_num_reqs: int,
max_model_len: int,
max_num_batched_tokens: int,
device: torch.device,
pin_memory: bool,
vocab_size: int,
block_sizes: list[int], # The block_size of each kv cache group
):
self.max_num_reqs = max_num_reqs
self.max_model_len = max_model_len
self.max_num_batched_tokens = max_num_batched_tokens
self.device = device
self.pin_memory = pin_memory
self.vocab_size = vocab_size
self._req_ids: list[Optional[str]] = []
self.req_id_to_index: dict[str, int] = {}
# TODO(woosuk): This buffer could be too large if max_model_len is big.
# Find a way to reduce the CPU memory usage.
# This buffer is not directly transferred to the GPU, so it does not
# need to be pinned.
self.token_ids_cpu_tensor = torch.zeros(
(max_num_reqs, max_model_len),
device="cpu",
dtype=torch.int32,
pin_memory=False,
)
self.token_ids_cpu = self.token_ids_cpu_tensor.numpy()
self.num_tokens = np.zeros(max_num_reqs, dtype=np.int32)
self.num_tokens_no_spec = np.zeros(max_num_reqs, dtype=np.int32)
self.num_prompt_tokens = np.zeros(max_num_reqs, dtype=np.int32)
self.num_computed_tokens_cpu_tensor = torch.zeros(
(max_num_reqs, ),
device="cpu",
dtype=torch.int32,
pin_memory=pin_memory,
)
self.num_computed_tokens_cpu = \
self.num_computed_tokens_cpu_tensor.numpy()
# Block table.
self.block_table = MultiGroupBlockTable(
max_num_reqs=max_num_reqs,
max_model_len=max_model_len,
max_num_batched_tokens=max_num_batched_tokens,
pin_memory=pin_memory,
device=device,
block_sizes=block_sizes,
)
# Sampling-related.
self.temperature = torch.empty((max_num_reqs, ),
dtype=torch.float32,
device=device)
self.temperature_cpu_tensor = torch.empty((max_num_reqs, ),
dtype=torch.float32,
device="cpu",
pin_memory=pin_memory)
self.temperature_cpu = self.temperature_cpu_tensor.numpy()
self.greedy_reqs: set[str] = set()
self.random_reqs: set[str] = set()
self.top_p = torch.empty((max_num_reqs, ),
dtype=torch.float32,
device=device)
self.top_p_cpu_tensor = torch.empty((max_num_reqs, ),
dtype=torch.float32,
device="cpu",
pin_memory=pin_memory)
self.top_p_cpu = self.top_p_cpu_tensor.numpy()
self.top_p_reqs: set[str] = set()
self.top_k = torch.empty((max_num_reqs, ),
dtype=torch.int32,
device=device)
self.top_k_cpu_tensor = torch.empty((max_num_reqs, ),
dtype=torch.int32,
device="cpu",
pin_memory=pin_memory)
self.top_k_cpu = self.top_k_cpu_tensor.numpy()
self.top_k_reqs: set[str] = set()
self.min_p = torch.empty((max_num_reqs, ),
dtype=torch.float32,
device=device)
self.min_p_cpu_tensor = torch.empty((max_num_reqs, ),
dtype=torch.float32,
device="cpu",
pin_memory=pin_memory)
self.min_p_cpu = self.min_p_cpu_tensor.numpy()
self.min_p_reqs: set[str] = set()
# Frequency penalty related data structures
self.frequency_penalties = torch.empty((max_num_reqs, ),
dtype=torch.float,
device=device)
self.frequency_penalties_cpu_tensor = torch.empty(
(max_num_reqs, ),
dtype=torch.float,
device="cpu",
pin_memory=pin_memory)
self.frequency_penalties_cpu = \
self.frequency_penalties_cpu_tensor.numpy()
self.frequency_penalties_reqs: set[str] = set()
# Presence penalty related data structures
self.presence_penalties = torch.empty((max_num_reqs, ),
dtype=torch.float,
device=device)
self.presence_penalties_cpu_tensor = torch.empty((max_num_reqs, ),
dtype=torch.float,
device="cpu",
pin_memory=pin_memory)
self.presence_penalties_cpu = self.presence_penalties_cpu_tensor.numpy(
