mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-28 11:11:51 +08:00
[CI] Reorganization pooling_mteb_test (#31265)
Signed-off-by: wang.yuqi <noooop@126.com>
This commit is contained in:
parent
7cd288a4b3
commit
1ff67df182
@ -4,7 +4,7 @@ import os
|
||||
|
||||
import pytest
|
||||
|
||||
from tests.models.language.pooling_mteb_test.mteb_utils import (
|
||||
from tests.models.language.pooling_mteb_test.mteb_embed_utils import (
|
||||
MTEB_EMBED_TASKS,
|
||||
MTEB_EMBED_TOL,
|
||||
OpenAIClientMtebEncoder,
|
||||
|
||||
@ -4,7 +4,7 @@ import os
|
||||
|
||||
import pytest
|
||||
|
||||
from tests.models.language.pooling_mteb_test.mteb_utils import (
|
||||
from tests.models.language.pooling_mteb_test.mteb_score_utils import (
|
||||
MTEB_RERANK_LANGS,
|
||||
MTEB_RERANK_TASKS,
|
||||
MTEB_RERANK_TOL,
|
||||
|
||||
@ -202,11 +202,10 @@ class TestGetScorePrompt:
|
||||
tokenization_kwargs,
|
||||
mock_model_no_score_template,
|
||||
):
|
||||
# FIXME: Models implementing SupportsScoreTemplate must use their custom
|
||||
# template implementation by default to preserve existing functionality.
|
||||
# Attempting to use tokenizer_config.json templates would most likely break
|
||||
# these models, as often they just inherit the template from the original LLM.
|
||||
# CLI --chat-template overrides are still supported.
|
||||
# FIXME: For now, we only apply a template when one is explicitly provided.
|
||||
# We cannot rely on the tokenizer's chat template because many models
|
||||
# inherit junk templates from their base LLM, which breaks both the models
|
||||
# and the tests that use them.
|
||||
with (
|
||||
patch(
|
||||
"vllm.model_executor.model_loader.get_model_cls",
|
||||
|
||||
228
tests/models/language/pooling_mteb_test/mteb_embed_utils.py
Normal file
228
tests/models/language/pooling_mteb_test/mteb_embed_utils.py
Normal file
@ -0,0 +1,228 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import mteb
|
||||
import numpy as np
|
||||
import torch
|
||||
from mteb.models import ModelMeta
|
||||
from mteb.types import Array
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
import tests.ci_envs as ci_envs
|
||||
from tests.models.utils import (
|
||||
EmbedModelInfo,
|
||||
check_embeddings_close,
|
||||
get_vllm_extra_kwargs,
|
||||
)
|
||||
|
||||
# Most embedding models on the STS12 task (See #17175):
|
||||
# - Model implementation and minor changes in tensor dtype
|
||||
# results in differences less than 1e-4
|
||||
# - Different model results in differences more than 1e-3
|
||||
# 1e-4 is a good tolerance threshold
|
||||
MTEB_EMBED_TASKS = ["STS12"]
|
||||
MTEB_EMBED_TOL = 1e-4
|
||||
|
||||
|
||||
_empty_model_meta = ModelMeta(
|
||||
loader=None,
|
||||
name="vllm/model",
|
||||
revision="1",
|
||||
release_date=None,
|
||||
languages=None,
|
||||
framework=[],
|
||||
similarity_fn_name=None,
|
||||
n_parameters=None,
|
||||
memory_usage_mb=None,
|
||||
max_tokens=None,
|
||||
embed_dim=None,
|
||||
license=None,
|
||||
open_weights=None,
|
||||
public_training_code=None,
|
||||
public_training_data=None,
|
||||
use_instructions=None,
|
||||
training_datasets=None,
|
||||
modalities=["text"], # 'image' can be added to evaluate multimodal models
|
||||
)
|
||||
|
||||
|
||||
class MtebEmbedMixin(mteb.EncoderProtocol):
|
||||
mteb_model_meta = _empty_model_meta
|
||||
|
||||
def similarity(
|
||||
self,
|
||||
embeddings1: np.ndarray,
|
||||
embeddings2: np.ndarray,
|
||||
) -> np.ndarray:
|
||||
# Cosine similarity
|
||||
norm1 = np.linalg.norm(embeddings1, axis=1, keepdims=True)
|
||||
norm2 = np.linalg.norm(embeddings2, axis=1, keepdims=True)
|
||||
sim = np.dot(embeddings1, embeddings2.T) / (norm1 * norm2.T)
|
||||
return sim
|
||||
|
||||
def similarity_pairwise(
|
||||
self,
|
||||
embeddings1: Array,
|
||||
embeddings2: Array,
|
||||
) -> Array:
|
||||
# Cosine similarity
|
||||
norm1 = np.linalg.norm(embeddings1, axis=1, keepdims=True)
|
||||
norm2 = np.linalg.norm(embeddings2, axis=1, keepdims=True)
|
||||
sim = np.sum(embeddings1 * embeddings2, axis=1) / (
|
||||
norm1.flatten() * norm2.flatten()
|
||||
)
|
||||
return sim
|
||||
|
||||
|
||||
class VllmMtebEncoder(MtebEmbedMixin):
|
||||
def __init__(self, vllm_model):
|
||||
self.llm = vllm_model
|
||||
self.rng = np.random.default_rng(seed=42)
|
||||
|
||||
def encode(
|
||||
self,
|
||||
inputs: DataLoader[mteb.types.BatchedInput],
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> np.ndarray:
|
||||
# Hoping to discover potential scheduling
|
||||
# issues by randomizing the order.
|
||||
sentences = [text for batch in inputs for text in batch["text"]]
|
||||
r = self.rng.permutation(len(sentences))
|
||||
sentences = [sentences[i] for i in r]
|
||||
outputs = self.llm.embed(sentences, use_tqdm=False)
|
||||
embeds = np.array(outputs)
|
||||
embeds = embeds[np.argsort(r)]
|
||||
return embeds
|
||||
|
||||
|
||||
class OpenAIClientMtebEncoder(MtebEmbedMixin):
|
||||
def __init__(self, model_name: str, client):
|
||||
self.model_name = model_name
|
||||
self.client = client
|
||||
self.rng = np.random.default_rng(seed=42)
|
||||
|
||||
def encode(
|
||||
self,
|
||||
inputs: DataLoader[mteb.types.BatchedInput],
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> np.ndarray:
|
||||
# Hoping to discover potential scheduling
|
||||
# issues by randomizing the order.
|
||||
sentences = [text for batch in inputs for text in batch["text"]]
|
||||
r = self.rng.permutation(len(sentences))
|
||||
sentences = [sentences[i] for i in r]
|
||||
|
||||
embeddings = self.client.embeddings.create(
|
||||
model=self.model_name, input=sentences
|
||||
)
|
||||
outputs = [d.embedding for d in embeddings.data]
|
||||
embeds = np.array(outputs)
|
||||
embeds = embeds[np.argsort(r)]
|
||||
return embeds
|
||||
|
||||
|
||||
def run_mteb_embed_task(encoder: mteb.EncoderProtocol, tasks):
|
||||
tasks = mteb.get_tasks(tasks=tasks)
|
||||
results = mteb.evaluate(
|
||||
encoder,
|
||||
tasks,
|
||||
cache=None,
|
||||
show_progress_bar=False,
|
||||
)
|
||||
|
||||
main_score = results[0].scores["test"][0]["main_score"]
|
||||
return main_score
|
||||
|
||||
|
||||
def mteb_test_embed_models(
|
||||
hf_runner,
|
||||
vllm_runner,
|
||||
model_info: EmbedModelInfo,
|
||||
vllm_extra_kwargs=None,
|
||||
hf_model_callback=None,
|
||||
atol=MTEB_EMBED_TOL,
|
||||
):
|
||||
vllm_extra_kwargs = get_vllm_extra_kwargs(model_info, vllm_extra_kwargs)
|
||||
|
||||
# Test embed_dims, isnan and whether to use normalize
|
||||
example_prompts = ["The chef prepared a delicious meal." * 1000]
|
||||
|
||||
with vllm_runner(
|
||||
model_info.name,
|
||||
runner="pooling",
|
||||
max_model_len=model_info.max_model_len,
|
||||
**vllm_extra_kwargs,
|
||||
) as vllm_model:
|
||||
model_config = vllm_model.llm.llm_engine.model_config
|
||||
|
||||
# Confirm whether vllm is using the correct architecture
|
||||
if model_info.architecture:
|
||||
assert model_info.architecture in model_config.architectures
|
||||
|
||||
# Confirm whether the important configs in model_config are correct.
|
||||
if model_info.pooling_type is not None:
|
||||
assert model_config.pooler_config.pooling_type == model_info.pooling_type
|
||||
if model_info.attn_type is not None:
|
||||
assert model_config.attn_type == model_info.attn_type
|
||||
if model_info.is_prefix_caching_supported is not None:
|
||||
assert (
|
||||
model_config.is_prefix_caching_supported
|
||||
== model_info.is_prefix_caching_supported
|
||||
)
|
||||
if model_info.is_chunked_prefill_supported is not None:
|
||||
assert (
|
||||
model_config.is_chunked_prefill_supported
|
||||
== model_info.is_chunked_prefill_supported
|
||||
)
|
||||
|
||||
vllm_main_score = run_mteb_embed_task(
|
||||
VllmMtebEncoder(vllm_model), MTEB_EMBED_TASKS
|
||||
)
|
||||
vllm_dtype = vllm_model.llm.llm_engine.model_config.dtype
|
||||
head_dtype = model_config.head_dtype
|
||||
|
||||
# Test embedding_size, isnan and whether to use normalize
|
||||
vllm_outputs = vllm_model.embed(example_prompts, truncate_prompt_tokens=-1)
|
||||
outputs_tensor = torch.tensor(vllm_outputs)
|
||||
assert not torch.any(torch.isnan(outputs_tensor))
|
||||
embedding_size = model_config.embedding_size
|
||||
assert torch.tensor(vllm_outputs).shape[-1] == embedding_size
|
||||
|
||||
# Accelerate mteb test by setting
|
||||
# SentenceTransformers mteb score to a constant
|
||||
if model_info.mteb_score is None:
|
||||
with hf_runner(
|
||||
model_info.name,
|
||||
is_sentence_transformer=True,
|
||||
dtype=ci_envs.VLLM_CI_HF_DTYPE or model_info.hf_dtype,
|
||||
) as hf_model:
|
||||
# e.g. setting default parameters for the encode method of hf_runner
|
||||
if hf_model_callback is not None:
|
||||
hf_model_callback(hf_model)
|
||||
|
||||
st_main_score = run_mteb_embed_task(hf_model, MTEB_EMBED_TASKS)
|
||||
st_dtype = next(hf_model.model.parameters()).dtype
|
||||
|
||||
# Check embeddings close to hf outputs
|
||||
hf_outputs = hf_model.encode(example_prompts)
|
||||
check_embeddings_close(
|
||||
embeddings_0_lst=hf_outputs,
|
||||
embeddings_1_lst=vllm_outputs,
|
||||
name_0="hf",
|
||||
name_1="vllm",
|
||||
tol=1e-2,
|
||||
)
|
||||
else:
|
||||
st_main_score = model_info.mteb_score
|
||||
st_dtype = "Constant"
|
||||
|
||||
print("Model:", model_info.name)
|
||||
print("VLLM:", f"dtype:{vllm_dtype}", f"head_dtype:{head_dtype}", vllm_main_score)
|
||||
print("SentenceTransformers:", st_dtype, st_main_score)
|
||||
print("Difference:", st_main_score - vllm_main_score)
|
||||
|
||||
# We are not concerned that the vllm mteb results are better
|
||||
# than SentenceTransformers, so we only perform one-sided testing.
|
||||
assert st_main_score - vllm_main_score < atol
|
||||
@ -7,37 +7,24 @@ from pathlib import Path
|
||||
import mteb
|
||||
import numpy as np
|
||||
import requests
|
||||
import torch
|
||||
from mteb.models import ModelMeta
|
||||
from mteb.types import Array
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
import tests.ci_envs as ci_envs
|
||||
from tests.models.utils import (
|
||||
EmbedModelInfo,
|
||||
RerankModelInfo,
|
||||
check_embeddings_close,
|
||||
get_vllm_extra_kwargs,
|
||||
)
|
||||
|
||||
template_home = (
|
||||
Path(__file__).parent.parent.parent.parent.parent
|
||||
/ "examples/pooling/score/template"
|
||||
)
|
||||
|
||||
# Most embedding models on the STS12 task (See #17175):
|
||||
# - Model implementation and minor changes in tensor dtype
|
||||
# results in differences less than 1e-4
|
||||
# - Different model results in differences more than 1e-3
|
||||
# 1e-4 is a good tolerance threshold
|
||||
MTEB_EMBED_TASKS = ["STS12"]
|
||||
MTEB_EMBED_TOL = 1e-4
|
||||
|
||||
# See #19344
|
||||
MTEB_RERANK_TASKS = ["NFCorpus"]
|
||||
MTEB_RERANK_LANGS = ["eng"]
|
||||
MTEB_RERANK_TOL = 2e-3
|
||||
|
||||
template_home = (
|
||||
Path(__file__).parent.parent.parent.parent.parent
|
||||
/ "examples/pooling/score/template"
|
||||
)
|
||||
|
||||
_empty_model_meta = ModelMeta(
|
||||
loader=None,
|
||||
name="vllm/model",
|
||||
@ -60,84 +47,11 @@ _empty_model_meta = ModelMeta(
|
||||
)
|
||||
|
||||
|
||||
class VllmMtebEncoder(mteb.EncoderProtocol):
|
||||
class MtebCrossEncoderMixin(mteb.CrossEncoderProtocol):
|
||||
mteb_model_meta = _empty_model_meta
|
||||
|
||||
def __init__(self, vllm_model):
|
||||
self.llm = vllm_model
|
||||
self.rng = np.random.default_rng(seed=42)
|
||||
|
||||
def encode(
|
||||
self,
|
||||
inputs: DataLoader[mteb.types.BatchedInput],
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> np.ndarray:
|
||||
# Hoping to discover potential scheduling
|
||||
# issues by randomizing the order.
|
||||
sentences = [text for batch in inputs for text in batch["text"]]
|
||||
r = self.rng.permutation(len(sentences))
|
||||
sentences = [sentences[i] for i in r]
|
||||
outputs = self.llm.embed(sentences, use_tqdm=False)
|
||||
embeds = np.array(outputs)
|
||||
embeds = embeds[np.argsort(r)]
|
||||
return embeds
|
||||
|
||||
def similarity(
|
||||
self,
|
||||
embeddings1: np.ndarray,
|
||||
embeddings2: np.ndarray,
|
||||
) -> np.ndarray:
|
||||
# Cosine similarity
|
||||
norm1 = np.linalg.norm(embeddings1, axis=1, keepdims=True)
|
||||
norm2 = np.linalg.norm(embeddings2, axis=1, keepdims=True)
|
||||
sim = np.dot(embeddings1, embeddings2.T) / (norm1 * norm2.T)
|
||||
return sim
|
||||
|
||||
def similarity_pairwise(
|
||||
self,
|
||||
embeddings1: Array,
|
||||
embeddings2: Array,
|
||||
) -> Array:
|
||||
# Cosine similarity
|
||||
norm1 = np.linalg.norm(embeddings1, axis=1, keepdims=True)
|
||||
norm2 = np.linalg.norm(embeddings2, axis=1, keepdims=True)
|
||||
sim = np.sum(embeddings1 * embeddings2, axis=1) / (
|
||||
norm1.flatten() * norm2.flatten()
|
||||
)
|
||||
return sim
|
||||
|
||||
|
||||
class OpenAIClientMtebEncoder(VllmMtebEncoder):
|
||||
def __init__(self, model_name: str, client):
|
||||
self.model_name = model_name
|
||||
self.client = client
|
||||
self.rng = np.random.default_rng(seed=42)
|
||||
|
||||
def encode(
|
||||
self,
|
||||
inputs: DataLoader[mteb.types.BatchedInput],
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> np.ndarray:
|
||||
# Hoping to discover potential scheduling
|
||||
# issues by randomizing the order.
|
||||
sentences = [text for batch in inputs for text in batch["text"]]
|
||||
r = self.rng.permutation(len(sentences))
|
||||
sentences = [sentences[i] for i in r]
|
||||
|
||||
embeddings = self.client.embeddings.create(
|
||||
model=self.model_name, input=sentences
|
||||
)
|
||||
outputs = [d.embedding for d in embeddings.data]
|
||||
embeds = np.array(outputs)
|
||||
embeds = embeds[np.argsort(r)]
|
||||
return embeds
|
||||
|
||||
|
||||
class VllmMtebCrossEncoder(mteb.CrossEncoderProtocol):
|
||||
mteb_model_meta = _empty_model_meta
|
||||
|
||||
class VllmMtebCrossEncoder(MtebCrossEncoderMixin):
|
||||
def __init__(self, vllm_model):
|
||||
self.llm = vllm_model
|
||||
self.rng = np.random.default_rng(seed=42)
|
||||
@ -164,7 +78,7 @@ class VllmMtebCrossEncoder(mteb.CrossEncoderProtocol):
|
||||
return scores
|
||||
|
||||
|
||||
class ScoreClientMtebEncoder(mteb.CrossEncoderProtocol):
|
||||
class ScoreClientMtebEncoder(MtebCrossEncoderMixin):
|
||||
mteb_model_meta = _empty_model_meta
|
||||
|
||||
def __init__(self, model_name: str, url):
|
||||
@ -216,102 +130,6 @@ class RerankClientMtebEncoder(ScoreClientMtebEncoder):
|
||||
return response["results"][0]["relevance_score"]
|
||||
|
||||
|
||||
def run_mteb_embed_task(encoder: mteb.EncoderProtocol, tasks):
|
||||
tasks = mteb.get_tasks(tasks=tasks)
|
||||
results = mteb.evaluate(
|
||||
encoder,
|
||||
tasks,
|
||||
cache=None,
|
||||
show_progress_bar=False,
|
||||
)
|
||||
|
||||
main_score = results[0].scores["test"][0]["main_score"]
|
||||
return main_score
|
||||
|
||||
|
||||
def mteb_test_embed_models(
|
||||
hf_runner,
|
||||
vllm_runner,
|
||||
model_info: EmbedModelInfo,
|
||||
vllm_extra_kwargs=None,
|
||||
hf_model_callback=None,
|
||||
atol=MTEB_EMBED_TOL,
|
||||
):
|
||||
vllm_extra_kwargs = get_vllm_extra_kwargs(model_info, vllm_extra_kwargs)
|
||||
|
||||
# Test embed_dims, isnan and whether to use normalize
|
||||
example_prompts = ["The chef prepared a delicious meal." * 1000]
|
||||
|
||||
with vllm_runner(
|
||||
model_info.name,
|
||||
runner="pooling",
|
||||
max_model_len=model_info.max_model_len,
|
||||
**vllm_extra_kwargs,
|
||||
) as vllm_model:
|
||||
model_config = vllm_model.llm.llm_engine.model_config
|
||||
|
||||
# Confirm whether vllm is using the correct architecture
|
||||
if model_info.architecture:
|
||||
assert model_info.architecture in model_config.architectures
|
||||
|
||||
# Confirm whether vllm uses the correct default_pooling_type, which
|
||||
# relates to whether chunked prefill and prefix caching are enabled
|
||||
assert (
|
||||
model_config._model_info.default_pooling_type
|
||||
== model_info.default_pooling_type
|
||||
)
|
||||
|
||||
vllm_main_score = run_mteb_embed_task(
|
||||
VllmMtebEncoder(vllm_model), MTEB_EMBED_TASKS
|
||||
)
|
||||
vllm_dtype = vllm_model.llm.llm_engine.model_config.dtype
|
||||
head_dtype = model_config.head_dtype
|
||||
|
||||
# Test embedding_size, isnan and whether to use normalize
|
||||
vllm_outputs = vllm_model.embed(example_prompts, truncate_prompt_tokens=-1)
|
||||
outputs_tensor = torch.tensor(vllm_outputs)
|
||||
assert not torch.any(torch.isnan(outputs_tensor))
|
||||
embedding_size = model_config.embedding_size
|
||||
assert torch.tensor(vllm_outputs).shape[-1] == embedding_size
|
||||
|
||||
# Accelerate mteb test by setting
|
||||
# SentenceTransformers mteb score to a constant
|
||||
if model_info.mteb_score is None:
|
||||
with hf_runner(
|
||||
model_info.name,
|
||||
is_sentence_transformer=True,
|
||||
dtype=ci_envs.VLLM_CI_HF_DTYPE or model_info.hf_dtype,
|
||||
) as hf_model:
|
||||
# e.g. setting default parameters for the encode method of hf_runner
|
||||
if hf_model_callback is not None:
|
||||
hf_model_callback(hf_model)
|
||||
|
||||
st_main_score = run_mteb_embed_task(hf_model, MTEB_EMBED_TASKS)
|
||||
st_dtype = next(hf_model.model.parameters()).dtype
|
||||
|
||||
# Check embeddings close to hf outputs
|
||||
hf_outputs = hf_model.encode(example_prompts)
|
||||
check_embeddings_close(
|
||||
embeddings_0_lst=hf_outputs,
|
||||
embeddings_1_lst=vllm_outputs,
|
||||
name_0="hf",
|
||||
name_1="vllm",
|
||||
tol=1e-2,
|
||||
)
|
||||
else:
|
||||
st_main_score = model_info.mteb_score
|
||||
st_dtype = "Constant"
|
||||
|
||||
print("Model:", model_info.name)
|
||||
print("VLLM:", f"dtype:{vllm_dtype}", f"head_dtype:{head_dtype}", vllm_main_score)
|
||||
print("SentenceTransformers:", st_dtype, st_main_score)
|
||||
print("Difference:", st_main_score - vllm_main_score)
