[Misc] Move DP for ViT code inside model executor dir (#25459)

Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
This commit is contained in:
Cyrus Leung 2025-09-23 17:20:52 +08:00 committed by yewentao256
parent c4a15ee240
commit 215da8510d
13 changed files with 721 additions and 730 deletions

View File

@ -1,10 +1,20 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import math
import pytest
import torch
import torch.multiprocessing as mp
from vllm.model_executor.models.vision import resolve_visual_encoder_outputs
from tests.utils import multi_gpu_test
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.distributed.parallel_state import (init_distributed_environment,
initialize_model_parallel)
from vllm.model_executor.models.vision import (
get_load_balance_assignment, resolve_visual_encoder_outputs,
run_dp_sharded_mrope_vision_model, run_dp_sharded_vision_model)
from vllm.platforms import current_platform
from vllm.utils import get_open_port, update_environment_variables
@pytest.mark.parametrize(
@ -33,3 +43,415 @@ def test_resolve_visual_encoder_outputs(feature_sample_layers,
post_layer_norm=None,
max_possible_layers=max_possible_layers)
assert torch.equal(torch.tensor(expected_features), output_tensor)
class SimpleLinearModel(torch.nn.Module):
"""A simple linear vision model for testing."""
def __init__(self, input_dim: int = 3 * 224 * 224, output_dim: int = 32):
super().__init__()
self.flatten = torch.nn.Flatten()
self.linear = torch.nn.Linear(input_dim, output_dim)
def forward(self, x: torch.Tensor):
# Flatten the input and apply linear transformation
x = self.flatten(x)
return self.linear(x)
@multi_gpu_test(num_gpus=2)
@pytest.mark.parametrize(
"batch_size",
[
1, # Single image
4, # Small batch
5, # Odd batch size (for testing padding)
],
)
def test_run_dp_sharded_vision_model(batch_size: int):
world_size = 2
# Launch processes
mp.spawn(
run_dp_sharded_vision_model_vs_direct,
args=(
world_size,
batch_size,
get_open_port(),
),
nprocs=world_size,
)
def run_dp_sharded_vision_model_vs_direct(local_rank: int, world_size: int,
batch_size: int, master_port: int):
"""
Test that run_dp_sharded_vision_model produces the same results as
calling the model directly.
"""
# Set random seed for reproducibility
current_platform.seed_everything(0)
device = f"{current_platform.device_name}:{local_rank}"
current_platform.set_device(device)
torch.set_default_device(device)
update_environment_variables({
'RANK': str(local_rank),
'LOCAL_RANK': str(local_rank),
'WORLD_SIZE': str(world_size),
'MASTER_ADDR': 'localhost',
'MASTER_PORT': str(master_port),
})
# initialize distributed
init_distributed_environment()
initialize_model_parallel(tensor_model_parallel_size=world_size)
# Create a test input tensor
image_input = torch.randn(batch_size, 3, 224, 224)
# Create a simple linear model
vision_model = SimpleLinearModel()
# Run the model directly on the full input
with torch.inference_mode():
direct_output = vision_model(image_input)
# Run the model through the sharded function
with torch.inference_mode():
sharded_output = run_dp_sharded_vision_model(image_input, vision_model)
# Check that the world size is set up correctly
assert get_tensor_model_parallel_world_size() == world_size
# Check that the outputs have the same shape
assert direct_output.shape == sharded_output.shape
# Check that the outputs are close (they should be identical)
assert torch.allclose(direct_output, sharded_output, rtol=1e-5, atol=1e-5)
@pytest.mark.parametrize(
"sizes,num_gpus,expected_shuffle_indices,expected_gpu_sample_counts,"
"expected_grouped_sizes_per_gpu,test_description",
[
# Empty input
([], 2, [], [0, 0], [0, 0], "empty input"),
# Fewer samples than GPUs
([100, 200], 4, [1, 0], [1, 1, 0, 0], [200, 100, 0, 0
], "fewer samples than GPUs"),
# Single GPU
([100, 200, 300], 1, [2, 1, 0], [3], [600], "single GPU"),
# Balanced assignment
([100, 100, 100, 100
], 2, [0, 2, 1, 3], [2, 2], [200, 200], "balanced assignment"),
# Unbalanced sizes - this one is trickier since the algorithm is greedy
([1000, 100, 200, 50], 2, [0, 2, 1, 3
], [1, 3], [1000, 350], "unbalanced sizes"),
],
)
def test_get_load_balance_assignment_cases(sizes, num_gpus,
expected_shuffle_indices,
expected_gpu_sample_counts,
expected_grouped_sizes_per_gpu,
test_description):
"""Test get_load_balance_assignment with various input cases."""
result = get_load_balance_assignment(sizes, num_gpus=num_gpus)
(shuffle_indices, gpu_sample_counts, grouped_sizes_per_gpu) = result
# Common assertions for all cases
assert len(shuffle_indices) == len(sizes)
assert len(gpu_sample_counts) == num_gpus
assert len(grouped_sizes_per_gpu) == num_gpus
assert sum(gpu_sample_counts) == len(sizes)
assert shuffle_indices == expected_shuffle_indices
assert gpu_sample_counts == expected_gpu_sample_counts
assert grouped_sizes_per_gpu == expected_grouped_sizes_per_gpu
class SimpleMRopeVisionModel(torch.nn.Module):
"""A simple vision model for testing mrope functionality."""
def __init__(self, spatial_merge_size: int = 2, out_hidden_size: int = 64):
super().__init__()
self.spatial_merge_size = spatial_merge_size
self.out_hidden_size = out_hidden_size
self.linear = torch.nn.Linear(768, out_hidden_size)
def forward(self, pixel_values: torch.Tensor,
grid_thw_list: list[list[int]]):
"""Simple forward pass that simulates spatial merging."""
# Apply linear transformation
embeddings = self.linear(pixel_values)
# Simulate spatial merging by reducing the number of patches
merge_factor = self.spatial_merge_size * self.spatial_merge_size
# Group patches and merge spatially
merged_embeddings = []
start_idx = 0
for grid_thw in grid_thw_list:
num_patches = math.prod(grid_thw)
end_idx = start_idx + num_patches
# Get patches for this image
image_patches = embeddings[start_idx:end_idx]
# Simulate spatial merging by averaging groups of patches
merged_patches = num_patches // merge_factor
if merged_patches > 0:
# Reshape and average to simulate merging
reshaped = image_patches[:merged_patches * merge_factor].view(
merged_patches, merge_factor, -1)
merged = reshaped.mean(dim=1)
merged_embeddings.append(merged)
start_idx = end_idx
if merged_embeddings:
return torch.cat(merged_embeddings, dim=0)
else:
return torch.empty((0, self.out_hidden_size),
device=pixel_values.device,
dtype=pixel_values.dtype)
@multi_gpu_test(num_gpus=2)
@pytest.mark.parametrize(