)
self.presence_penalties_reqs: set[str] = set()
# Repetition penalty related data structures
self.repetition_penalties = torch.empty((max_num_reqs, ),
dtype=torch.float,
device=device)
self.repetition_penalties_cpu_tensor = torch.empty(
(max_num_reqs, ),
dtype=torch.float,
device="cpu",
pin_memory=pin_memory)
self.repetition_penalties_cpu = \
self.repetition_penalties_cpu_tensor.numpy()
self.repetition_penalties_reqs: set[str] = set()
# req_index -> (min_tokens, stop_token_ids)
self.min_tokens: dict[int, tuple[int, set[int]]] = {}
# lora related
self.request_lora_mapping = np.zeros((self.max_num_reqs, ),
dtype=np.int32)
self.lora_id_to_request_ids: dict[int, set[str]] = {}
self.lora_id_to_lora_request: dict[int, LoRARequest] = {}
# req_index -> generator
# NOTE(woosuk): The indices of the requests that do not have their own
# generator should not be included in the dictionary.
self.generators: dict[int, torch.Generator] = {}
self.num_logprobs: dict[str, int] = {}
# NOTE(rob): num_prompt_logprobs only includes reqs
# that are currently in the prefill phase.
self.num_prompt_logprobs: dict[str, int] = {}
# To accumulate prompt logprobs tensor chunks across prefill steps.
self.in_progress_prompt_logprobs_cpu: dict[str, LogprobsTensors] = {}
self.logit_bias: list[Optional[dict[int,
float]]] = [None] * max_num_reqs
self.has_allowed_token_ids: set[str] = set()
# NOTE(lufang): In the mask tensor, if the corresponding token allowed,
# the value is False. Since we use masked_fill_ to set -inf.
self.allowed_token_ids_mask: Optional[torch.Tensor] = None
self.allowed_token_ids_mask_cpu_tensor: Optional[torch.Tensor] = None
# req_index -> bad_words_token_ids
self.bad_words_token_ids: dict[int, list[list[int]]] = {}
self.req_output_token_ids: list[Optional[list[int]]] = []
@property
def req_ids(self) -> list[str]:
# None elements should only be present transiently
# while performing state updates to the batch.
return cast(list[str], self._req_ids)
def add_request(
self,
request: "CachedRequestState",
req_index: Optional[int] = None,
) -> None:
if req_index is None:
req_index = self.num_reqs
assert req_index < self.max_num_reqs
req_id = request.req_id
if req_index == len(self._req_ids):
self._req_ids.append(req_id)
self.req_output_token_ids.append(request.output_token_ids)
else:
self._req_ids[req_index] = req_id
self.req_output_token_ids[req_index] = request.output_token_ids
self.req_id_to_index[req_id] = req_index
# Copy the prompt token ids and output token ids.
num_prompt_tokens = len(request.prompt_token_ids)
self.num_prompt_tokens[req_index] = num_prompt_tokens
self.token_ids_cpu[
req_index, :num_prompt_tokens] = request.prompt_token_ids
start_idx = num_prompt_tokens
end_idx = start_idx + len(request.output_token_ids)
self.token_ids_cpu[req_index,
start_idx:end_idx] = request.output_token_ids
# Number of token ids in token_ids_cpu.
# NOTE(woosuk): This may include spec decode tokens.
self.num_tokens[req_index] = request.num_tokens
# Number of tokens without spec decode tokens.
self.num_tokens_no_spec[req_index] = request.num_tokens
self.num_computed_tokens_cpu[req_index] = request.num_computed_tokens
self.block_table.add_row(request.block_ids, req_index)
sampling_params = request.sampling_params
if sampling_params.sampling_type == SamplingType.GREEDY:
# Avoid later division by zero.
self.temperature_cpu[req_index] = -1.0
self.greedy_reqs.add(req_id)
else:
self.temperature_cpu[req_index] = sampling_params.temperature
self.random_reqs.add(req_id)
self.top_p_cpu[req_index] = sampling_params.top_p
if sampling_params.top_p < 1:
self.top_p_reqs.add(req_id)
top_k = sampling_params.top_k
if 0 < top_k < self.vocab_size:
self.top_k_reqs.add(req_id)
else:
top_k = self.vocab_size
self.top_k_cpu[req_index] = top_k
self.min_p_cpu[req_index] = sampling_params.min_p
self.frequency_penalties_cpu[
req_index] = sampling_params.frequency_penalty
if sampling_params.min_p > _SAMPLING_EPS:
self.min_p_reqs.add(req_id)
if sampling_params.frequency_penalty != 0.0:
self.frequency_penalties_reqs.add(req_id)
self.presence_penalties_cpu[
req_index] = sampling_params.presence_penalty
if sampling_params.presence_penalty != 0.0:
self.presence_penalties_reqs.add(req_id)
self.repetition_penalties_cpu[
req_index] = sampling_params.repetition_penalty
if sampling_params.repetition_penalty != 1.0:
self.repetition_penalties_reqs.add(req_id)
if sampling_params.min_tokens:
self.min_tokens[req_index] = (sampling_params.min_tokens,
sampling_params.all_stop_token_ids)
# NOTE(woosuk): self.generators should not include the requests that
# do not have their own generator.
if request.generator is not None:
self.generators[req_index] = request.generator
if sampling_params.logprobs is not None:
self.num_logprobs[req_id] = sampling_params.logprobs
if sampling_params.prompt_logprobs is not None:
self.num_prompt_logprobs[req_id] = sampling_params.prompt_logprobs
if sampling_params.logit_bias is not None:
self.logit_bias[req_index] = sampling_params.logit_bias
if sampling_params.allowed_token_ids:
self.has_allowed_token_ids.add(req_id)
if self.allowed_token_ids_mask_cpu_tensor is None:
# Lazy allocation for this tensor, which can be large.
# False means we don't fill with -inf.
self.allowed_token_ids_mask = torch.zeros(self.max_num_reqs,
self.vocab_size,
dtype=torch.bool,
device=self.device)
self.allowed_token_ids_mask_cpu_tensor = torch.zeros(
self.max_num_reqs,
self.vocab_size,
dtype=torch.bool,
device="cpu")
self.allowed_token_ids_mask_cpu_tensor[req_index] = True
# False means we don't fill with -inf.
self.allowed_token_ids_mask_cpu_tensor[req_index][
sampling_params.allowed_token_ids] = False
if sampling_params.bad_words_token_ids:
self.bad_words_token_ids[
req_index] = sampling_params.bad_words_token_ids
# Add request lora ID
if request.lora_request:
lora_id = request.lora_request.lora_int_id
if lora_id not in self.lora_id_to_request_ids:
self.lora_id_to_request_ids[lora_id] = set()
self.request_lora_mapping[req_index] = lora_id
self.lora_id_to_request_ids[lora_id].add(request.req_id)
self.lora_id_to_lora_request[lora_id] = request.lora_request
else:
# No LoRA
self.request_lora_mapping[req_index] = 0
def remove_request(self, req_id: str) -> Optional[int]:
"""This method must always be followed by a call to condense()."""
req_index = self.req_id_to_index.pop(req_id, None)
if req_index is None:
return None
self._req_ids[req_index] = None
self.req_output_token_ids[req_index] = None
self.greedy_reqs.discard(req_id)
self.random_reqs.discard(req_id)
self.top_p_reqs.discard(req_id)
self.top_k_reqs.discard(req_id)
self.min_p_reqs.discard(req_id)
self.min_tokens.pop(req_index, None)
self.frequency_penalties_reqs.discard(req_id)
self.presence_penalties_reqs.discard(req_id)
self.repetition_penalties_reqs.discard(req_id)
self.generators.pop(req_index, None)
self.num_logprobs.pop(req_id, None)
self.num_prompt_logprobs.pop(req_id, None)
self.in_progress_prompt_logprobs_cpu.pop(req_id, None)
# LoRA
lora_id = self.request_lora_mapping[req_index]
if lora_id != 0:
self.lora_id_to_request_ids[lora_id].discard(req_id)
if len(self.lora_id_to_request_ids[lora_id]) == 0:
self.lora_id_to_request_ids.pop(lora_id)
self.lora_id_to_lora_request.pop(lora_id)
self.request_lora_mapping[req_index] = 0
self.logit_bias[req_index] = None
self.has_allowed_token_ids.discard(req_id)
if self.allowed_token_ids_mask_cpu_tensor is not None:
# False means we don't fill with -inf.
self.allowed_token_ids_mask_cpu_tensor[req_index].fill_(False)
self.bad_words_token_ids.pop(req_index, None)
return req_index
def swap_states(self, i1: int, i2: int) -> None:
old_id_i1 = self._req_ids[i1]
old_id_i2 = self._req_ids[i2]
self._req_ids[i1], self._req_ids[i2] =\
self._req_ids[i2], self._req_ids[i1] # noqa
self.req_output_token_ids[i1], self.req_output_token_ids[i2] =\
self.req_output_token_ids[i2], self.req_output_token_ids[i1]
assert old_id_i1 is not None and old_id_i2 is not None
self.req_id_to_index[old_id_i1], self.req_id_to_index[old_id_i2] =\
self.req_id_to_index[old_id_i2], self.req_id_to_index[old_id_i1]
self.num_tokens[i1], self.num_tokens[i2] =\
self.num_tokens[i2], self.num_tokens[i1]
self.num_tokens_no_spec[i1], self.num_tokens_no_spec[i2] =\
self.num_tokens_no_spec[i2], self.num_tokens_no_spec[i1]
self.num_prompt_tokens[i1], self.num_prompt_tokens[i2] =\
self.num_prompt_tokens[i2], self.num_prompt_tokens[i1]
self.num_computed_tokens_cpu[i1], self.num_computed_tokens_cpu[i2] =\
self.num_computed_tokens_cpu[i2], self.num_computed_tokens_cpu[i1]
self.temperature_cpu[i1], self.temperature_cpu[i2] =\
self.temperature_cpu[i2], self.temperature_cpu[i1]
self.top_p_cpu[i1], self.top_p_cpu[i2] =\
self.top_p_cpu[i2], self.top_p_cpu[i1]
self.top_k_cpu[i1], self.top_k_cpu[i2] =\
self.top_k_cpu[i2], self.top_k_cpu[i1]
self.frequency_penalties_cpu[i1], self.frequency_penalties_cpu[i2] =\
self.frequency_penalties_cpu[i2], self.frequency_penalties_cpu[i1]
self.presence_penalties_cpu[i1], self.presence_penalties_cpu[i2] =\
self.presence_penalties_cpu[i2], self.presence_penalties_cpu[i1]
self.repetition_penalties_cpu[i1], self.repetition_penalties_cpu[i2] =\
self.repetition_penalties_cpu[i2], self.repetition_penalties_cpu[i1]
self.min_p_cpu[i1], self.min_p_cpu[i2] =\
self.min_p_cpu[i2], self.min_p_cpu[i1]
# NOTE: the following is unsafe
# self.token_ids_cpu[i1, ...], self.token_ids_cpu[i2, ...], =\
# self.token_ids_cpu[i2, ...], self.token_ids_cpu[i1, ...]
# instead, we need to temporiarily copy the data for one of the indices
# TODO(lucas): optimize this by only copying valid indices
tmp = self.token_ids_cpu[i1, ...].copy()
self.token_ids_cpu[i1, ...] = self.token_ids_cpu[i2, ...]