|
||||
|
||||
# We are not concerned that the vllm mteb results are better
|
||||
# than SentenceTransformers, so we only perform one-sided testing.
|
||||
assert st_main_score - vllm_main_score < atol
|
||||
|
||||
|
||||
def run_mteb_rerank(cross_encoder: mteb.CrossEncoderProtocol, tasks, languages):
|
||||
with tempfile.TemporaryDirectory() as prediction_folder:
|
||||
bm25s = mteb.get_model("bm25s")
|
||||
@ -391,18 +209,28 @@ def mteb_test_rerank_models(
|
||||
# Score API is only enabled for num_labels == 1
|
||||
assert model_config.hf_config.num_labels == 1
|
||||
|
||||
# Confirm whether vllm uses the correct default_pooling_type, which
|
||||
# relates to whether chunked prefill and prefix caching are enabled
|
||||
assert (
|
||||
model_config._model_info.default_pooling_type
|
||||
== model_info.default_pooling_type
|
||||
)
|
||||
|
||||
# Maybe load chat_template.
|
||||
chat_template: str | None = None
|
||||
if model_info.chat_template_name is not None:
|
||||
chat_template = (template_home / model_info.chat_template_name).read_text()
|
||||
vllm_model.chat_template = chat_template
|
||||
|
||||
# Confirm whether the important configs in model_config are correct.
|
||||
if model_info.pooling_type is not None:
|
||||
assert model_config.pooler_config.pooling_type == model_info.pooling_type
|
||||
if model_info.attn_type is not None:
|
||||
assert model_config.attn_type == model_info.attn_type
|
||||
if model_info.is_prefix_caching_supported is not None:
|
||||
assert (
|
||||
model_config.is_prefix_caching_supported
|
||||
== model_info.is_prefix_caching_supported
|
||||
)
|
||||
if model_info.is_chunked_prefill_supported is not None:
|
||||
assert (
|
||||
model_config.is_chunked_prefill_supported
|
||||
== model_info.is_chunked_prefill_supported
|
||||
)
|
||||
|
||||
vllm_main_score = run_mteb_rerank(
|
||||
vllm_mteb_encoder(vllm_model),
|
||||
tasks=MTEB_RERANK_TASKS,
|
||||
@ -4,90 +4,94 @@ import pytest
|
||||
|
||||
from tests.models.language.pooling.embed_utils import correctness_test_embed_models
|
||||
from tests.models.utils import (
|
||||
CLSPoolingEmbedModelInfo,
|
||||
CLSPoolingRerankModelInfo,
|
||||
EmbedModelInfo,
|
||||
LASTPoolingEmbedModelInfo,
|
||||
RerankModelInfo,
|
||||
)
|
||||
|
||||
from .mteb_utils import mteb_test_embed_models, mteb_test_rerank_models
|
||||
from .mteb_embed_utils import mteb_test_embed_models
|
||||
from .mteb_score_utils import mteb_test_rerank_models
|
||||
|
||||
MODELS = [
|
||||
########## BertModel
|
||||
CLSPoolingEmbedModelInfo(
|
||||
EmbedModelInfo(
|
||||
"BAAI/bge-base-en",
|
||||
architecture="BertModel",
|
||||
mteb_score=0.779336792,
|
||||
pooling_type="CLS",
|
||||
attn_type="encoder_only",
|
||||
is_prefix_caching_supported=False,
|
||||
is_chunked_prefill_supported=False,
|
||||
enable_test=True,
|
||||
),
|
||||
CLSPoolingEmbedModelInfo(
|
||||
"BAAI/bge-base-zh", architecture="BertModel", enable_test=False
|
||||
),
|
||||
CLSPoolingEmbedModelInfo(
|
||||
"BAAI/bge-small-en", architecture="BertModel", enable_test=False
|
||||
),
|
||||
CLSPoolingEmbedModelInfo(
|
||||
"BAAI/bge-small-zh", architecture="BertModel", enable_test=False
|
||||
),
|
||||
CLSPoolingEmbedModelInfo(
|
||||
"BAAI/bge-large-en", architecture="BertModel", enable_test=False
|
||||
),
|
||||
CLSPoolingEmbedModelInfo(
|
||||
"BAAI/bge-large-zh", architecture="BertModel", enable_test=False
|
||||
),
|
||||
CLSPoolingEmbedModelInfo(
|
||||
EmbedModelInfo("BAAI/bge-base-zh", architecture="BertModel", enable_test=False),
|
||||
EmbedModelInfo("BAAI/bge-small-en", architecture="BertModel", enable_test=False),
|
||||
EmbedModelInfo("BAAI/bge-small-zh", architecture="BertModel", enable_test=False),
|
||||
EmbedModelInfo("BAAI/bge-large-en", architecture="BertModel", enable_test=False),
|
||||
EmbedModelInfo("BAAI/bge-large-zh", architecture="BertModel", enable_test=False),
|
||||
EmbedModelInfo(
|
||||
"BAAI/bge-large-zh-noinstruct", architecture="BertModel", enable_test=False
|
||||
),
|
||||
CLSPoolingEmbedModelInfo(
|
||||
EmbedModelInfo(
|
||||
"BAAI/bge-base-en-v1.5", architecture="BertModel", enable_test=False
|
||||
),
|
||||
CLSPoolingEmbedModelInfo(
|
||||
EmbedModelInfo(
|
||||
"BAAI/bge-base-zh-v1.5", architecture="BertModel", enable_test=False
|
||||
),
|
||||
CLSPoolingEmbedModelInfo(
|
||||
EmbedModelInfo(
|
||||
"BAAI/bge-small-en-v1.5", architecture="BertModel", enable_test=False
|
||||
),
|
||||
CLSPoolingEmbedModelInfo(
|
||||
EmbedModelInfo(
|
||||
"BAAI/bge-small-zh-v1.5", architecture="BertModel", enable_test=False
|
||||
),
|
||||
CLSPoolingEmbedModelInfo(
|
||||
EmbedModelInfo(
|
||||
"BAAI/bge-large-en-v1.5", architecture="BertModel", enable_test=False
|
||||
),
|
||||
CLSPoolingEmbedModelInfo(
|
||||
EmbedModelInfo(
|
||||
"BAAI/bge-large-zh-v1.5", architecture="BertModel", enable_test=False
|
||||
),
|
||||
########## XLMRobertaModel
|
||||
CLSPoolingEmbedModelInfo(
|
||||
EmbedModelInfo(
|
||||
"BAAI/bge-m3",
|
||||
architecture="XLMRobertaModel",
|
||||
mteb_score=0.787343078,
|
||||
pooling_type="CLS",
|
||||
attn_type="encoder_only",
|
||||
is_prefix_caching_supported=False,
|
||||
is_chunked_prefill_supported=False,
|
||||
enable_test=True,
|
||||
),
|
||||
########## Qwen2Model
|
||||
LASTPoolingEmbedModelInfo(
|
||||
EmbedModelInfo(
|
||||
"BAAI/bge-code-v1",
|
||||
architecture="Qwen2Model",
|
||||
mteb_score=0.75724465,
|
||||
dtype="float32",
|
||||
pooling_type="LAST",
|
||||
attn_type="decoder",
|
||||
is_prefix_caching_supported=True,
|
||||
is_chunked_prefill_supported=True,
|
||||
enable_test=True,
|
||||
),
|
||||
]
|
||||
|
||||
RERANK_MODELS = [
|
||||
