mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-13 21:15:28 +08:00
Add support for baichuan (#365)
This commit is contained in:
parent
2bdea7ac11
commit
20b0d88d16
@ -11,6 +11,7 @@ from vllm.model_executor.weight_utils import initialize_dummy_weights
|
|||||||
|
|
||||||
# TODO(woosuk): Lazy-load the model classes.
|
# TODO(woosuk): Lazy-load the model classes.
|
||||||
_MODEL_REGISTRY = {
|
_MODEL_REGISTRY = {
|
||||||
|
"BaiChuanForCausalLM": BaiChuanForCausalLM,
|
||||||
"BloomForCausalLM": BloomForCausalLM,
|
"BloomForCausalLM": BloomForCausalLM,
|
||||||
"GPT2LMHeadModel": GPT2LMHeadModel,
|
"GPT2LMHeadModel": GPT2LMHeadModel,
|
||||||
"GPTBigCodeForCausalLM": GPTBigCodeForCausalLM,
|
"GPTBigCodeForCausalLM": GPTBigCodeForCausalLM,
|
||||||
|
|||||||
@ -1,3 +1,4 @@
|
|||||||
|
from vllm.model_executor.models.baichuan import BaiChuanForCausalLM
|
||||||
from vllm.model_executor.models.bloom import BloomForCausalLM
|
from vllm.model_executor.models.bloom import BloomForCausalLM
|
||||||
from vllm.model_executor.models.gpt2 import GPT2LMHeadModel
|
from vllm.model_executor.models.gpt2 import GPT2LMHeadModel
|
||||||
from vllm.model_executor.models.gpt_bigcode import GPTBigCodeForCausalLM
|
from vllm.model_executor.models.gpt_bigcode import GPTBigCodeForCausalLM
|
||||||
@ -8,6 +9,7 @@ from vllm.model_executor.models.mpt import MPTForCausalLM
|
|||||||
from vllm.model_executor.models.opt import OPTForCausalLM
|
from vllm.model_executor.models.opt import OPTForCausalLM
|
||||||
|
|
||||||
__all__ = [
|
__all__ = [
|
||||||
|
"BaiChuanForCausalLM",
|
||||||
"BloomForCausalLM",
|
"BloomForCausalLM",
|
||||||
"GPT2LMHeadModel",
|
"GPT2LMHeadModel",
|
||||||
"GPTBigCodeForCausalLM",
|
"GPTBigCodeForCausalLM",
|
||||||
|
|||||||
293
vllm/model_executor/models/baichuan.py
Normal file
293
vllm/model_executor/models/baichuan.py
Normal file
@ -0,0 +1,293 @@
|
|||||||
|
# coding=utf-8
|
||||||
|
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
||||||
|
#
|
||||||
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||||
|
# and OPT implementations in this library. It has been modified from its
|
||||||
|
# original forms to accommodate minor architectural differences compared
|
||||||
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""Inference-only BaiChuan model compatible with HuggingFace weights.
|
||||||
|
|
||||||
|
The input of the model is flattened to a 1D tensor of tokens. The model uses
|
||||||
|
InputMetadata to extract the original 2D shape of the input.
|
||||||
|
"""
|
||||||
|
from typing import Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
|
||||||
|
from vllm.sequence import SequenceOutputs
|
||||||
|
from vllm.model_executor.input_metadata import InputMetadata
|
||||||
|
from vllm.model_executor.layers.activation import SiluAndMul
|
||||||
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||||
|
from vllm.model_executor.layers.attention import PagedAttentionWithRoPE
|
||||||
|
from vllm.model_executor.layers.sampler import Sampler
|
||||||
|
from vllm.model_executor.weight_utils import (hf_model_weights_iterator,
|
||||||
|
load_tensor_parallel_weights)
|
||||||
|
from vllm.model_executor.parallel_utils.parallel_state import (
|
||||||
|
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
|
||||||
|
from vllm.model_executor.parallel_utils.tensor_parallel import (
|
||||||
|
VocabParallelEmbedding, ColumnParallelLinear, RowParallelLinear)
|
||||||
|
from vllm.transformers_utils.configs.baichuan import BaiChuanConfig
|
||||||
|
|
||||||
|
KVCache = Tuple[torch.Tensor, torch.Tensor]
|
||||||
|
|
||||||
|
|
||||||
|
class BaiChuanMLP(nn.Module):
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
hidden_size: int,
|
||||||
|
intermediate_size: int,
|
||||||
|
hidden_act: str,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.gate_up_proj = ColumnParallelLinear(hidden_size,
|
||||||
|
2 * intermediate_size,
|
||||||
|
bias=False,
|
||||||
|
gather_output=False,
|
||||||
|
perform_initialization=False)
|
||||||
|
self.down_proj = RowParallelLinear(intermediate_size,
|
||||||
|
hidden_size,
|
||||||
|
bias=False,
|
||||||
|
input_is_parallel=True,
|
||||||
|
perform_initialization=False)
|
||||||
|
if hidden_act != "silu":
|
||||||
|
raise ValueError(f"Unsupported activation: {hidden_act}. "
|
||||||
|
"Only silu is supported for now.")
|
||||||
|
self.act_fn = SiluAndMul()
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
gate_up, _ = self.gate_up_proj(x)
|
||||||
|
x = self.act_fn(gate_up)
|
||||||
|
x, _ = self.down_proj(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class BaiChuanAttention(nn.Module):
|
||||||
|
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
hidden_size: int,
|
||||||
|
num_heads: int,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.hidden_size = hidden_size
|
||||||
|
tensor_model_parallel_world_size = get_tensor_model_parallel_world_size(
|
||||||
|
)
|
||||||
|
self.total_num_heads = num_heads
|
||||||
|
assert self.total_num_heads % tensor_model_parallel_world_size == 0
|
||||||
|
self.num_heads = (self.total_num_heads //
|
||||||
|
tensor_model_parallel_world_size)
|
||||||
|
self.head_dim = hidden_size // self.total_num_heads
|
||||||
|
self.scaling = self.head_dim**-0.5
|
||||||
|
|
||||||
|
# pylint: disable=invalid-name
|
||||||
|
self.W_pack = ColumnParallelLinear(
|
||||||
|
hidden_size,
|
||||||
|
3 * hidden_size,
|
||||||
|
bias=False,
|
||||||
|
gather_output=False,
|
||||||
|
perform_initialization=False,
|
||||||
|
)
|
||||||
|
self.o_proj = RowParallelLinear(
|
||||||
|
self.total_num_heads * self.head_dim,
|
||||||
|
hidden_size,
|
||||||
|
bias=False,
|
||||||
|
input_is_parallel=True,
|
||||||
|
perform_initialization=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
self.attn = PagedAttentionWithRoPE(self.num_heads,
|
||||||
|
self.head_dim,
|
||||||
|
self.scaling,
|
||||||
|
rotary_dim=self.head_dim)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
positions: torch.Tensor,
|
||||||
|
hidden_states: torch.Tensor,
|
||||||
|
kv_cache: KVCache,
|
||||||
|
input_metadata: InputMetadata,
|
||||||
|
cache_event: Optional[torch.cuda.Event],
|
||||||
|
) -> torch.Tensor:
|
||||||
|
qkv, _ = self.W_pack(hidden_states)
|
||||||
|
q, k, v = qkv.chunk(chunks=3, dim=-1)
|
||||||
|
k_cache, v_cache = kv_cache
|
||||||
|
attn_output = self.attn(positions, q, k, v, k_cache, v_cache,
|
||||||
|
input_metadata, cache_event)
|
||||||
|
output, _ = self.o_proj(attn_output)
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
class BaiChuanDecoderLayer(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, config: BaiChuanConfig):
|
||||||
|
super().__init__()
|
||||||
|
self.hidden_size = config.hidden_size
|
||||||
|
self.self_attn = BaiChuanAttention(
|
||||||
|
hidden_size=self.hidden_size,
|
||||||
|
num_heads=config.num_attention_heads,
|
||||||
|
)
|
||||||
|
self.mlp = BaiChuanMLP(
|
||||||
|
hidden_size=self.hidden_size,
|
||||||
|
intermediate_size=config.intermediate_size,
|
||||||
|
hidden_act=config.hidden_act,
|
||||||
|
)
|
||||||
|
self.input_layernorm = RMSNorm(config.hidden_size,
|
||||||
|
eps=config.rms_norm_eps)
|
||||||
|
self.post_attention_layernorm = RMSNorm(config.hidden_size,
|
||||||
|
eps=config.rms_norm_eps)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
positions: torch.Tensor,
|
||||||
|
hidden_states: torch.Tensor,
|
||||||
|
kv_cache: KVCache,
|
||||||
|
input_metadata: InputMetadata,
|
||||||
|
cache_event: Optional[torch.cuda.Event],
|
||||||
|
) -> torch.Tensor:
|
||||||
|
# Self Attention
|
||||||
|
residual = hidden_states
|
||||||
|
hidden_states = self.input_layernorm(hidden_states)
|
||||||
|
hidden_states = self.self_attn(
|
||||||
|
positions=positions,
|
||||||
|
hidden_states=hidden_states,
|
||||||
|
kv_cache=kv_cache,
|
||||||
|
input_metadata=input_metadata,
|
||||||
|
cache_event=cache_event,
|
||||||
|
)
|
||||||
|
hidden_states = residual + hidden_states
|
||||||
|
|
||||||
|
# Fully Connected
|
||||||
|
residual = hidden_states
|
||||||
|
hidden_states = self.post_attention_layernorm(hidden_states)
|
||||||
|
hidden_states = self.mlp(hidden_states)
|
||||||
|
hidden_states = residual + hidden_states
|
||||||
|
return hidden_states
|
||||||
|
|
||||||
|
|
||||||
|
class BaiChuanModel(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, config: BaiChuanConfig):
|
||||||
|
super().__init__()
|
||||||
|
self.config = config
|
||||||
|
self.padding_idx = config.pad_token_id
|
||||||
|
self.vocab_size = config.vocab_size
|
||||||
|
|
||||||
|
self.embed_tokens = VocabParallelEmbedding(
|
||||||
|
config.vocab_size,
|
||||||
|
config.hidden_size,
|
||||||
|
perform_initialization=False)
|
||||||
|
self.layers = nn.ModuleList([
|
||||||
|
BaiChuanDecoderLayer(config)
|
||||||
|
for _ in range(config.num_hidden_layers)
|
||||||
|
])
|
||||||
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
input_ids: torch.Tensor,
|
||||||
|
positions: torch.Tensor,
|
||||||
|
kv_caches: List[KVCache],
|
||||||
|
input_metadata: InputMetadata,
|
||||||
|
cache_events: Optional[List[torch.cuda.Event]],
|
||||||
|
) -> torch.Tensor:
|
||||||
|
hidden_states = self.embed_tokens(input_ids)
|
||||||
|
for i in range(len(self.layers)):
|
||||||
|
if cache_events is None:
|
||||||
|
cache_event = None
|
||||||
|
else:
|
||||||
|
cache_event = cache_events[i]
|
||||||
|
layer = self.layers[i]
|
||||||
|
hidden_states = layer(
|
||||||
|
positions,
|
||||||
|
hidden_states,
|
||||||
|
kv_caches[i],
|
||||||
|
input_metadata,
|
||||||
|
cache_event,
|
||||||
|
)
|
||||||
|
hidden_states = self.norm(hidden_states)
|
||||||
|
return hidden_states
|
||||||
|
|
||||||
|
|
||||||
|
class BaiChuanForCausalLM(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, config):
|
||||||
|
super().__init__()
|
||||||
|
self.config = config
|
||||||
|
self.model = BaiChuanModel(config)
|
||||||
|
self.lm_head = ColumnParallelLinear(config.hidden_size,
|
||||||
|
config.vocab_size,
|
||||||
|
bias=False,
|
||||||
|
gather_output=False,
|
||||||
|
perform_initialization=False)
|
||||||
|
self.sampler = Sampler(config.vocab_size)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
input_ids: torch.Tensor,
|
||||||
|
positions: torch.Tensor,
|
||||||
|
kv_caches: List[KVCache],
|
||||||
|
input_metadata: InputMetadata,
|
||||||
|
cache_events: Optional[List[torch.cuda.Event]],
|
||||||
|
) -> Dict[int, SequenceOutputs]:
|
||||||
|
hidden_states = self.model(input_ids, positions, kv_caches,
|
||||||
|
input_metadata, cache_events)
|
||||||
|
next_tokens = self.sampler(self.lm_head.weight, hidden_states,
|
||||||
|
input_metadata)
|
||||||
|
return next_tokens
|
||||||
|
|
||||||
|
_column_parallel_weights = [
|
||||||
|
"embed_tokens.weight", "lm_head.weight", "W_pack.weight",
|
||||||
|
"gate_proj.weight", "up_proj.weight"
|
||||||
|
]
|
||||||
|
_row_parallel_weights = ["o_proj.weight", "down_proj.weight"]
|
||||||
|
|
||||||
|
def load_weights(self,
|
||||||
|
model_name_or_path: str,
|
||||||
|
cache_dir: Optional[str] = None,
|
||||||
|
use_np_cache: bool = False):
|
||||||
|
tensor_model_parallel_rank = get_tensor_model_parallel_rank()
|
||||||
|
state_dict = self.state_dict()
|
||||||
|
|
||||||
|
for name, loaded_weight in hf_model_weights_iterator(
|
||||||
|
model_name_or_path, cache_dir, use_np_cache):
|
||||||
|
if "rotary_emb.inv_freq" in name:
|
||||||
|
continue
|
||||||
|
|
||||||
|
is_gate_up_weight = False
|
||||||
|
for stride_id, weight_name in enumerate(["gate_proj", "up_proj"]):
|
||||||
|
if weight_name not in name:
|
||||||
|
continue
|
||||||
|
param = state_dict[name.replace(weight_name, "gate_up_proj")]
|
||||||
|
shard_size = param.shape[0] // 2
|
||||||
|
loaded_weight = loaded_weight[
|
||||||
|
shard_size * tensor_model_parallel_rank:shard_size *
|
||||||
|
(tensor_model_parallel_rank + 1)]
|
||||||
|
param_slice = param.data[shard_size * stride_id:shard_size *
|
||||||
|
(stride_id + 1)]
|
||||||
|
assert param_slice.shape == loaded_weight.shape
|
||||||
|
param_slice.copy_(loaded_weight)
|
||||||
|
is_gate_up_weight = True
|
||||||
|
break
|
||||||
|
if is_gate_up_weight:
|
||||||
|
continue
|
||||||
|
|
||||||
|
param = state_dict[name]
|
||||||
|
load_tensor_parallel_weights(param, loaded_weight, name,
|
||||||
|
self._column_parallel_weights,
|
||||||
|
self._row_parallel_weights,
|
||||||
|
tensor_model_parallel_rank)
|
||||||
@ -4,6 +4,7 @@ from vllm.transformers_utils.configs import * # pylint: disable=wildcard-import
|
|||||||
|
|
||||||
_CONFIG_REGISTRY = {
|
_CONFIG_REGISTRY = {
|
||||||
"mpt": MPTConfig,
|
"mpt": MPTConfig,
|
||||||
|
"baichuan": BaiChuanConfig,
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@ -1,5 +1,7 @@
|
|||||||
from vllm.transformers_utils.configs.mpt import MPTConfig
|
from vllm.transformers_utils.configs.mpt import MPTConfig
|
||||||
|
from vllm.transformers_utils.configs.baichuan import BaiChuanConfig
|
||||||
|
|
||||||
__all__ = [
|
__all__ = [
|
||||||
"MPTConfig",
|
"MPTConfig",
|
||||||
|
"BaiChuanConfig",
|
||||||
]
|
]
|
||||||
|
|||||||
62
vllm/transformers_utils/configs/baichuan.py
Normal file
62
vllm/transformers_utils/configs/baichuan.py
Normal file
@ -0,0 +1,62 @@
|
|||||||
|
# coding=utf-8
|
||||||
|
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
||||||
|
#
|
||||||
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||||
|
# and OPT implementations in this library. It has been modified from its
|
||||||
|
# original forms to accommodate minor architectural differences compared
|
||||||
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from transformers.configuration_utils import PretrainedConfig
|
||||||
|
|
||||||
|
|
||||||
|
class BaiChuanConfig(PretrainedConfig):
|
||||||
|
model_type = "baichuan"
|
||||||
|
keys_to_ignore_at_inference = ["past_key_values"]
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
vocab_size=64000,
|
||||||
|
hidden_size=4096,
|
||||||
|
intermediate_size=11008,
|
||||||
|
num_hidden_layers=32,
|
||||||
|
num_attention_heads=32,
|
||||||
|
hidden_act="silu",
|
||||||
|
max_position_embeddings=4096,
|
||||||
|
initializer_range=0.02,
|
||||||
|
rms_norm_eps=1e-6,
|
||||||
|
use_cache=True,
|
||||||
|
pad_token_id=0,
|
||||||
|
bos_token_id=1,
|
||||||
|
eos_token_id=2,
|
||||||
|
tie_word_embeddings=False,
|
||||||
|
**kwargs,
|
||||||
|
):
|
||||||
|
self.vocab_size = vocab_size
|
||||||
|
self.max_position_embeddings = max_position_embeddings
|
||||||
|
self.hidden_size = hidden_size
|
||||||
|
self.intermediate_size = intermediate_size
|
||||||
|
self.num_hidden_layers = num_hidden_layers
|
||||||
|
self.num_attention_heads = num_attention_heads
|
||||||
|
self.hidden_act = hidden_act
|
||||||
|
self.initializer_range = initializer_range
|
||||||
|
self.rms_norm_eps = rms_norm_eps
|
||||||
|
self.use_cache = use_cache
|
||||||
|
super().__init__(
|
||||||
|
pad_token_id=pad_token_id,
|
||||||
|
bos_token_id=bos_token_id,
|
||||||
|
eos_token_id=eos_token_id,
|
||||||
|
tie_word_embeddings=tie_word_embeddings,
|
||||||
|
**kwargs,
|
||||||
|
)
|
||||||
Loading…
x
Reference in New Issue
Block a user