"batch_size",
[
1, # Single image
3, # Small batch
5, # Odd batch size (for testing padding)
],
)
def test_run_dp_sharded_mrope_vision_model(batch_size: int):
world_size = 2
# Launch processes
mp.spawn(
run_dp_sharded_mrope_vision_model_vs_direct,
args=(
world_size,
batch_size,
get_open_port(),
),
nprocs=world_size,
)
def run_dp_sharded_mrope_vision_model_vs_direct(local_rank: int,
world_size: int,
batch_size: int,
master_port: int):
"""
Test that run_dp_sharded_mrope_vision_model produces the same results as
calling the model directly.
"""
# Set random seed for reproducibility
current_platform.seed_everything(0)
device = f"{current_platform.device_name}:{local_rank}"
current_platform.set_device(device)
torch.set_default_device(device)
update_environment_variables({
'RANK': str(local_rank),
'LOCAL_RANK': str(local_rank),
'WORLD_SIZE': str(world_size),
'MASTER_ADDR': 'localhost',
'MASTER_PORT': str(master_port),
})
# initialize distributed
init_distributed_environment()
initialize_model_parallel(tensor_model_parallel_size=world_size)
# Create test data
grid_thw_list = []
pixel_values_list = []
for i in range(batch_size):
# Varying image sizes for better testing
t, h, w = 1, 4 + i, 4 + i
grid_thw_list.append([t, h, w])
num_patches = t * h * w
# Create random pixel values for this image
image_pixels = torch.randn(num_patches, 768)
pixel_values_list.append(image_pixels)
# Concatenate all pixel values
pixel_values = torch.cat(pixel_values_list, dim=0)
# Create a simple mrope vision model
vision_model = SimpleMRopeVisionModel()
# Run the model directly on the full input (only on rank 0)
if local_rank == 0:
with torch.inference_mode():
direct_output = vision_model(pixel_values, grid_thw_list)
# Run the model through the sharded function
with torch.inference_mode():
sharded_output = run_dp_sharded_mrope_vision_model(vision_model,
pixel_values,
grid_thw_list,
rope_type="rope_3d")
sharded_output = torch.cat(sharded_output, dim=0)
# Check that the world size is set up correctly
assert get_tensor_model_parallel_world_size() == world_size
# Compare outputs (only on rank 0)
if local_rank == 0:
# Check that the outputs have the same shape
assert direct_output.shape == sharded_output.shape
# Check that the outputs are close (they should be identical)
assert torch.allclose(direct_output,
sharded_output,
rtol=1e-5,
atol=1e-5)
@multi_gpu_test(num_gpus=2)
def test_run_dp_sharded_mrope_vision_model_empty_input():
world_size = 2
mp.spawn(
run_dp_sharded_mrope_vision_model_empty_input_worker,
args=(world_size, get_open_port()),
nprocs=world_size,
)
def run_dp_sharded_mrope_vision_model_empty_input_worker(
local_rank: int, world_size: int, master_port: int):
"""Test run_dp_sharded_mrope_vision_model with empty input."""
# Set up distributed environment
device = f"{current_platform.device_name}:{local_rank}"
current_platform.set_device(device)
torch.set_default_device(device)
update_environment_variables({
'RANK': str(local_rank),
'LOCAL_RANK': str(local_rank),
'WORLD_SIZE': str(world_size),
'MASTER_ADDR': 'localhost',
'MASTER_PORT': str(master_port),
})
init_distributed_environment()
initialize_model_parallel(tensor_model_parallel_size=world_size)
# Create empty inputs
pixel_values = torch.empty((0, 768))
grid_thw_list: list[list[int]] = []
vision_model = SimpleMRopeVisionModel()
# Should handle empty input gracefully
with torch.inference_mode():
output = run_dp_sharded_mrope_vision_model(vision_model,
pixel_values,
grid_thw_list,
rope_type="rope_3d")
assert len(output) == 0
@multi_gpu_test(num_gpus=4)
def test_run_dp_sharded_mrope_vision_model_uneven_load():
world_size = 4
mp.spawn(
run_dp_sharded_mrope_vision_model_uneven_load_worker,
args=(world_size, get_open_port()),
nprocs=world_size,
)
def run_dp_sharded_mrope_vision_model_uneven_load_worker(
local_rank: int, world_size: int, master_port: int):
"""Test run_dp_sharded_mrope_vision_model with uneven load distribution."""
# Set up distributed environment
current_platform.seed_everything(123)
device = f"{current_platform.device_name}:{local_rank}"
current_platform.set_device(device)
torch.set_default_device(device)
update_environment_variables({
'RANK': str(local_rank),
'LOCAL_RANK': str(local_rank),
'WORLD_SIZE': str(world_size),
'MASTER_ADDR': 'localhost',
'MASTER_PORT': str(master_port),
})
init_distributed_environment()
initialize_model_parallel(tensor_model_parallel_size=world_size)
# Create images with very different sizes
grid_thw_list = [
[1, 2, 2], # Small: 4 patches
[1, 8, 8], # Large: 64 patches
[1, 3, 3], # Medium: 9 patches
]
pixel_values_list = []
for grid_thw in grid_thw_list:
num_patches = math.prod(grid_thw)
image_pixels = torch.randn(num_patches, 768)
pixel_values_list.append(image_pixels)
pixel_values = torch.cat(pixel_values_list, dim=0)
vision_model = SimpleMRopeVisionModel()
# Should handle uneven distribution without errors
with torch.inference_mode():
output_tuple = run_dp_sharded_mrope_vision_model(vision_model,
pixel_values,
grid_thw_list,
rope_type="rope_3d")
# Verify output shape is reasonable
merge_factor = vision_model.spatial_merge_size**2
expected_output_patches = list(
math.prod(grid_thw) // merge_factor for grid_thw in grid_thw_list)
for i, output in enumerate(output_tuple):
assert output.shape[0] == expected_output_patches[i]
assert output.shape[1] == vision_model.out_hidden_size
@pytest.mark.parametrize("spatial_merge_size", [2, 4])
def test_simple_mrope_vision_model_spatial_merge(spatial_merge_size: int):
"""Test SimpleMRopeVisionModel with different spatial merge sizes."""
device = current_platform.device_type
grid_thw_list = [[1, 4, 4], [1, 6, 6]] # Two images
pixel_values_list = []
for grid_thw in grid_thw_list:
num_patches = math.prod(grid_thw)
image_pixels = torch.randn(num_patches, 768, device=device)
pixel_values_list.append(image_pixels)
pixel_values = torch.cat(pixel_values_list, dim=0)
vision_model = SimpleMRopeVisionModel(
spatial_merge_size=spatial_merge_size).to(device)
with torch.inference_mode():
output = vision_model(pixel_values, grid_thw_list)
# Verify output dimensions based on spatial merging
total_patches = sum(math.prod(grid_thw) for grid_thw in grid_thw_list)
merge_factor = spatial_merge_size**2
expected_output_patches = total_patches // merge_factor
assert output.shape[0] == expected_output_patches
assert output.shape[1] == vision_model.out_hidden_size

View File

@ -2,7 +2,6 @@
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import base64
import math
import mimetypes
import os
from tempfile import NamedTemporaryFile, TemporaryDirectory
@ -10,22 +9,11 @@ from typing import TYPE_CHECKING, NamedTuple
import numpy as np
import pytest
import torch
import torch.multiprocessing as mp
from PIL import Image, ImageChops
from tests.utils import multi_gpu_test
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.distributed.parallel_state import (init_distributed_environment,
initialize_model_parallel)
from vllm.multimodal.image import convert_image_mode
from vllm.multimodal.inputs import PlaceholderRange
from vllm.multimodal.utils import (MediaConnector, argsort_mm_positions,
get_load_balance_assignment,
run_dp_sharded_mrope_vision_model,
run_dp_sharded_vision_model)
from vllm.platforms import current_platform
from vllm.utils import get_open_port, update_environment_variables
from vllm.multimodal.utils import MediaConnector, argsort_mm_positions
if TYPE_CHECKING:
from vllm.multimodal.inputs import MultiModalPlaceholderDict
@ -404,415 +392,3 @@ def test_argsort_mm_positions():
modality_idxs = argsort_mm_positions(mm_positions)
assert modality_idxs == expected_modality_idxs
class SimpleLinearModel(torch.nn.Module):
"""A simple linear vision model for testing."""
def __init__(self, input_dim: int = 3 * 224 * 224, output_dim: int = 32):
super().__init__()
self.flatten = torch.nn.Flatten()
self.linear = torch.nn.Linear(input_dim, output_dim)
def forward(self, x: torch.Tensor):
# Flatten the input and apply linear transformation
x = self.flatten(x)
return self.linear(x)
@multi_gpu_test(num_gpus=2)
@pytest.mark.parametrize(
"batch_size",
[
1, # Single image
4, # Small batch
5, # Odd batch size (for testing padding)
],
)
def test_run_dp_sharded_vision_model(batch_size: int):
world_size = 2
# Launch processes
mp.spawn(
run_dp_sharded_vision_model_vs_direct,
args=(
world_size,
batch_size,
get_open_port(),
),
nprocs=world_size,
)
def run_dp_sharded_vision_model_vs_direct(local_rank: int, world_size: int,
batch_size: int, master_port: int):
"""
Test that run_dp_sharded_vision_model produces the same results as
calling the model directly.
"""
# Set random seed for reproducibility
current_platform.seed_everything(0)
device = f"{current_platform.device_name}:{local_rank}"
current_platform.set_device(device)
torch.set_default_device(device)
update_environment_variables({
'RANK': str(local_rank),
'LOCAL_RANK': str(local_rank),
'WORLD_SIZE': str(world_size),
'MASTER_ADDR': 'localhost',
'MASTER_PORT': str(master_port),
})
# initialize distributed
init_distributed_environment()
initialize_model_parallel(tensor_model_parallel_size=world_size)
# Create a test input tensor
image_input = torch.randn(batch_size, 3, 224, 224)
# Create a simple linear model
vision_model = SimpleLinearModel()
# Run the model directly on the full input
with torch.inference_mode():
direct_output = vision_model(image_input)
# Run the model through the sharded function
with torch.inference_mode():
sharded_output = run_dp_sharded_vision_model(image_input, vision_model)
# Check that the world size is set up correctly
assert get_tensor_model_parallel_world_size() == world_size
# Check that the outputs have the same shape
assert direct_output.shape == sharded_output.shape
# Check that the outputs are close (they should be identical)
assert torch.allclose(direct_output, sharded_output, rtol=1e-5, atol=1e-5)
@pytest.mark.parametrize(
"sizes,num_gpus,expected_shuffle_indices,expected_gpu_sample_counts,"
"expected_grouped_sizes_per_gpu,test_description",
[
# Empty input
([], 2, [], [0, 0], [0, 0], "empty input"),
# Fewer samples than GPUs
([100, 200], 4, [1, 0], [1, 1, 0, 0], [200, 100, 0, 0
], "fewer samples than GPUs"),
# Single GPU
([100, 200, 300], 1, [2, 1, 0], [3], [600], "single GPU"),
# Balanced assignment
([100, 100, 100, 100
], 2, [0, 2, 1, 3], [2, 2], [200, 200], "balanced assignment"),
# Unbalanced sizes - this one is trickier since the algorithm is greedy
([1000, 100, 200, 50], 2, [0, 2, 1, 3
], [1, 3], [1000, 350], "unbalanced sizes"),
],
)
def test_get_load_balance_assignment_cases(sizes, num_gpus,
expected_shuffle_indices,
expected_gpu_sample_counts,