########## XLMRobertaForSequenceClassification
|
||||
CLSPoolingRerankModelInfo(
|
||||
RerankModelInfo(
|
||||
"BAAI/bge-reranker-base",
|
||||
architecture="XLMRobertaForSequenceClassification",
|
||||
mteb_score=0.32398,
|
||||
pooling_type="CLS",
|
||||
attn_type="encoder_only",
|
||||
is_prefix_caching_supported=False,
|
||||
is_chunked_prefill_supported=False,
|
||||
enable_test=True,
|
||||
),
|
||||
CLSPoolingRerankModelInfo(
|
||||
RerankModelInfo(
|
||||
"BAAI/bge-reranker-large",
|
||||
architecture="XLMRobertaForSequenceClassification",
|
||||
enable_test=False,
|
||||
),
|
||||
CLSPoolingRerankModelInfo(
|
||||
RerankModelInfo(
|
||||
"BAAI/bge-reranker-v2-m3",
|
||||
architecture="XLMRobertaForSequenceClassification",
|
||||
enable_test=False,
|
||||
|
||||
@ -9,14 +9,12 @@ import torch
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from tests.conftest import HfRunner
|
||||
from tests.models.language.pooling_mteb_test.mteb_utils import (
|
||||
VllmMtebCrossEncoder,
|
||||
mteb_test_rerank_models,
|
||||
)
|
||||
from tests.models.utils import LASTPoolingRerankModelInfo, RerankModelInfo
|
||||
from tests.models.utils import RerankModelInfo
|
||||
|
||||
from .mteb_score_utils import VllmMtebCrossEncoder, mteb_test_rerank_models
|
||||
|
||||
RERANK_MODELS = [
|
||||
LASTPoolingRerankModelInfo(
|
||||
RerankModelInfo(
|
||||
"BAAI/bge-reranker-v2-gemma",
|
||||
architecture="GemmaForSequenceClassification",
|
||||
mteb_score=0.33757,
|
||||
@ -25,6 +23,10 @@ RERANK_MODELS = [
|
||||
"classifier_from_token": ["Yes"],
|
||||
"method": "no_post_processing",
|
||||
},
|
||||
pooling_type="LAST",
|
||||
attn_type="decoder",
|
||||
is_prefix_caching_supported=True,
|
||||
is_chunked_prefill_supported=True,
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
@ -3,23 +3,29 @@
|
||||
import pytest
|
||||
|
||||
from tests.models.utils import (
|
||||
CLSPoolingRerankModelInfo,
|
||||
LASTPoolingRerankModelInfo,
|
||||
RerankModelInfo,
|
||||
)
|
||||
|
||||
from .mteb_utils import mteb_test_rerank_models
|
||||
from .mteb_score_utils import mteb_test_rerank_models
|
||||
|
||||
RERANK_MODELS = [
|
||||
CLSPoolingRerankModelInfo(
|
||||
RerankModelInfo(
|
||||
"cross-encoder/ms-marco-TinyBERT-L-2-v2",
|
||||
mteb_score=0.32898,
|
||||
architecture="BertForSequenceClassification",
|
||||
pooling_type="CLS",
|
||||
attn_type="encoder_only",
|
||||
is_prefix_caching_supported=False,
|
||||
is_chunked_prefill_supported=False,
|
||||
),
|
||||
LASTPoolingRerankModelInfo(
|
||||
RerankModelInfo(
|
||||
"tomaarsen/Qwen3-Reranker-0.6B-seq-cls",
|
||||
mteb_score=0.25736,
|
||||
architecture="Qwen3ForSequenceClassification",
|
||||
pooling_type="LAST",
|
||||
attn_type="decoder",
|
||||
is_prefix_caching_supported=True,
|
||||
is_chunked_prefill_supported=True,
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
@ -5,36 +5,32 @@ import pytest
|
||||
|
||||
from tests.models.language.pooling.embed_utils import correctness_test_embed_models
|
||||
from tests.models.utils import (
|
||||
CLSPoolingEmbedModelInfo,
|
||||
CLSPoolingRerankModelInfo,
|
||||
EmbedModelInfo,
|
||||
LASTPoolingEmbedModelInfo,
|
||||
RerankModelInfo,
|
||||
)
|
||||
|
||||
from .mteb_utils import mteb_test_embed_models, mteb_test_rerank_models
|
||||
from .mteb_embed_utils import mteb_test_embed_models
|
||||
from .mteb_score_utils import mteb_test_rerank_models
|
||||
|
||||
MODELS = [
|
||||
########## BertModel
|
||||
CLSPoolingEmbedModelInfo(
|
||||
EmbedModelInfo(
|
||||
"thenlper/gte-large",
|
||||
mteb_score=0.76807651,
|
||||
architecture="BertModel",
|
||||
pooling_type="MEAN",
|
||||
attn_type="encoder_only",
|
||||
is_prefix_caching_supported=False,
|
||||
is_chunked_prefill_supported=False,
|
||||
enable_test=True,
|
||||
),
|
||||
CLSPoolingEmbedModelInfo(
|
||||
"thenlper/gte-base", architecture="BertModel", enable_test=False
|
||||
),
|
||||
CLSPoolingEmbedModelInfo(
|
||||
"thenlper/gte-small", architecture="BertModel", enable_test=False
|
||||
),
|
||||
CLSPoolingEmbedModelInfo(
|
||||
EmbedModelInfo("thenlper/gte-base", architecture="BertModel", enable_test=False),
|
||||
EmbedModelInfo("thenlper/gte-small", architecture="BertModel", enable_test=False),
|
||||
EmbedModelInfo(
|
||||
"thenlper/gte-large-zh", architecture="BertModel", enable_test=False
|
||||
),
|
||||
CLSPoolingEmbedModelInfo(
|
||||
"thenlper/gte-base-zh", architecture="BertModel", enable_test=False
|
||||
),
|
||||
CLSPoolingEmbedModelInfo(
|
||||
EmbedModelInfo("thenlper/gte-base-zh", architecture="BertModel", enable_test=False),
|
||||
EmbedModelInfo(
|
||||
"thenlper/gte-small-zh", architecture="BertModel", enable_test=False
|
||||
),
|
||||
########### NewModel
|
||||
@ -43,48 +39,64 @@ MODELS = [
|
||||
# - whether to use token_type_embeddings
|
||||
# - whether to use context expansion
|
||||
# So only test one (the most widely used) model
|
||||
CLSPoolingEmbedModelInfo(
|
||||
EmbedModelInfo(
|
||||
"Alibaba-NLP/gte-multilingual-base",
|
||||
architecture="GteNewModel",
|
||||
mteb_score=0.775074696,
|
||||
hf_overrides={"architectures": ["GteNewModel"]},
|
||||
pooling_type="CLS",
|
||||
attn_type="encoder_only",
|
||||
is_prefix_caching_supported=False,
|
||||
is_chunked_prefill_supported=False,
|
||||
enable_test=True,
|
||||
),
|
||||
CLSPoolingEmbedModelInfo(
|
||||
EmbedModelInfo(
|
||||
"Alibaba-NLP/gte-base-en-v1.5",
|
||||
architecture="GteNewModel",
|
||||
hf_overrides={"architectures": ["GteNewModel"]},
|
||||
enable_test=False,
|
||||
),
|
||||
CLSPoolingEmbedModelInfo(
|
||||
EmbedModelInfo(
|
||||
"Alibaba-NLP/gte-large-en-v1.5",
|
||||
architecture="GteNewModel",
|
||||
