Make PyTorch profiler gzip and CUDA time dump configurable (#29568)

Signed-off-by: Yifei Zhang <yifei.zhang1992@outlook.com>
This commit is contained in:
Yifei Zhang 2025-12-01 12:30:46 +08:00 committed by GitHub
parent f72a817bdf
commit 1ab8fc8197
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 35 additions and 13 deletions

View File

@ -11,6 +11,8 @@ We support tracing vLLM workers using the `torch.profiler` module. You can enabl
- `VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY=1` to record memory, off by default
- `VLLM_TORCH_PROFILER_WITH_STACK=1` to enable recording stack information, on by default
- `VLLM_TORCH_PROFILER_WITH_FLOPS=1` to enable recording FLOPs, off by default
- `VLLM_TORCH_PROFILER_USE_GZIP=0` to disable gzip-compressing profiling files, on by default
- `VLLM_TORCH_PROFILER_DUMP_CUDA_TIME_TOTAL=0` to disable dumping and printing the aggregated CUDA self time table, on by default
The OpenAI server also needs to be started with the `VLLM_TORCH_PROFILER_DIR` environment variable set.

View File

@ -100,6 +100,8 @@ if TYPE_CHECKING:
VLLM_TORCH_PROFILER_WITH_FLOPS: bool = False
VLLM_PROFILER_DELAY_ITERS: int = 0
VLLM_PROFILER_MAX_ITERS: int = 0
VLLM_TORCH_PROFILER_USE_GZIP: bool = True
VLLM_TORCH_PROFILER_DUMP_CUDA_TIME_TOTAL: bool = True
VLLM_USE_TRITON_AWQ: bool = False
VLLM_ALLOW_RUNTIME_LORA_UPDATING: bool = False
VLLM_SKIP_P2P_CHECK: bool = False
@ -890,6 +892,17 @@ environment_variables: dict[str, Callable[[], Any]] = {
# Maximum number of iterations to profile when using the torch/torch CUDA profiler.
# If set to 0, will not limit the number of iterations.
"VLLM_PROFILER_MAX_ITERS": lambda: int(os.getenv("VLLM_PROFILER_MAX_ITERS", "0")),
# Control whether torch profiler gzip-compresses profiling files.
# Set VLLM_TORCH_PROFILER_USE_GZIP=0 to disable gzip (enabled by default).
"VLLM_TORCH_PROFILER_USE_GZIP": lambda: bool(
os.getenv("VLLM_TORCH_PROFILER_USE_GZIP", "1") != "0"
),
# Control whether torch profiler dumps the self_cuda_time_total table.
# Set VLLM_TORCH_PROFILER_DUMP_CUDA_TIME_TOTAL=0 to disable dumping
# (enabled by default).
"VLLM_TORCH_PROFILER_DUMP_CUDA_TIME_TOTAL": lambda: bool(
os.getenv("VLLM_TORCH_PROFILER_DUMP_CUDA_TIME_TOTAL", "1") != "0"
),
# If set, vLLM will use Triton implementations of AWQ.
"VLLM_USE_TRITON_AWQ": lambda: bool(int(os.getenv("VLLM_USE_TRITON_AWQ", "0"))),
# If set, allow loading or unloading lora adapters in runtime,

View File

@ -162,7 +162,9 @@ class TorchProfilerWrapper(WorkerProfiler):
with_stack=envs.VLLM_TORCH_PROFILER_WITH_STACK,
with_flops=envs.VLLM_TORCH_PROFILER_WITH_FLOPS,
on_trace_ready=torch.profiler.tensorboard_trace_handler(
torch_profiler_trace_dir, worker_name=worker_name, use_gzip=True
torch_profiler_trace_dir,
worker_name=worker_name,
use_gzip=envs.VLLM_TORCH_PROFILER_USE_GZIP,
),
)
@ -174,18 +176,19 @@ class TorchProfilerWrapper(WorkerProfiler):
def _stop(self) -> None:
self.profiler.stop()
rank = self.local_rank
profiler_dir = envs.VLLM_TORCH_PROFILER_DIR
profiler_out_file = f"{profiler_dir}/profiler_out_{rank}.txt"
sort_key = "self_cuda_time_total"
table = self.profiler.key_averages().table(sort_by=sort_key)
if envs.VLLM_TORCH_PROFILER_DUMP_CUDA_TIME_TOTAL:
rank = self.local_rank
profiler_dir = envs.VLLM_TORCH_PROFILER_DIR
profiler_out_file = f"{profiler_dir}/profiler_out_{rank}.txt"
sort_key = "self_cuda_time_total"
table = self.profiler.key_averages().table(sort_by=sort_key)
with open(profiler_out_file, "w") as f:
print(table, file=f)
with open(profiler_out_file, "w") as f:
print(table, file=f)
# only print profiler results on rank 0
if rank == 0:
print(table)
# only print profiler results on rank 0
if rank == 0:
print(table)
@override
def annotate_context_manager(self, name: str):

View File

@ -190,7 +190,9 @@ class AsyncLLM(EngineClient):
],
with_stack=envs.VLLM_TORCH_PROFILER_WITH_STACK,
on_trace_ready=torch.profiler.tensorboard_trace_handler(
envs.VLLM_TORCH_PROFILER_DIR, worker_name=worker_name, use_gzip=True
envs.VLLM_TORCH_PROFILER_DIR,
worker_name=worker_name,
use_gzip=envs.VLLM_TORCH_PROFILER_USE_GZIP,
),
)
else:

View File

@ -64,7 +64,9 @@ class XPUWorker(Worker):
with_stack=envs.VLLM_TORCH_PROFILER_WITH_STACK,
with_flops=envs.VLLM_TORCH_PROFILER_WITH_FLOPS,
on_trace_ready=torch.profiler.tensorboard_trace_handler(
torch_profiler_trace_dir, worker_name=worker_name, use_gzip=True
torch_profiler_trace_dir,
worker_name=worker_name,
use_gzip=envs.VLLM_TORCH_PROFILER_USE_GZIP,
),
)
else: