[TPU][V1] Capture multimodal encoder during model compilation (#15051)

Signed-off-by: Michael Goin <mgoin64@gmail.com>
Signed-off-by: NickLucche <nlucches@redhat.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Siyuan Liu <lsiyuan@google.com>
This commit is contained in:
Nicolò Lucchesi 2025-04-22 02:36:59 +02:00 committed by GitHub
parent 71eda0bb76
commit 210207525e
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 327 additions and 48 deletions

View File

@ -17,7 +17,7 @@ source /etc/environment
docker run --privileged --net host --shm-size=16G -it \
-e "HF_TOKEN=$HF_TOKEN" --name tpu-test \
vllm-tpu /bin/bash -c "python3 -m pip install git+https://github.com/thuml/depyf.git \
&& python3 -m pip install pytest tpu-info \
&& python3 -m pip install pytest pytest-asyncio tpu-info \
&& python3 -m pip install lm_eval[api]==0.4.4 \
&& export VLLM_USE_V1=1 \
&& export VLLM_XLA_CHECK_RECOMPILATION=1 \
@ -42,6 +42,8 @@ docker run --privileged --net host --shm-size=16G -it \
&& echo TEST_8 \
&& pytest -s -v /workspace/vllm/tests/v1/tpu/test_topk_topp_sampler.py \
&& echo TEST_9 \
&& pytest -s -v /workspace/vllm/tests/v1/tpu/test_multimodal.py \
&& echo TEST_10 \
&& pytest -s -v /workspace/vllm/tests/v1/tpu/test_pallas.py" \

View File

@ -0,0 +1,91 @@
# SPDX-License-Identifier: Apache-2.0
import openai
import pytest
from vllm import envs
from vllm.multimodal.utils import encode_image_base64, fetch_image
from vllm.platforms import current_platform
from ...entrypoints.openai.test_vision import TEST_IMAGE_URLS
from ...utils import RemoteOpenAIServer
if not envs.VLLM_USE_V1:
pytest.skip(
"Skipping V1 tests. Rerun with `VLLM_USE_V1=1` to test.",
allow_module_level=True,
)
@pytest.fixture(scope="session")
def base64_encoded_image() -> dict[str, str]:
return {
image_url: encode_image_base64(fetch_image(image_url))
for image_url in TEST_IMAGE_URLS
}
@pytest.mark.asyncio
@pytest.mark.skipif(not current_platform.is_tpu(),
reason="This test needs a TPU")
@pytest.mark.parametrize("model_name", ["llava-hf/llava-1.5-7b-hf"])
async def test_basic_vision(model_name: str, base64_encoded_image: dict[str,
str]):
def whats_in_this_image_msg(b64):
return [{
"role":
"user",
"content": [
{
"type": "text",
"text": "What's in this image?"
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{b64}"
},
},
],
}]
server_args = [
"--max-model-len",
"1024",
"--max-num-seqs",
"16",
"--gpu-memory-utilization",
"0.95",
"--trust-remote-code",
"--max-num-batched-tokens",
"576",
# NOTE: max-num-batched-tokens>=mm_item_size
"--disable_chunked_mm_input",
"--chat-template",
"examples/template_llava.jinja"
]
# Server will pre-compile on first startup (takes a long time).
with RemoteOpenAIServer(model_name, server_args,
max_wait_seconds=600) as remote_server:
client: openai.AsyncOpenAI = remote_server.get_async_client()
# Other requests now should be much faster
for image_url in TEST_IMAGE_URLS:
image_base64 = base64_encoded_image[image_url]
chat_completion_from_base64 = await client.chat.completions\
.create(
model=model_name,
messages=whats_in_this_image_msg(image_base64),
max_completion_tokens=24,
temperature=0.0)
result = chat_completion_from_base64
assert result
choice = result.choices[0]
assert choice.finish_reason == "length"
message = choice.message
message = result.choices[0].message
assert message.content is not None and len(message.content) >= 10
assert message.role == "assistant"

View File

@ -1,5 +1,6 @@
# SPDX-License-Identifier: Apache-2.0
import bisect
import gc
import time
from typing import TYPE_CHECKING, Optional, cast
from unittest.mock import patch
@ -21,7 +22,8 @@ from vllm.forward_context import set_forward_context
from vllm.logger import init_logger
from vllm.model_executor.model_loader import get_model
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import MultiModalKwargs, PlaceholderRange
from vllm.multimodal.inputs import (BatchedTensorInputs, MultiModalKwargs,
PlaceholderRange)
from vllm.multimodal.utils import group_mm_inputs_by_modality
from vllm.sequence import IntermediateTensors
from vllm.utils import LayerBlockType, cdiv, is_pin_memory_available
@ -37,8 +39,7 @@ from vllm.v1.sample.tpu.sampler import Sampler as TPUSampler
from vllm.v1.utils import bind_kv_cache
from vllm.v1.worker.gpu_input_batch import CachedRequestState, InputBatch
from .utils import (gather_mm_placeholders, sanity_check_mm_encoder_outputs,
scatter_mm_placeholders)
from .utils import sanity_check_mm_encoder_outputs
if TYPE_CHECKING:
from vllm.v1.core.sched.output import SchedulerOutput
@ -198,7 +199,7 @@ class TPUModelRunner:
device="cpu")
self.slot_mapping_np = self.slot_mapping_cpu.numpy()
self.block_table_cpu = torch.zeros(
(self.max_num_tokens, self.max_num_blocks_per_req),
(self.max_num_reqs, self.max_num_blocks_per_req),
dtype=self.input_batch.block_table.get_cpu_tensor().dtype,
device="cpu")
@ -220,6 +221,37 @@ class TPUModelRunner:
self.num_reqs_paddings = _get_req_paddings(
min_req_size=MIN_NUM_SEQS, max_req_size=self.max_num_reqs)
# Get maximum number of mm items per modality (batch size).
self.max_num_mm_items_by_modality = dict()
if (self.is_multimodal_model and self.max_num_encoder_input_tokens > 0
and self.encoder_cache_size > 0):
max_tokens_by_modality_dict = (
MULTIMODAL_REGISTRY.
get_max_tokens_per_item_by_nonzero_modality(self.model_config))
for modality, max_tokens in max_tokens_by_modality_dict.items():
# Check how many items of this modality can be supported by
# the encoder budget.
encoder_budget = min(self.max_num_encoder_input_tokens,
self.encoder_cache_size)
max_num_mm_items_encoder_budget = cdiv(encoder_budget,
max_tokens)
# Check how many items of this modality can be supported by
# the decoder budget.
max_mm_items_per_req = self.mm_registry.\
get_mm_limits_per_prompt(self.model_config)[modality]
# NOTE: We do not consider max_num_batched_tokens on purpose
# because the multimodal embeddings can be generated in advance
# and chunked prefilled.
max_num_mm_items_decoder_budget = self.max_num_reqs * \
max_mm_items_per_req
max_num_mm_items = min(max_num_mm_items_encoder_budget,
max_num_mm_items_decoder_budget)
self.max_num_mm_items_by_modality[modality] = max_num_mm_items
def _update_num_xla_graphs(self, case_str):
check_comp = self.check_recompilation and not self.enforce_eager
if not check_comp:
@ -606,29 +638,36 @@ class TPUModelRunner:
# 2. A list or tuple (length: num_items) of tensors, each of shape
# (feature_size, hidden_size) in case the feature size is dynamic
# depending on the input multimodal items.
xm.mark_step()
curr_group_outputs = self.model.get_multimodal_embeddings(
**batched_mm_inputs)
xm.mark_step()
sanity_check_mm_encoder_outputs(
curr_group_outputs,
expected_num_items=len(grouped_mm_inputs),
)
for output in curr_group_outputs:
encoder_outputs.append(output)
if isinstance(curr_group_outputs, torch.Tensor):
encoder_outputs.append(curr_group_outputs)
else:
assert isinstance(curr_group_outputs, (list, tuple))
for output in curr_group_outputs:
encoder_outputs.append(output)
# Cache the encoder outputs.
# NOTE (NickLucche) here we diverge from logic in other runners, as we
# assume to only have whole mm items to process. Hence we avoid the
# intrinsic dynamism that `scatter_mm_placeholders` introduces.
for (req_id, input_id, pos_info), output in zip(
req_ids_pos,
encoder_outputs,
):
if req_id not in self.encoder_cache:
self.encoder_cache[req_id] = {}
self.encoder_cache[req_id][input_id] = scatter_mm_placeholders(
output,
is_embed=pos_info.is_embed,
)
assert pos_info.is_embed is None, "Expected all positions to be"\
" contiguous and embeddings."
self.encoder_cache[req_id][input_id] = output
def _gather_mm_embeddings(
self,
@ -641,6 +680,10 @@ class TPUModelRunner:
req_state = self.requests[req_id]
num_computed_tokens = req_state.num_computed_tokens
mm_positions = req_state.mm_positions
# TODO unroll loop and assume/enforce --disable_chunked_mm_input
# NOTE (NickLucche) here we diverge from logic in other runners, as
# we assume to only have whole mm items to process. Hence we avoid
# the intrinsic dynamism that `gather_mm_placeholders` introduces.
for i, pos_info in enumerate(mm_positions):
start_pos = pos_info.offset
num_encoder_tokens = pos_info.length
@ -657,25 +700,33 @@ class TPUModelRunner:
# in the decoder's KV cache.
continue
start_idx = max(num_computed_tokens - start_pos, 0)
end_idx = min(
num_computed_tokens - start_pos + num_scheduled_tokens,
num_encoder_tokens)
assert start_idx < end_idx
assert req_id in self.encoder_cache
assert i in self.encoder_cache[req_id]
assert pos_info.is_embed is None, "Expected all positions to"\
" be contiguous and embeddings."
encoder_output = self.encoder_cache[req_id][i]
if (is_embed := pos_info.is_embed) is not None:
is_embed = is_embed[start_idx:end_idx]
mm_embeds_item = gather_mm_placeholders(
encoder_output[start_idx:end_idx],
is_embed=is_embed,
)
mm_embeds.append(mm_embeds_item)
mm_embeds.append(encoder_output)
return mm_embeds
def _get_model_inputs(self, input_ids: torch.Tensor,
mm_embeds: list[torch.Tensor]):
if self.is_multimodal_model:
# NOTE(woosuk): To unify token ids and soft tokens (vision
# embeddings), we always use embeddings (rather than token ids)
# as input to the multimodal model, even when the input is text.
if mm_embeds:
inputs_embeds = self.model.get_input_embeddings(
input_ids, mm_embeds)
else:
inputs_embeds = self.model.get_input_embeddings(input_ids)
return None, inputs_embeds
else:
# For text-only models, we use token ids as input.
# While it is possible to use embeddings as input just like the
# multimodal models, it is not desirable for performance since
# then the embedding layer is not included in the CUDA graph.
return input_ids, None
@torch.no_grad()
def execute_model(
self,
@ -694,27 +745,13 @@ class TPUModelRunner:
mm_embeds = self._gather_mm_embeddings(scheduler_output)
else:
mm_embeds = []
xm.mark_step()
# Prepare inputs
attn_metadata, logits_indices, padded_num_reqs = self._prepare_inputs(
scheduler_output)
if self.is_multimodal_model:
# NOTE(woosuk): To unify token ids and soft tokens (vision
# embeddings), we always use embeddings (rather than token ids)
# as input to the multimodal model, even when the input is text.
if mm_embeds:
inputs_embeds = self.model.get_input_embeddings(
self.input_ids, mm_embeds)
else:
inputs_embeds = self.model.get_input_embeddings(self.input_ids)
input_ids = None
else:
# For text-only models, we use token ids as input.
# While it is possible to use embeddings as input just like the
# multimodal models, it is not desirable for performance since
# then the embedding layer is not included in the CUDA graph.
input_ids = self.input_ids
inputs_embeds = None
input_ids, inputs_embeds = self._get_model_inputs(
self.input_ids, mm_embeds)
xm.mark_step()
num_reqs = self.input_batch.num_reqs
# Run the decoder
with set_forward_context(attn_metadata, self.vllm_config):
@ -890,9 +927,70 @@ class TPUModelRunner:
inputs_embeds=inputs_embeds)
self._hidden_states_dtype = out.dtype
def _precompile_mm_encoder(self) -> None:
# Pre-compile MM encoder for all supported data modalities.
hf_config = self.vllm_config.model_config.hf_config
for mode, max_items_by_mode in \
self.max_num_mm_items_by_modality.items():
logger.info(
"Compiling Multimodal %s Encoder with different input"
" shapes.", mode)
start = time.perf_counter()
# No padding for MM encoder just yet.
for num_items in range(1, max_items_by_mode + 1):
logger.info(" -- mode: %s items: %d", mode, num_items)
batched_dummy_mm_inputs = self._get_mm_dummy_batch(
mode, num_items)
# Run multimodal encoder.
xm.mark_step()
mm_embeds = self.model.\
get_multimodal_embeddings(**batched_dummy_mm_inputs)
xm.mark_step()
num_patches = mm_embeds[0].shape[0]
items_size = num_patches * num_items
# NOTE (NickLucche) pre-compile `get_input_embeddings` when mm
# embeddings are present. We assume `--disable-mm-chunked`,
# hence only whole items can be scheduled. This implies we just
# need to compile when `num_items` fit the (padded) `input_ids`
for num_tokens in self.num_tokens_paddings:
if num_tokens >= items_size:
# XLA Workaround: if torch.zeros(..device) is used, XLA
# compiles a scalar+expansion op, which won't match
# the graph generated at runtime. CPU->TPU must be used
placeholders_ids = torch.zeros(num_tokens,
dtype=torch.int32,
device="cpu")
# Align placeholders and actual num mm_embeddings.
placeholders_ids[:items_size] = \
hf_config.image_token_index
placeholders_ids = placeholders_ids.to(self.device)
# Assign outputs or the graph will be cut short.
a, b = self._get_model_inputs(placeholders_ids,
[mm_embeds])
assert a is None
xm.mark_step()
# Pre-compile `get_input_embeddings` when mm_embeddings are not
# present. Chunk is only made of text, no mm_placeholders.
for num_tokens in self.num_tokens_paddings:
placeholders_ids = torch.zeros(num_tokens,
dtype=torch.int32,
device="cpu")
placeholders_ids = placeholders_ids.to(self.device)
a, b = self._get_model_inputs(placeholders_ids, [])
assert a is None
xm.mark_step()
xm.wait_device_ops()
end = time.perf_counter()
logger.info(
"Multimodal %s Encoder compilation finished in in %.2f "
"[secs].", mode, end - start)
def _precompile_backbone(self) -> None:
logger.info("Compiling the model with different input shapes.")
start = time.perf_counter()
for num_tokens in self.num_tokens_paddings:
logger.info(" -- num_tokens: %d", num_tokens)
@ -962,11 +1060,70 @@ class TPUModelRunner:
"""
Precompile all the subgraphs with possible input shapes.
"""
# TODO: precompile encoder
self._precompile_mm_encoder()
self._precompile_backbone()
self._precompile_select_hidden_states()
self._precompile_sample_from_hidden()
def profile_run(
self,
num_tokens: int,
) -> None:
# Profile with multimodal encoder & encoder cache.
# TODO: handle encoder-decoder models once we support them.
if (self.is_multimodal_model and self.max_num_encoder_input_tokens > 0
and self.encoder_cache_size > 0):
# NOTE: Currently model is profiled with a single non-text
# modality with the max possible input tokens even when
# it supports multiple.
dummy_data_modality, max_num_mm_items = max(
self.max_num_mm_items_by_modality.items(), key=lambda t: t[1])
encoder_budget = min(self.max_num_encoder_input_tokens,
self.encoder_cache_size)
logger.info(
"Encoder cache will be initialized with a budget of %d tokens,"
" and profiled with %s %s items of the maximum feature size.",
encoder_budget, max_num_mm_items, dummy_data_modality)
# Create dummy batch of multimodal inputs.
batched_dummy_mm_inputs = self._get_mm_dummy_batch(
dummy_data_modality, max_num_mm_items)
# Run multimodal encoder.
# Isolate encoder graph from post-processing to minimize
# impact of recompilation until it's fixed.
start = time.perf_counter()
xm.mark_step()
dummy_encoder_outputs = self.model.get_multimodal_embeddings(
**batched_dummy_mm_inputs)
xm.mark_step()
xm.wait_device_ops()
end = time.perf_counter()
logger.info(
"Multimodal Encoder profiling finished in in %.2f [secs].",
end - start)
assert len(dummy_encoder_outputs) == max_num_mm_items, (
"Expected dimension 0 of encoder outputs to match the number "
f"of multimodal data items: {max_num_mm_items}, got "
f"{len(dummy_encoder_outputs)=} instead. This is most likely "
"due to the 'get_multimodal_embeddings' method of the model "
"not implemented correctly.")
# Cache the dummy encoder outputs.
self.encoder_cache["tmp"] = dict(enumerate(dummy_encoder_outputs))
# Trigger compilation for general shape.
self._dummy_run(num_tokens)
xm.mark_step()
xm.wait_device_ops()
self.encoder_cache.clear()
gc.collect()
def initialize_kv_cache(self, kv_cache_config: KVCacheConfig) -> None:
"""
Initialize KV cache based on `kv_cache_config`.
@ -1045,6 +1202,36 @@ class TPUModelRunner:
def get_input_embeddings(self, *args, **kwargs):
return self.model.get_input_embeddings(*args, **kwargs)
def _get_mm_dummy_batch(self, modality: str,
batch_size: int) -> BatchedTensorInputs:
# Dummy data for pre-compiling multimodal models.
dummy_request_data = self.mm_registry.get_decoder_dummy_data(
model_config=self.model_config,
seq_len=self.max_num_tokens,
)
dummy_mm_data = dummy_request_data.multi_modal_data
# Dummy data definition in V0 may contain multiple multimodal items
# (e.g, multiple images) for a single request, therefore here we
# always replicate first item by max_num_mm_items times since in V1
# they are scheduled to be processed separately.
assert isinstance(dummy_mm_data, MultiModalKwargs), (
"Expected dummy multimodal data to be of type "
f"MultiModalKwargs, got {type(dummy_mm_data)=} instead. "
"This is most likely due to the model not having a merged "
"processor.")
# When models have a merged processor, their dummy data is
# already batched `MultiModalKwargs`, therefore we take the first
# `MultiModalKwargsItem` from the desired modality to profile on.
dummy_mm_item = dummy_mm_data.get_item(modality=modality, item_index=0)
dummy_mm_kwargs = MultiModalKwargs.from_items([dummy_mm_item])
batched_dummy_mm_inputs = MultiModalKwargs.batch([dummy_mm_kwargs] *
batch_size)
return MultiModalKwargs.as_kwargs(batched_dummy_mm_inputs,
device=self.device)
def _get_req_paddings(min_req_size: int, max_req_size: int) -> list[int]:
logger.info("Preparing request paddings:")
@ -1088,7 +1275,6 @@ def _get_token_paddings(min_token_size: int, max_token_size: int,
if num >= max_token_size:
break
num *= 2
else:
logger.info("Using incremental token paddings:")
while num <= padding_gap:

View File

@ -157,7 +157,7 @@ class TPUWorker:
runner_kv_caches)
# `max_num_tokens >= max_num_batched_tokens` due to padding.
self.model_runner._dummy_run(self.model_runner.max_num_tokens)
self.model_runner.profile_run(self.model_runner.max_num_tokens)
# Synchronize before measuring the memory usage.
xm.wait_device_ops()