self.token_ids_cpu[i2, ...] = tmp
swap_dict_values(self.generators, i1, i2)
swap_dict_values(self.min_tokens, i1, i2)
swap_dict_values(self.bad_words_token_ids, i1, i2)
self.request_lora_mapping[i1], self.request_lora_mapping[i2] =\
self.request_lora_mapping[i2], self.request_lora_mapping[i1]
self.logit_bias[i1], self.logit_bias[i2] =\
self.logit_bias[i2], self.logit_bias[i1]
if self.allowed_token_ids_mask_cpu_tensor is not None:
self.allowed_token_ids_mask_cpu_tensor[i1], \
self.allowed_token_ids_mask_cpu_tensor[i2] =\
self.allowed_token_ids_mask_cpu_tensor[i2], \
self.allowed_token_ids_mask_cpu_tensor[i1]
self.block_table.swap_row(i1, i2)
def condense(self, empty_req_indices: list[int]) -> None:
"""Move non-empty requests down into lower, empty indices.
Args:
empty_req_indices: empty batch indices, sorted descending.
"""
num_reqs = self.num_reqs
if num_reqs == 0:
# The batched states are empty.
self._req_ids.clear()
self.req_output_token_ids.clear()
return
# NOTE(woosuk): This function assumes that the empty_req_indices
# is sorted in descending order.
last_req_index = num_reqs + len(empty_req_indices) - 1
while empty_req_indices:
# Find the largest non-empty index.
while last_req_index in empty_req_indices:
last_req_index -= 1
# Find the smallest empty index.
empty_index = empty_req_indices.pop()
if empty_index >= last_req_index:
break
# Swap the states.
req_id = self._req_ids[last_req_index]
output_token_ids = self.req_output_token_ids[last_req_index]
assert req_id is not None
self._req_ids[empty_index] = req_id
self._req_ids[last_req_index] = None
self.req_output_token_ids[empty_index] = output_token_ids
self.req_output_token_ids[last_req_index] = None
self.req_id_to_index[req_id] = empty_index
num_tokens = self.num_tokens[last_req_index]
self.token_ids_cpu[empty_index, :num_tokens] = self.token_ids_cpu[
last_req_index, :num_tokens]
self.num_tokens[empty_index] = num_tokens
self.num_tokens_no_spec[empty_index] = self.num_tokens_no_spec[
last_req_index]
self.num_prompt_tokens[empty_index] = self.num_prompt_tokens[
last_req_index]
self.num_computed_tokens_cpu[
empty_index] = self.num_computed_tokens_cpu[last_req_index]
self.block_table.move_row(last_req_index, empty_index)
self.temperature_cpu[empty_index] = self.temperature_cpu[
last_req_index]
self.top_p_cpu[empty_index] = self.top_p_cpu[last_req_index]
self.top_k_cpu[empty_index] = self.top_k_cpu[last_req_index]
self.frequency_penalties_cpu[
empty_index] = self.frequency_penalties_cpu[last_req_index]
self.presence_penalties_cpu[
empty_index] = self.presence_penalties_cpu[last_req_index]
self.repetition_penalties_cpu[
empty_index] = self.repetition_penalties_cpu[last_req_index]
self.min_p_cpu[empty_index] = self.min_p_cpu[last_req_index]
generator = self.generators.pop(last_req_index, None)
if generator is not None:
self.generators[empty_index] = generator
min_token = self.min_tokens.pop(last_req_index, None)
if min_token is not None:
self.min_tokens[empty_index] = min_token
self.request_lora_mapping[empty_index] = self.request_lora_mapping[
last_req_index]
self.logit_bias[empty_index] = self.logit_bias[last_req_index]
if self.allowed_token_ids_mask_cpu_tensor is not None:
self.allowed_token_ids_mask_cpu_tensor[
empty_index] = self.allowed_token_ids_mask_cpu_tensor[
last_req_index]
bad_words_token_ids = self.bad_words_token_ids.pop(
last_req_index, None)
if bad_words_token_ids is not None:
self.bad_words_token_ids[empty_index] = bad_words_token_ids
# Decrement last_req_index since it is now empty.
last_req_index -= 1
# Trim lists to the batch size.
del self._req_ids[self.num_reqs:]
del self.req_output_token_ids[self.num_reqs:]
def _make_prompt_token_ids_tensor(self) -> torch.Tensor:
max_prompt_len = self.num_prompt_tokens[:self.num_reqs].max()
prompt_token_ids_cpu_tensor = torch.empty(
(self.num_reqs, max_prompt_len),
device="cpu",
dtype=torch.int64,
pin_memory=self.pin_memory,
)
prompt_token_ids = prompt_token_ids_cpu_tensor.numpy()
prompt_token_ids[:] = self.token_ids_cpu[:self.