expected_grouped_sizes_per_gpu,
test_description):
"""Test get_load_balance_assignment with various input cases."""
result = get_load_balance_assignment(sizes, num_gpus=num_gpus)
(shuffle_indices, gpu_sample_counts, grouped_sizes_per_gpu) = result
# Common assertions for all cases
assert len(shuffle_indices) == len(sizes)
assert len(gpu_sample_counts) == num_gpus
assert len(grouped_sizes_per_gpu) == num_gpus
assert sum(gpu_sample_counts) == len(sizes)
assert shuffle_indices == expected_shuffle_indices
assert gpu_sample_counts == expected_gpu_sample_counts
assert grouped_sizes_per_gpu == expected_grouped_sizes_per_gpu
class SimpleMRopeVisionModel(torch.nn.Module):
"""A simple vision model for testing mrope functionality."""
def __init__(self, spatial_merge_size: int = 2, out_hidden_size: int = 64):
super().__init__()
self.spatial_merge_size = spatial_merge_size
self.out_hidden_size = out_hidden_size
self.linear = torch.nn.Linear(768, out_hidden_size)
def forward(self, pixel_values: torch.Tensor,
grid_thw_list: list[list[int]]):
"""Simple forward pass that simulates spatial merging."""
# Apply linear transformation
embeddings = self.linear(pixel_values)
# Simulate spatial merging by reducing the number of patches
merge_factor = self.spatial_merge_size * self.spatial_merge_size
# Group patches and merge spatially
merged_embeddings = []
start_idx = 0
for grid_thw in grid_thw_list:
num_patches = math.prod(grid_thw)
end_idx = start_idx + num_patches
# Get patches for this image
image_patches = embeddings[start_idx:end_idx]
# Simulate spatial merging by averaging groups of patches
merged_patches = num_patches // merge_factor
if merged_patches > 0:
# Reshape and average to simulate merging
reshaped = image_patches[:merged_patches * merge_factor].view(
merged_patches, merge_factor, -1)
merged = reshaped.mean(dim=1)
merged_embeddings.append(merged)
start_idx = end_idx
if merged_embeddings:
return torch.cat(merged_embeddings, dim=0)
else:
return torch.empty((0, self.out_hidden_size),
device=pixel_values.device,
dtype=pixel_values.dtype)
@multi_gpu_test(num_gpus=2)
@pytest.mark.parametrize(
"batch_size",
[
1, # Single image
3, # Small batch
5, # Odd batch size (for testing padding)
],
)
def test_run_dp_sharded_mrope_vision_model(batch_size: int):
world_size = 2
# Launch processes
mp.spawn(
run_dp_sharded_mrope_vision_model_vs_direct,
args=(
world_size,
batch_size,
get_open_port(),
),
nprocs=world_size,
)
def run_dp_sharded_mrope_vision_model_vs_direct(local_rank: int,
world_size: int,
batch_size: int,
master_port: int):
"""
Test that run_dp_sharded_mrope_vision_model produces the same results as
calling the model directly.
"""
# Set random seed for reproducibility
current_platform.seed_everything(0)
device = f"{current_platform.device_name}:{local_rank}"
current_platform.set_device(device)
torch.set_default_device(device)
update_environment_variables({
'RANK': str(local_rank),
'LOCAL_RANK': str(local_rank),
'WORLD_SIZE': str(world_size),
'MASTER_ADDR': 'localhost',
'MASTER_PORT': str(master_port),
})
# initialize distributed
init_distributed_environment()
initialize_model_parallel(tensor_model_parallel_size=world_size)
# Create test data
grid_thw_list = []
pixel_values_list = []
for i in range(batch_size):
# Varying image sizes for better testing
t, h, w = 1, 4 + i, 4 + i
grid_thw_list.append([t, h, w])
num_patches = t * h * w
# Create random pixel values for this image
image_pixels = torch.randn(num_patches, 768)
pixel_values_list.append(image_pixels)
# Concatenate all pixel values
pixel_values = torch.cat(pixel_values_list, dim=0)
# Create a simple mrope vision model
vision_model = SimpleMRopeVisionModel()
# Run the model directly on the full input (only on rank 0)
if local_rank == 0:
with torch.inference_mode():
direct_output = vision_model(pixel_values, grid_thw_list)
# Run the model through the sharded function
with torch.inference_mode():
sharded_output = run_dp_sharded_mrope_vision_model(vision_model,
pixel_values,
grid_thw_list,
rope_type="rope_3d")
sharded_output = torch.cat(sharded_output, dim=0)
# Check that the world size is set up correctly
assert get_tensor_model_parallel_world_size() == world_size
# Compare outputs (only on rank 0)
if local_rank == 0:
# Check that the outputs have the same shape
assert direct_output.shape == sharded_output.shape
# Check that the outputs are close (they should be identical)
assert torch.allclose(direct_output,
sharded_output,
rtol=1e-5,
atol=1e-5)
@multi_gpu_test(num_gpus=2)
def test_run_dp_sharded_mrope_vision_model_empty_input():
world_size = 2
mp.spawn(
run_dp_sharded_mrope_vision_model_empty_input_worker,
args=(world_size, get_open_port()),
nprocs=world_size,
)
def run_dp_sharded_mrope_vision_model_empty_input_worker(
local_rank: int, world_size: int, master_port: int):
"""Test run_dp_sharded_mrope_vision_model with empty input."""
# Set up distributed environment
device = f"{current_platform.device_name}:{local_rank}"
current_platform.set_device(device)
torch.set_default_device(device)
update_environment_variables({
'RANK': str(local_rank),
'LOCAL_RANK': str(local_rank),
'WORLD_SIZE': str(world_size),
'MASTER_ADDR': 'localhost',
'MASTER_PORT': str(master_port),
})
init_distributed_environment()
initialize_model_parallel(tensor_model_parallel_size=world_size)
# Create empty inputs
pixel_values = torch.empty((0, 768))
grid_thw_list: list[list[int]] = []
vision_model = SimpleMRopeVisionModel()
# Should handle empty input gracefully
with torch.inference_mode():
output = run_dp_sharded_mrope_vision_model(vision_model,
pixel_values,
grid_thw_list,
rope_type="rope_3d")
assert len(output) == 0
@multi_gpu_test(num_gpus=4)
def test_run_dp_sharded_mrope_vision_model_uneven_load():
world_size = 4
mp.spawn(
run_dp_sharded_mrope_vision_model_uneven_load_worker,
args=(world_size, get_open_port()),
nprocs=world_size,
)
def run_dp_sharded_mrope_vision_model_uneven_load_worker(
local_rank: int, world_size: int, master_port: int):
"""Test run_dp_sharded_mrope_vision_model with uneven load distribution."""
# Set up distributed environment
current_platform.seed_everything(123)
device = f"{current_platform.device_name}:{local_rank}"
current_platform.set_device(device)
torch.set_default_device(device)
update_environment_variables({
'RANK': str(local_rank),
'LOCAL_RANK': str(local_rank),
'WORLD_SIZE': str(world_size),
'MASTER_ADDR': 'localhost',
'MASTER_PORT': str(master_port),
})
init_distributed_environment()
initialize_model_parallel(tensor_model_parallel_size=world_size)
# Create images with very different sizes
grid_thw_list = [
[1, 2, 2], # Small: 4 patches
[1, 8, 8], # Large: 64 patches
[1, 3, 3], # Medium: 9 patches
]
pixel_values_list = []
for grid_thw in grid_thw_list:
num_patches = math.prod(grid_thw)
image_pixels = torch.randn(num_patches, 768)
pixel_values_list.append(image_pixels)
pixel_values = torch.cat(pixel_values_list, dim=0)
vision_model = SimpleMRopeVisionModel()
# Should handle uneven distribution without errors
with torch.inference_mode():
output_tuple = run_dp_sharded_mrope_vision_model(vision_model,
pixel_values,
grid_thw_list,
rope_type="rope_3d")
# Verify output shape is reasonable
merge_factor = vision_model.spatial_merge_size**2
expected_output_patches = list(
math.prod(grid_thw) // merge_factor for grid_thw in grid_thw_list)
for i, output in enumerate(output_tuple):
assert output.shape[0] == expected_output_patches[i]
assert output.shape[1] == vision_model.out_hidden_size
@pytest.mark.parametrize("spatial_merge_size", [2, 4])
def test_simple_mrope_vision_model_spatial_merge(spatial_merge_size: int):
"""Test SimpleMRopeVisionModel with different spatial merge sizes."""
device = current_platform.device_type
grid_thw_list = [[1, 4, 4], [1, 6, 6]] # Two images
pixel_values_list = []
for grid_thw in grid_thw_list:
num_patches = math.prod(grid_thw)
image_pixels = torch.randn(num_patches, 768, device=device)
pixel_values_list.append(image_pixels)
pixel_values = torch.cat(pixel_values_list, dim=0)
vision_model = SimpleMRopeVisionModel(
spatial_merge_size=spatial_merge_size).to(device)
with torch.inference_mode():
output = vision_model(pixel_values, grid_thw_list)
# Verify output dimensions based on spatial merging
total_patches = sum(math.prod(grid_thw) for grid_thw in grid_thw_list)
merge_factor = spatial_merge_size**2
expected_output_patches = total_patches // merge_factor
assert output.shape[0] == expected_output_patches
assert output.shape[1] == vision_model.out_hidden_size