hf_overrides={"architectures": ["GteNewModel"]},
|
||||
enable_test=False,
|
||||
),
|
||||
########### Qwen2ForCausalLM
|
||||
LASTPoolingEmbedModelInfo(
|
||||
EmbedModelInfo(
|
||||
"Alibaba-NLP/gte-Qwen2-1.5B-instruct",
|
||||
mteb_score=0.758473459018872,
|
||||
architecture="Qwen2ForCausalLM",
|
||||
pooling_type="LAST",
|
||||
attn_type="encoder_only",
|
||||
is_prefix_caching_supported=False,
|
||||
is_chunked_prefill_supported=False,
|
||||
enable_test=True,
|
||||
),
|
||||
########## ModernBertModel
|
||||
CLSPoolingEmbedModelInfo(
|
||||
EmbedModelInfo(
|
||||
"Alibaba-NLP/gte-modernbert-base",
|
||||
mteb_score=0.748193353,
|
||||
architecture="ModernBertModel",
|
||||
pooling_type="CLS",
|
||||
attn_type="encoder_only",
|
||||
is_prefix_caching_supported=False,
|
||||
is_chunked_prefill_supported=False,
|
||||
enable_test=True,
|
||||
),
|
||||
########## Qwen3ForCausalLM
|
||||
LASTPoolingEmbedModelInfo(
|
||||
EmbedModelInfo(
|
||||
"Qwen/Qwen3-Embedding-0.6B",
|
||||
mteb_score=0.771163695,
|
||||
architecture="Qwen3ForCausalLM",
|
||||
dtype="float32",
|
||||
pooling_type="LAST",
|
||||
attn_type="decoder",
|
||||
is_prefix_caching_supported=True,
|
||||
is_chunked_prefill_supported=True,
|
||||
enable_test=True,
|
||||
),
|
||||
LASTPoolingEmbedModelInfo(
|
||||
EmbedModelInfo(
|
||||
"Qwen/Qwen3-Embedding-4B",
|
||||
architecture="Qwen3ForCausalLM",
|
||||
dtype="float32",
|
||||
@ -93,18 +105,26 @@ MODELS = [
|
||||
]
|
||||
|
||||
RERANK_MODELS = [
|
||||
CLSPoolingRerankModelInfo(
|
||||
RerankModelInfo(
|
||||
# classifier_pooling: mean
|
||||
"Alibaba-NLP/gte-reranker-modernbert-base",
|
||||
mteb_score=0.33386,
|
||||
architecture="ModernBertForSequenceClassification",
|
||||
pooling_type="CLS",
|
||||
attn_type="encoder_only",
|
||||
is_prefix_caching_supported=False,
|
||||
is_chunked_prefill_supported=False,
|
||||
enable_test=True,
|
||||
),
|
||||
CLSPoolingRerankModelInfo(
|
||||
RerankModelInfo(
|
||||
"Alibaba-NLP/gte-multilingual-reranker-base",
|
||||
mteb_score=0.33062,
|
||||
architecture="GteNewForSequenceClassification",
|
||||
hf_overrides={"architectures": ["GteNewForSequenceClassification"]},
|
||||
pooling_type="CLS",
|
||||
attn_type="encoder_only",
|
||||
is_prefix_caching_supported=False,
|
||||
is_chunked_prefill_supported=False,
|
||||
enable_test=True,
|
||||
),
|
||||
]
|
||||
|
||||
@ -3,40 +3,44 @@
|
||||
import pytest
|
||||
|
||||
from tests.models.language.pooling.embed_utils import correctness_test_embed_models
|
||||
from tests.models.utils import CLSPoolingEmbedModelInfo, EmbedModelInfo
|
||||
from tests.models.utils import EmbedModelInfo
|
||||
|
||||
from .mteb_utils import mteb_test_embed_models
|
||||
from .mteb_embed_utils import mteb_test_embed_models
|
||||
|
||||
MODELS = [
|
||||
########## BertModel
|
||||
CLSPoolingEmbedModelInfo(
|
||||
EmbedModelInfo(
|
||||
"intfloat/e5-small",
|
||||
architecture="BertModel",
|
||||
mteb_score=0.742285423,
|
||||
pooling_type="MEAN",
|
||||
attn_type="encoder_only",
|
||||
is_prefix_caching_supported=False,
|
||||
is_chunked_prefill_supported=False,
|
||||
enable_test=True,
|
||||
),
|
||||
CLSPoolingEmbedModelInfo(
|
||||
"intfloat/e5-base", architecture="BertModel", enable_test=False
|
||||
),
|
||||
CLSPoolingEmbedModelInfo(
|
||||
"intfloat/e5-large", architecture="BertModel", enable_test=False
|
||||
),
|
||||
CLSPoolingEmbedModelInfo(
|
||||
EmbedModelInfo("intfloat/e5-base", architecture="BertModel", enable_test=False),
|
||||
EmbedModelInfo("intfloat/e5-large", architecture="BertModel", enable_test=False),
|
||||
EmbedModelInfo(
|
||||
"intfloat/multilingual-e5-small", architecture="BertModel", enable_test=False
|
||||
),
|
||||
########## XLMRobertaModel
|
||||
CLSPoolingEmbedModelInfo(
|
||||
EmbedModelInfo(
|
||||
"intfloat/multilingual-e5-base",
|
||||
architecture="XLMRobertaModel",
|
||||
mteb_score=0.779325955,
|
||||
pooling_type="MEAN",
|
||||
attn_type="encoder_only",
|
||||
is_prefix_caching_supported=False,
|
||||
is_chunked_prefill_supported=False,
|
||||
enable_test=True,
|
||||
),
|
||||
CLSPoolingEmbedModelInfo(
|
||||
EmbedModelInfo(
|
||||
"intfloat/multilingual-e5-large",
|
||||
architecture="XLMRobertaModel",
|
||||
enable_test=False,
|
||||
),
|
||||
CLSPoolingEmbedModelInfo(
|
||||
EmbedModelInfo(
|
||||
"intfloat/multilingual-e5-large-instruct",
|
||||
architecture="XLMRobertaModel",
|
||||
enable_test=False,
|
||||
|
||||
@ -10,30 +10,37 @@ from tests.models.language.pooling.embed_utils import (
|
||||
matryoshka_fy,
|
||||
)
|
||||
from tests.models.utils import (
|
||||
CLSPoolingEmbedModelInfo,
|
||||
CLSPoolingRerankModelInfo,
|
||||
EmbedModelInfo,
|
||||
RerankModelInfo,
|
||||
)
|
||||
from vllm import PoolingParams
|
||||
|
||||
from .mteb_utils import mteb_test_embed_models, mteb_test_rerank_models
|
||||
from .mteb_embed_utils import mteb_test_embed_models
|
||||
from .mteb_score_utils import mteb_test_rerank_models
|
||||
|
||||
EMBEDDING_MODELS = [
|
||||
CLSPoolingEmbedModelInfo(
|
||||
EmbedModelInfo(
|
||||
"jinaai/jina-embeddings-v3",
|
||||
mteb_score=0.824413164,
|
||||
architecture="XLMRobertaModel",
|
||||
is_matryoshka=True,
|
||||
pooling_type="MEAN",
|
||||
attn_type="encoder_only",
|
||||
is_prefix_caching_supported=False,
|
||||
is_chunked_prefill_supported=False,
|
||||
dtype="float32",
|
||||
)
|
||||
]
|
||||
|
||||
RERANK_MODELS = [
|
||||
CLSPoolingRerankModelInfo(
|
||||
RerankModelInfo(
|
||||
"jinaai/jina-reranker-v2-base-multilingual",
|
||||
mteb_score=0.33643,
|
||||
architecture="XLMRobertaForSequenceClassification",
|
||||
pooling_type="CLS",
|
||||
attn_type="encoder_only",
|
||||
is_prefix_caching_supported=False,
|
||||
is_chunked_prefill_supported=False,
|
||||
)
|
||||
]
|
||||
|
||||
|
||||
@ -6,9 +6,9 @@ import pytest
|
||||
import torch
|
||||
|
||||
from tests.conftest import HfRunner
|
||||
from tests.models.utils import LASTPoolingRerankModelInfo, RerankModelInfo
|
||||
from tests.models.utils import RerankModelInfo
|
||||
|
||||
from .mteb_utils import mteb_test_rerank_models
|
||||
from .mteb_score_utils import mteb_test_rerank_models
|
||||
|
||||
mxbai_rerank_hf_overrides = {
|
||||
"architectures": ["Qwen2ForSequenceClassification"],
|
||||
@ -17,14 +17,18 @@ mxbai_rerank_hf_overrides = {
|
||||
}
|
||||
|
||||
RERANK_MODELS = [
|
||||
LASTPoolingRerankModelInfo(
|
||||
RerankModelInfo(
|
||||
"mixedbread-ai/mxbai-rerank-base-v2",
|
||||
architecture="Qwen2ForSequenceClassification",
|
||||
hf_overrides=mxbai_rerank_hf_overrides,
|
||||
mteb_score=0.273,
|
||||
pooling_type="LAST",
|
||||
attn_type="decoder",
|
||||
is_prefix_caching_supported=True,
|
||||
is_chunked_prefill_supported=True,
|
||||
enable_test=True,
|
||||
),
|
||||
LASTPoolingRerankModelInfo(
|
||||
RerankModelInfo(
|
||||
"mixedbread-ai/mxbai-rerank-large-v2",
|
||||
architecture="Qwen2ForSequenceClassification",
|
||||
hf_overrides=mxbai_rerank_hf_overrides,
|
||||
|
||||
@ -3,29 +3,39 @@
|
||||
|
||||
import pytest
|
||||
|
||||
from tests.models.language.pooling_mteb_test.mteb_embed_utils import (
|
||||
mteb_test_embed_models,
|
||||
)
|
||||
from tests.models.language.pooling_mteb_test.mteb_score_utils import (
|
||||
mteb_test_rerank_models,
|
||||
)
|
||||
from tests.models.utils import (
|
||||
EmbedModelInfo,
|
||||
LASTPoolingEmbedModelInfo,
|
||||
LASTPoolingRerankModelInfo,
|
||||
RerankModelInfo,
|
||||
)
|
||||
|
||||
from .mteb_utils import mteb_test_embed_models, mteb_test_rerank_models
|
||||
|
||||
EMBEDDING_MODELS = [
|
||||
LASTPoolingEmbedModelInfo(
|
||||
EmbedModelInfo(
|
||||
"nvidia/llama-nemotron-embed-1b-v2",
|
||||
architecture="LlamaBidirectionalModel",
|
||||
mteb_score=0.689164662128673,
|
||||
pooling_type="MEAN",
|
||||
attn_type="encoder_only",
|
||||
is_prefix_caching_supported=False,
|
||||
is_chunked_prefill_supported=False,
|
||||
)
|
||||
]
|
||||
|
||||
RERANK_MODELS = [
|
||||
LASTPoolingRerankModelInfo(
|
||||
RerankModelInfo(
|
||||
"nvidia/llama-nemotron-rerank-1b-v2",
|
||||
architecture="LlamaBidirectionalForSequenceClassification",
|
||||
chat_template_name="nemotron-rerank.jinja",
|
||||
mteb_score=0.33994,
|
||||
pooling_type="MEAN",
|
||||
attn_type="encoder_only",
|
||||
is_prefix_caching_supported=False,
|
||||
is_chunked_prefill_supported=False,
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
@ -4,30 +4,38 @@
|
||||
import pytest
|
||||
|
||||
from tests.models.language.pooling.embed_utils import correctness_test_embed_models
|
||||
from tests.models.utils import CLSPoolingEmbedModelInfo, EmbedModelInfo
|
||||
from tests.models.utils import EmbedModelInfo
|
||||
|
||||
from .mteb_utils import mteb_test_embed_models
|
||||
from .mteb_embed_utils import mteb_test_embed_models
|
||||
|
||||
MODELS = [
|
||||
CLSPoolingEmbedModelInfo(
|
||||
EmbedModelInfo(
|
||||
"nomic-ai/nomic-embed-text-v1",
|
||||
architecture="NomicBertModel",
|
||||
mteb_score=0.737568559,
|
||||
enable_test=True,
|
||||
pooling_type="MEAN",
|
||||
attn_type="encoder_only",
|
||||
is_prefix_caching_supported=False,
|
||||
is_chunked_prefill_supported=False,
|
||||
),
|
||||
CLSPoolingEmbedModelInfo(
|
||||
EmbedModelInfo(
|
||||
"nomic-ai/nomic-embed-text-v1.5",
|
||||
architecture="NomicBertModel",
|
||||
enable_test=False,
|
||||
),
|
||||
CLSPoolingEmbedModelInfo(
|
||||
EmbedModelInfo(
|
||||
"nomic-ai/CodeRankEmbed", architecture="NomicBertModel", enable_test=False
|
||||
),
|
||||
CLSPoolingEmbedModelInfo(
|
||||
EmbedModelInfo(
|
||||
"nomic-ai/nomic-embed-text-v2-moe",
|
||||
architecture="NomicBertModel",
|
||||
mteb_score=0.715488912,
|
||||
enable_test=True,
|
||||
pooling_type="MEAN",
|
||||
attn_type="encoder_only",
|
||||
is_prefix_caching_supported=False,
|
||||
is_chunked_prefill_supported=False,
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
@ -6,10 +6,10 @@ import pytest
|
||||
import torch
|
||||
|
||||
from tests.conftest import HfRunner
|
||||
from tests.models.utils import LASTPoolingRerankModelInfo, RerankModelInfo
|
||||
from tests.models.utils import RerankModelInfo
|
||||
from tests.utils import multi_gpu_test
|
||||
|
||||
from .mteb_utils import mteb_test_rerank_models
|
||||
from .mteb_score_utils import mteb_test_rerank_models
|
||||
|
||||
qwen3_reranker_hf_overrides = {
|
||||
"architectures": ["Qwen3ForSequenceClassification"],
|
||||
@ -18,14 +18,18 @@ qwen3_reranker_hf_overrides = {
|
||||
}
|
||||
|
||||
RERANK_MODELS = [
|
||||
LASTPoolingRerankModelInfo(
|
||||
RerankModelInfo(
|
||||
"Qwen/Qwen3-Reranker-0.6B",
|
||||
architecture="Qwen3ForSequenceClassification",
|
||||
mteb_score=0.25736,
|
||||
hf_overrides=qwen3_reranker_hf_overrides,
|
||||
pooling_type="LAST",
|
||||
attn_type="decoder",
|
||||
is_prefix_caching_supported=True,
|
||||
is_chunked_prefill_supported=True,
|
||||
enable_test=True,
|
||||
),
|
||||
LASTPoolingRerankModelInfo(
|
||||
RerankModelInfo(
|
||||
"Qwen/Qwen3-Reranker-4B",
|
||||
architecture="Qwen3ForSequenceClassification",
|
||||
hf_overrides=qwen3_reranker_hf_overrides,
|
||||
|
||||
@ -4,62 +4,82 @@
|
||||
import pytest
|
||||
|
||||
from tests.models.language.pooling.embed_utils import correctness_test_embed_models
|
||||
from tests.models.utils import CLSPoolingEmbedModelInfo, EmbedModelInfo
|
||||
from tests.models.utils import EmbedModelInfo
|
||||
|
||||
from .mteb_utils import mteb_test_embed_models
|
||||
from .mteb_embed_utils import mteb_test_embed_models
|
||||
|
||||
MODELS = [
|
||||
CLSPoolingEmbedModelInfo(
|
||||
EmbedModelInfo(
|
||||
"Snowflake/snowflake-arctic-embed-xs",
|
||||
is_matryoshka=False,
|
||||
architecture="BertModel",
|
||||
mteb_score=0.714927797,
|
||||
pooling_type="CLS",
|
||||
attn_type="encoder_only",
|
||||
is_prefix_caching_supported=False,
|
||||
is_chunked_prefill_supported=False,
|
||||
enable_test=True,
|
||||
),
|
||||
CLSPoolingEmbedModelInfo(
|
||||
EmbedModelInfo(
|
||||
"Snowflake/snowflake-arctic-embed-s",
|
||||
is_matryoshka=False,
|
||||
architecture="BertModel",
|
||||
enable_test=False,
|
||||
),
|
||||
CLSPoolingEmbedModelInfo(
|
||||
EmbedModelInfo(
|
||||
"Snowflake/snowflake-arctic-embed-m",
|
||||
is_matryoshka=False,
|
||||
architecture="BertModel",
|
||||
enable_test=False,
|
||||
),
|
||||
CLSPoolingEmbedModelInfo(
|
||||
EmbedModelInfo(
|
||||
"Snowflake/snowflake-arctic-embed-m-long",
|
||||
is_matryoshka=False,
|
||||
architecture="NomicBertModel",
|
||||
mteb_score=0.681146831,
|
||||
pooling_type="CLS",
|
||||
attn_type="encoder_only",
|
||||
is_prefix_caching_supported=False,
|
||||
is_chunked_prefill_supported=False,
|
||||
enable_test=True,
|
||||
),
|
||||
CLSPoolingEmbedModelInfo(
|
||||
EmbedModelInfo(
|
||||
"Snowflake/snowflake-arctic-embed-l",
|
||||
is_matryoshka=False,
|
||||
architecture="BertModel",
|
||||
enable_test=False,
|
||||
),
|
||||
CLSPoolingEmbedModelInfo(
|
||||
EmbedModelInfo(
|
||||
"Snowflake/snowflake-arctic-embed-m-v1.5",
|
||||
is_matryoshka=True,
|
||||
architecture="BertModel",
|
||||
mteb_score=0.649088363,
|
||||
pooling_type="CLS",
|
||||
attn_type="encoder_only",
|
||||
is_prefix_caching_supported=False,
|
||||
is_chunked_prefill_supported=False,
|
||||
enable_test=True,
|
||||
),
|
||||
CLSPoolingEmbedModelInfo(
|
||||
EmbedModelInfo(
|
||||
"Snowflake/snowflake-arctic-embed-l-v2.0",
|
||||
is_matryoshka=True,
|
||||
architecture="XLMRobertaModel",
|
||||
mteb_score=0.712258299,
|
||||
pooling_type="CLS",
|
||||
attn_type="encoder_only",
|
||||
is_prefix_caching_supported=False,
|
||||
is_chunked_prefill_supported=False,
|
||||
enable_test=True,
|
||||
),
|
||||
CLSPoolingEmbedModelInfo(
|
||||
EmbedModelInfo(
|
||||
"Snowflake/snowflake-arctic-embed-m-v2.0",
|
||||
is_matryoshka=True,
|
||||
architecture="GteModel",
|
||||
mteb_score=0.706622444,
|
||||
pooling_type="CLS",
|
||||
attn_type="encoder_only",
|
||||
is_prefix_caching_supported=False,
|
||||
is_chunked_prefill_supported=False,
|
||||
enable_test=True,
|
||||
),
|
||||
]
|
||||
|
||||
@ -3,25 +3,31 @@
|
||||
import pytest
|
||||
|
||||
from tests.models.utils import (
|
||||
CLSPoolingEmbedModelInfo,
|
||||
EmbedModelInfo,
|
||||
LASTPoolingEmbedModelInfo,
|
||||
)
|
||||
|
||||
from .mteb_utils import mteb_test_embed_models
|
||||
from .mteb_embed_utils import mteb_test_embed_models
|
||||
|
||||
# ST models with projector (Dense) layers
|
||||
ST_PROJECTOR_MODELS = [
|
||||
CLSPoolingEmbedModelInfo(
|
||||
EmbedModelInfo(
|
||||
"TencentBAC/Conan-embedding-v1",
|
||||
architecture="BertModel",
|
||||
mteb_score=0.688611955,
|
||||
pooling_type="MEAN",
|
||||
attn_type="encoder_only",
|
||||
is_prefix_caching_supported=False,
|
||||
is_chunked_prefill_supported=False,
|
||||
enable_test=True,
|
||||
),
|
||||
LASTPoolingEmbedModelInfo(
|
||||
EmbedModelInfo(
|
||||
"google/embeddinggemma-300m",
|
||||
architecture="Gemma3TextModel",
|
||||
mteb_score=0.7473819294684156,
|
||||
pooling_type="MEAN",
|
||||
attn_type="encoder_only",
|
||||
is_prefix_caching_supported=False,
|
||||
is_chunked_prefill_supported=False,
|
||||
enable_test=True,
|
||||
dtype="float32",
|
||||
),
|
||||
|
||||
@ -10,7 +10,7 @@ import torch
|
||||
import torch.nn.functional as F
|
||||
from transformers import PretrainedConfig
|
||||
|
||||
from vllm.config.model import ModelConfig, ModelDType, RunnerOption
|
||||
from vllm.config.model import AttnTypeStr, ModelConfig, ModelDType, RunnerOption
|
||||
from vllm.logprobs import Logprob, PromptLogprobs, SampleLogprobs
|
||||
from vllm.multimodal.processing import InputProcessingContext
|
||||
from vllm.tokenizers import cached_tokenizer_from_config
|
||||
@ -375,7 +375,10 @@ class ModelInfo:
|
||||
max_model_len: int | None = None
|
||||
hf_dtype: str = "float32"
|
||||
hf_overrides: dict[str, Any] | None = None
|
||||
default_pooling_type: str = ""
|
||||
pooling_type: str | None = None
|
||||
attn_type: AttnTypeStr | None = None
|
||||
is_prefix_caching_supported: bool | None = None
|
||||
is_chunked_prefill_supported: bool | None = None
|
||||
enable_test: bool = True
|
||||
|
||||
|
||||
@ -386,32 +389,12 @@ class EmbedModelInfo(ModelInfo):
|
||||
matryoshka_dimensions: list[int] | None = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class CLSPoolingEmbedModelInfo(EmbedModelInfo):
|
||||
default_pooling_type: str = "CLS"
|
||||
|
||||
|
||||
@dataclass
|
||||
class LASTPoolingEmbedModelInfo(EmbedModelInfo):
|
||||
default_pooling_type: str = "LAST"
|
||||
|
||||
|
||||
@dataclass
|
||||
class RerankModelInfo(ModelInfo):
|
||||
mteb_score: float | None = None
|
||||
chat_template_name: str | None = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class CLSPoolingRerankModelInfo(RerankModelInfo):
|
||||
default_pooling_type: str = "CLS"
|
||||
|
||||
|
||||
@dataclass
|
||||
class LASTPoolingRerankModelInfo(RerankModelInfo):
|
||||
default_pooling_type: str = "LAST"
|
||||
|
||||
|
||||
@dataclass
|
||||
class GenerateModelInfo(ModelInfo):
|
||||
hf_dtype: str = "auto"
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user