num_reqs, :max_prompt_len]
# Use the value of vocab_size as a pad since we don't have a
# token_id of this value.
for i in range(self.num_reqs):
prompt_token_ids[i, self.num_prompt_tokens[i]:] = self.vocab_size
return prompt_token_ids_cpu_tensor.to(device=self.device,
non_blocking=True)
def make_lora_inputs(
self, num_scheduled_tokens: np.ndarray
) -> tuple[tuple[int, ...], tuple[int, ...], set[LoRARequest]]:
"""
Given the num_scheduled_tokens for each request in the batch, return
datastructures used to activate the current LoRAs.
Returns:
1. prompt_lora_mapping: A tuple of size self.num_reqs where,
prompt_lora_mapping[i] is the LoRA id to use for the ith prompt.
2. token_lora_mapping: A tuple of size np.sum(num_scheduled_tokens)
where, token_lora_mapping[i] is the LoRA id to use for ith token.
3. lora_requests: Set of relevant LoRA requests.
"""
req_lora_mapping = self.request_lora_mapping[:self.num_reqs]
prompt_lora_mapping = tuple(req_lora_mapping)
token_lora_mapping = tuple(
req_lora_mapping.repeat(num_scheduled_tokens))
active_lora_requests: set[LoRARequest] = set(
self.lora_id_to_lora_request.values())
return prompt_lora_mapping, token_lora_mapping, active_lora_requests
@property
def num_reqs(self) -> int:
return len(self.req_id_to_index)
@property
def all_greedy(self) -> bool:
return len(self.random_reqs) == 0
@property
def all_random(self) -> bool:
return len(self.greedy_reqs) == 0
@property
def no_top_p(self) -> bool:
return len(self.top_p_reqs) == 0
@property
def no_top_k(self) -> bool:
return len(self.top_k_reqs) == 0
@property
def no_min_p(self) -> bool:
return len(self.min_p_reqs) == 0
@property
def no_penalties(self) -> bool:
return (len(self.presence_penalties_reqs) == 0
and len(self.frequency_penalties_reqs) == 0
and len(self.repetition_penalties_reqs) == 0)
@property
def max_num_logprobs(self) -> Optional[int]:
return max(self.num_logprobs.values()) if self.num_logprobs else None
@property
def no_prompt_logprob(self) -> bool:
return not self.num_prompt_logprobs
@property
def no_allowed_token_ids(self) -> bool:
return len(self.has_allowed_token_ids) == 0

View File

@ -42,8 +42,8 @@ from vllm.v1.outputs import (EMPTY_MODEL_RUNNER_OUTPUT, LogprobsTensors,
from vllm.v1.sample.tpu.metadata import TPUSupportedSamplingMetadata from vllm.v1.sample.tpu.metadata import TPUSupportedSamplingMetadata
from vllm.v1.sample.tpu.sampler import Sampler as TPUSampler from vllm.v1.sample.tpu.sampler import Sampler as TPUSampler
from vllm.v1.utils import bind_kv_cache from vllm.v1.utils import bind_kv_cache
from vllm.v1.worker.gpu_input_batch import CachedRequestState, InputBatch
from vllm.v1.worker.lora_model_runner_mixin import LoRAModelRunnerMixin from vllm.v1.worker.lora_model_runner_mixin import LoRAModelRunnerMixin
from vllm.v1.worker.tpu_input_batch import CachedRequestState, InputBatch
from .utils import (initialize_kv_cache_for_kv_sharing, from .utils import (initialize_kv_cache_for_kv_sharing,
sanity_check_mm_encoder_outputs) sanity_check_mm_encoder_outputs)