View File

@ -69,7 +69,6 @@ from vllm.multimodal.processing import (BaseMultiModalProcessor,
BaseProcessingInfo, PromptReplacement,
PromptUpdate, PromptUpdateDetails)
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.multimodal.utils import run_dp_sharded_mrope_vision_model
from vllm.platforms import _Backend
from vllm.sequence import IntermediateTensors
from vllm.transformers_utils.config import uses_mrope
@ -83,7 +82,7 @@ from .qwen2_vl import (_create_qwen2vl_field_factory,
from .utils import (AutoWeightsLoader, WeightsMapper,
init_vllm_registered_model, maybe_prefix,
merge_multimodal_embeddings)
from .vision import get_vit_attn_backend
from .vision import get_vit_attn_backend, run_dp_sharded_mrope_vision_model
logger = init_logger(__name__)

View File

@ -34,7 +34,8 @@ from vllm.model_executor.layers.linear import (ColumnParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.multimodal.utils import run_dp_sharded_vision_model
from .vision import run_dp_sharded_vision_model
class Idefics2VisionEmbeddings(nn.Module):

View File

@ -28,7 +28,8 @@ from vllm.model_executor.layers.linear import (ColumnParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.multimodal.utils import run_dp_sharded_vision_model
from .vision import run_dp_sharded_vision_model
NORM2FN = {
'rms_norm': RMSNorm,

View File

@ -76,13 +76,13 @@ from vllm.multimodal.processing import (BaseMultiModalProcessor,
BaseProcessingInfo, PromptReplacement,
PromptUpdate)
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.multimodal.utils import run_dp_sharded_mrope_vision_model
from vllm.sequence import IntermediateTensors
from vllm.transformers_utils.configs import KimiVLConfig, MoonViTConfig
from vllm.transformers_utils.configs.deepseek_vl2 import DeepseekV2Config
from vllm.utils.tensor_schema import TensorSchema, TensorShape
from .utils import PPMissingLayer, is_pp_missing_parameter, maybe_prefix
from .vision import run_dp_sharded_mrope_vision_model
# For dummy input only

View File

@ -50,7 +50,6 @@ from vllm.multimodal.processing import (BaseMultiModalProcessor,
BaseProcessingInfo, PromptReplacement,
PromptUpdate, PromptUpdateDetails)
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.multimodal.utils import run_dp_sharded_vision_model
from vllm.sequence import IntermediateTensors
from vllm.utils.tensor_schema import TensorSchema, TensorShape
@ -58,6 +57,7 @@ from .interfaces import MultiModalEmbeddings, SupportsMultiModal, SupportsPP
from .llama4 import Llama4ForCausalLM
from .utils import (AutoWeightsLoader, flatten_bn, maybe_prefix,
merge_multimodal_embeddings)
from .vision import run_dp_sharded_vision_model
class Llama4ImagePatchInputs(TensorSchema):

View File

@ -59,7 +59,6 @@ from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models.module_mapping import MultiModelKeys
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import MultiModalFieldConfig
from vllm.multimodal.utils import run_dp_sharded_mrope_vision_model
from vllm.platforms import _Backend
from vllm.sequence import IntermediateTensors
from vllm.transformers_utils.config import uses_mrope
@ -74,7 +73,7 @@ from .qwen2_vl import (Qwen2VLMultiModalProcessor, Qwen2VLProcessingInfo,
from .utils import (AutoWeightsLoader, WeightsMapper, cast_overflow_tensors,
init_vllm_registered_model, maybe_prefix,
merge_multimodal_embeddings)
from .vision import get_vit_attn_backend
from .vision import get_vit_attn_backend, run_dp_sharded_mrope_vision_model
logger = init_logger(__name__)

View File

@ -66,7 +66,6 @@ from vllm.multimodal.processing import (BaseMultiModalProcessor,
BaseProcessingInfo, PromptReplacement,
PromptUpdate)
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.multimodal.utils import run_dp_sharded_mrope_vision_model
from vllm.platforms import _Backend, current_platform
from vllm.sequence import IntermediateTensors
from vllm.transformers_utils.config import uses_mrope
@ -78,7 +77,7 @@ from .interfaces import (MultiModalEmbeddings, SupportsLoRA, SupportsMRoPE,
from .utils import (AutoWeightsLoader, WeightsMapper,
init_vllm_registered_model, maybe_prefix,
merge_multimodal_embeddings)
from .vision import get_vit_attn_backend
from .vision import get_vit_attn_backend, run_dp_sharded_mrope_vision_model
logger = init_logger(__name__)

View File

@ -83,7 +83,7 @@ from .qwen2_vl import Qwen2VLProcessingInfo
from .qwen3 import Qwen3ForCausalLM, Qwen3Model
from .utils import (AutoWeightsLoader, PPMissingLayer, WeightsMapper,
maybe_prefix, merge_multimodal_embeddings)
from .vision import get_vit_attn_backend
from .vision import get_vit_attn_backend, run_dp_sharded_mrope_vision_model
logger = init_logger(__name__)
@ -1214,8 +1214,6 @@ class Qwen3VLForConditionalGeneration(nn.Module, SupportsMultiModal,
else:
pixel_values = image_input["pixel_values"].type(self.visual.dtype)
if self.use_data_parallel:
from vllm.multimodal.utils import (
run_dp_sharded_mrope_vision_model)
return run_dp_sharded_mrope_vision_model(self.visual,
pixel_values,
grid_thw_list,
@ -1245,8 +1243,6 @@ class Qwen3VLForConditionalGeneration(nn.Module, SupportsMultiModal,
pixel_values_videos = video_input["pixel_values_videos"].type(
self.visual.dtype)
if self.use_data_parallel:
from vllm.multimodal.utils import (
run_dp_sharded_mrope_vision_model)
return run_dp_sharded_mrope_vision_model(self.visual,
pixel_values_videos,
grid_thw_list,

