mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-09 16:45:52 +08:00
[Frontend][responsesAPI][1/n] convert responses API tool input to chat completions tool format (#28231)
Signed-off-by: Andrew Xia <axia@fb.com> Co-authored-by: Andrew Xia <axia@fb.com> Co-authored-by: Chauncey <chaunceyjiang@gmail.com>
This commit is contained in:
parent
7c38ed0f1c
commit
1a0b157a2e
30
tests/entrypoints/test_responses_utils.py
Normal file
30
tests/entrypoints/test_responses_utils.py
Normal file
@ -0,0 +1,30 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
from vllm.entrypoints.responses_utils import (
|
||||
convert_tool_responses_to_completions_format,
|
||||
)
|
||||
|
||||
|
||||
class TestResponsesUtils:
|
||||
"""Tests for convert_tool_responses_to_completions_format function."""
|
||||
|
||||
def test_convert_tool_responses_to_completions_format(self):
|
||||
"""Test basic conversion of a flat tool schema to nested format."""
|
||||
input_tool = {
|
||||
"type": "function",
|
||||
"name": "get_weather",
|
||||
"description": "Get the current weather in a given location",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"location": {"type": "string"},
|
||||
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
|
||||
},
|
||||
"required": ["location", "unit"],
|
||||
},
|
||||
}
|
||||
|
||||
result = convert_tool_responses_to_completions_format(input_tool)
|
||||
|
||||
assert result == {"type": "function", "function": input_tool}
|
||||
@ -30,7 +30,10 @@ def server_with_store(default_server_args):
|
||||
with RemoteOpenAIServer(
|
||||
MODEL_NAME,
|
||||
default_server_args,
|
||||
env_dict={"VLLM_ENABLE_RESPONSES_API_STORE": "1"},
|
||||
env_dict={
|
||||
"VLLM_ENABLE_RESPONSES_API_STORE": "1",
|
||||
"VLLM_SERVER_DEV_MODE": "1",
|
||||
},
|
||||
) as remote_server:
|
||||
yield remote_server
|
||||
|
||||
|
||||
@ -116,6 +116,7 @@ async def test_function_tool_use(
|
||||
input=prompt,
|
||||
tools=tools,
|
||||
tool_choice=tool_choice,
|
||||
temperature=0.0,
|
||||
)
|
||||
|
||||
assert len(response.output) >= 1
|
||||
|
||||
@ -48,7 +48,6 @@ from openai.types.responses.response_output_text import Logprob, LogprobTopLogpr
|
||||
from openai.types.responses.response_reasoning_item import (
|
||||
Content as ResponseReasoningTextContent,
|
||||
)
|
||||
from openai.types.responses.tool import Tool
|
||||
from openai_harmony import Message as OpenAIHarmonyMessage
|
||||
|
||||
from vllm import envs
|
||||
@ -94,7 +93,11 @@ from vllm.entrypoints.openai.protocol import (
|
||||
)
|
||||
from vllm.entrypoints.openai.serving_engine import OpenAIServing
|
||||
from vllm.entrypoints.openai.serving_models import OpenAIServingModels
|
||||
from vllm.entrypoints.responses_utils import construct_chat_message_with_tool_call
|
||||
from vllm.entrypoints.responses_utils import (
|
||||
construct_chat_message_with_tool_call,
|
||||
convert_tool_responses_to_completions_format,
|
||||
extract_tool_types,
|
||||
)
|
||||
from vllm.entrypoints.tool_server import ToolServer
|
||||
from vllm.inputs.data import TokensPrompt as EngineTokensPrompt
|
||||
from vllm.logger import init_logger
|
||||
@ -108,23 +111,6 @@ from vllm.utils import random_uuid
|
||||
logger = init_logger(__name__)
|
||||
|
||||
|
||||
def extract_tool_types(tools: list[Tool]) -> set[str]:
|
||||
"""
|
||||
Extracts the tool types from the given tools.
|
||||
"""
|
||||
tool_types: set[str] = set()
|
||||
for tool in tools:
|
||||
if tool.type == "mcp":
|
||||
# Allow the MCP Tool type to enable built in tools if the
|
||||
# server_label is allowlisted in
|
||||
# envs.VLLM_GPT_OSS_SYSTEM_TOOL_MCP_LABELS
|
||||
if tool.server_label in envs.VLLM_GPT_OSS_SYSTEM_TOOL_MCP_LABELS:
|
||||
tool_types.add(tool.server_label)
|
||||
else:
|
||||
tool_types.add(tool.type)
|
||||
return tool_types
|
||||
|
||||
|
||||
class OpenAIServingResponses(OpenAIServing):
|
||||
def __init__(
|
||||
self,
|
||||
@ -513,7 +499,10 @@ class OpenAIServingResponses(OpenAIServing):
|
||||
):
|
||||
tool_dicts = None
|
||||
else:
|
||||
tool_dicts = [tool.model_dump() for tool in request.tools]
|
||||
tool_dicts = [
|
||||
convert_tool_responses_to_completions_format(tool.model_dump())
|
||||
for tool in request.tools
|
||||
]
|
||||
# Construct the input messages.
|
||||
messages = self._construct_input_messages(request, prev_response)
|
||||
_, request_prompts, engine_prompts = await self._preprocess_chat(
|
||||
|
||||
@ -10,7 +10,9 @@ from openai.types.chat.chat_completion_message_tool_call_param import (
|
||||
Function as FunctionCallTool,
|
||||
)
|
||||
from openai.types.responses import ResponseFunctionToolCall
|
||||
from openai.types.responses.tool import Tool
|
||||
|
||||
from vllm import envs
|
||||
from vllm.entrypoints.openai.protocol import (
|
||||
ChatCompletionMessageParam,
|
||||
ResponseInputOutputItem,
|
||||
@ -43,3 +45,33 @@ def construct_chat_message_with_tool_call(
|
||||
tool_call_id=item.get("call_id"),
|
||||
)
|
||||
return item # type: ignore
|
||||
|
||||
|
||||
def extract_tool_types(tools: list[Tool]) -> set[str]:
|
||||
"""
|
||||
Extracts the tool types from the given tools.
|
||||
"""
|
||||
tool_types: set[str] = set()
|
||||
for tool in tools:
|
||||
if tool.type == "mcp":
|
||||
# Allow the MCP Tool type to enable built in tools if the
|
||||
# server_label is allowlisted in
|
||||
# envs.VLLM_GPT_OSS_SYSTEM_TOOL_MCP_LABELS
|
||||
if tool.server_label in envs.VLLM_GPT_OSS_SYSTEM_TOOL_MCP_LABELS:
|
||||
tool_types.add(tool.server_label)
|
||||
else:
|
||||
tool_types.add(tool.type)
|
||||
return tool_types
|
||||
|
||||
|
||||
def convert_tool_responses_to_completions_format(tool: dict) -> dict:
|
||||
"""
|
||||
Convert a flat tool schema:
|
||||
{"type": "function", "name": "...", "description": "...", "parameters": {...}}
|
||||
into:
|
||||
{"type": "function", "function": {...}}
|
||||
"""
|
||||
return {
|
||||
"type": "function",
|
||||
"function": tool,
|
||||
}
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user