View File

@ -31,7 +31,6 @@ from vllm.multimodal.processing import (BaseMultiModalProcessor,
BaseProcessingInfo, PromptReplacement,
PromptUpdate, PromptUpdateDetails)
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.multimodal.utils import run_dp_sharded_vision_model
from vllm.sequence import IntermediateTensors
from vllm.transformers_utils.configs import Step3VisionEncoderConfig
from vllm.transformers_utils.tokenizer import AnyTokenizer
@ -40,6 +39,7 @@ from .interfaces import MultiModalEmbeddings, SupportsMultiModal, SupportsPP
from .utils import (AutoWeightsLoader, WeightsMapper, flatten_bn,
init_vllm_registered_model, maybe_prefix,
merge_multimodal_embeddings)
from .vision import run_dp_sharded_vision_model
class Step3VLImagePixelInputs(TypedDict):

View File

@ -1,12 +1,17 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import itertools
import math
from abc import ABC, abstractmethod
from typing import Final, Generic, Optional, Protocol, TypeVar, Union
from typing import Final, Generic, Literal, Optional, Protocol, TypeVar, Union
import torch
from transformers import PretrainedConfig
from vllm.distributed import (get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
tensor_model_parallel_all_gather)
from vllm.logger import init_logger
from vllm.platforms import _Backend, current_platform
@ -123,3 +128,277 @@ def resolve_visual_encoder_outputs(
if post_layer_norm is not None and uses_last_layer:
hs_pool[-1] = post_layer_norm(encoder_outputs)
return torch.cat(hs_pool, dim=-1)
def run_dp_sharded_vision_model(image_input: torch.Tensor,
vision_model: torch.nn.Module) -> torch.Tensor:
"""Run a vision model with data parallelism (DP) sharding. The function
will shard the input image tensor on the first dimension and run the vision
model
Args:
image_input (torch.Tensor): Image input tensor.
vision_model (torch.nn.Module): Vision model.
Returns:
torch.Tensor: Output image embeddings
"""
num_chunks = image_input.shape[0]
mp_world_size = get_tensor_model_parallel_world_size()
num_chunks_per_rank = (num_chunks + mp_world_size - 1) // mp_world_size
num_padded_chunks = num_chunks_per_rank * mp_world_size - num_chunks
pad = (0, ) * (2 * (image_input.dim() - 1)) + (0, num_padded_chunks)
image_input_padded = torch.nn.functional.pad(image_input, pad)
rank = get_tensor_model_parallel_rank()
image_input_per_rank = image_input_padded[rank *
num_chunks_per_rank:(rank + 1) *
num_chunks_per_rank, ...]
vision_embeddings = vision_model(image_input_per_rank)
# Ensure tensor is contiguous before all_gather
vision_embeddings = vision_embeddings.contiguous()
vision_embeddings = tensor_model_parallel_all_gather(vision_embeddings,
dim=0)
vision_embeddings = vision_embeddings[:num_chunks, ...]
return vision_embeddings
def get_load_balance_assignment(
sizes: list[int],
num_gpus: int = 2,
) -> tuple[list[int], list[int], list[int]]:
"""
Generate load balancing assignment and metadata
for distributing data across GPUs.
The load is determined by the total image sizes,
not the number of images.
Args:
sizes: The size of each image
num_gpus: Number of GPUs to balance across
Returns:
shuffle_indices:
Indices to reorder data for balanced loading
gpu_sample_counts:
Number of samples assigned to each GPU
grouped_sizes_per_gpu:
Total size assigned to each GPU
Example:
```
sizes = [1000, 100, 200, 50]
num_gpus=2
```
"""
n_samples = len(sizes)
# Handle edge cases
if n_samples == 0:
return [], [0] * num_gpus, [0] * num_gpus
# Use greedy algorithm - balance by total size, not sample count
gpu_assignments = [list[int]() for _ in range(num_gpus)]
gpu_loads = [0] * num_gpus # This tracks total SIZE, not sample count
# Sort indices by size (largest first for better load balancing)
# sizes = [1000, 100, 200, 50]
# large_to_small_indices = [0, 2, 1, 3]
large_to_small_indices = sorted(range(n_samples),
key=lambda i: sizes[i],
reverse=True)
for idx in large_to_small_indices:
# Find GPU with minimum current load (by total size)
min_gpu = min(range(num_gpus), key=lambda i: gpu_loads[i])
gpu_assignments[min_gpu].append(idx)
gpu_loads[min_gpu] += sizes[idx]
# Create shuffle indices and counts
shuffle_indices = list[int]()
gpu_sample_counts = list[int]()
for gpu_id in range(num_gpus):
# GPU_0 = [1000] = [0]
# GPU_1 = [200, 100, 50] = [2, 1, 3]
# shuffle_indices = [0, 2, 1, 3]
shuffle_indices.extend(gpu_assignments[gpu_id])
# GPU_0 = [1]
# GPU_1 = [3]
# gpu_sample_counts = [1, 3]
gpu_sample_counts.append(len(gpu_assignments[gpu_id]))
return (shuffle_indices, gpu_sample_counts, gpu_loads)
def run_dp_sharded_mrope_vision_model(
vision_model: torch.nn.Module,
pixel_values: torch.Tensor,
grid_thw_list: list[list[int]],
*,
rope_type: Literal["rope_3d", "rope_2d"],
) -> tuple[torch.Tensor, ...]:
"""Run a vision model with data parallelism (DP) sharding.
The function will shard the input image tensor on the
first dimension and run the vision model.
This function is used to run the vision model with mrope.
Args:
vision_model (torch.nn.Module): Vision model.
pixel_values (torch.Tensor): Image/Video input tensor.
grid_thw_list: List of grid dimensions for each image
rope_type: Type of rope used in the vision model.
Different rope types have different dimension to do ViT.
"rope_3d" for 3D rope (e.g., Qwen2.5-VL)
"rope_2d" for 2D rope (e.g., Kimi-VL)
Returns:
torch.Tensor: Output image embeddings
Example:
```
vision_model.out_hidden_size = 64
vision_model.spatial_merge_size = 2
pixel_values.shape = (1350, channel)
grid_thw_list = [[1, 10, 100], [1, 10, 10], [1, 10, 20], [1, 50]]
tp_size=2
```
"""
tp_size = get_tensor_model_parallel_world_size()
# GPU_0 tp_rank_local = 0
# GPU_1 tp_rank_local = 1
tp_rank_local = get_tensor_model_parallel_rank()
# patches_per_image = [1000, 100, 200, 50]
patches_per_image = [math.prod(grid_thw) for grid_thw in grid_thw_list]
# patches_per_image = [0, 1000, 1100, 1300, 1350]
cum_patches_per_image = [0, *itertools.accumulate(patches_per_image)]
# Get load balancing assignment with all metadata
# image_to_tp_rank = [0, 2, 1, 3]
# gpu_sample_counts = [1, 3]
# grouped_pixel_values_len = [1000, 350]
(image_to_tp_rank, gpu_sample_counts,
grouped_pixel_values_len) = get_load_balance_assignment(
patches_per_image, tp_size)
# cu_gpu_sample_counts = [0, 1, 4]
cum_gpu_sample_counts = [0, *itertools.accumulate(gpu_sample_counts)]
# GPU_0 image_idxs_local = [0]
# GPU_1 image_idxs_local = [2, 1, 3]
image_idxs_local = image_to_tp_rank[cum_gpu_sample_counts[tp_rank_local]:
cum_gpu_sample_counts[tp_rank_local +
1]]
# Get the pixel values for the local images based on the image_idxs_local
if len(image_idxs_local) > 0:
pixel_values_local = torch.cat([
pixel_values[cum_patches_per_image[i]:cum_patches_per_image[i + 1]]
for i in image_idxs_local
])
else:
# Handle case where this rank has no images
pixel_values_local = torch.empty((0, pixel_values.shape[1]),
device=pixel_values.device,
dtype=pixel_values.dtype)
# embed_dim_reduction_factor = 2 * 2
if rope_type == "rope_2d":
embed_dim_reduction_factor = (vision_model.merge_kernel_size[0] *
vision_model.merge_kernel_size[1])
else:
embed_dim_reduction_factor = (vision_model.spatial_merge_size *
vision_model.spatial_merge_size)
# Find the max length across all ranks
# The output embedding of every DP rank has to be
# padded to this length for tensor_model_parallel_all_gather
# to work
max_len_per_rank = max(
grouped_pixel_values_len) // embed_dim_reduction_factor
local_grid_thw_list = [grid_thw_list[i] for i in image_idxs_local]
# Run the vision model on the local pixel_values_local
if rope_type == "rope_2d":
if pixel_values_local.shape[0] > 0:
image_embeds_local = vision_model(
pixel_values_local, torch.tensor(local_grid_thw_list))
if isinstance(image_embeds_local, list):
image_embeds_local = torch.cat(image_embeds_local, dim=0)
else:
out_dim = getattr(vision_model.config, "hidden_size", None)
image_embeds_local = torch.empty(
(0, embed_dim_reduction_factor, out_dim),
device=pixel_values.device,
dtype=pixel_values.dtype)
else:
if pixel_values_local.shape[0] > 0:
image_embeds_local = vision_model(pixel_values_local,
local_grid_thw_list)
else:
# Handle empty case
image_embeds_local = torch.empty((0, vision_model.out_hidden_size),
device=pixel_values.device,
dtype=pixel_values.dtype)
# Pad the output based on max_len_per_rank
# for tensor_model_parallel_all_gather to work
current_len = image_embeds_local.shape[0]
if current_len < max_len_per_rank:
padding_size = max_len_per_rank - current_len
if rope_type == "rope_2d":
padding = torch.empty((padding_size, image_embeds_local.shape[1],
image_embeds_local.shape[2]),
dtype=image_embeds_local.dtype,
device=image_embeds_local.device)
else:
padding = torch.empty((padding_size, image_embeds_local.shape[1]),
dtype=image_embeds_local.dtype,
device=image_embeds_local.device)
image_embeds_local_padded = torch.cat([image_embeds_local, padding],
dim=0)
else:
image_embeds_local_padded = image_embeds_local
# Do all_gather to collect embeddings from all ranks
gathered_embeds = tensor_model_parallel_all_gather(
image_embeds_local_padded, dim=0)
# Remove padding and reconstruct per-rank embeddings
rank_embeddings = list[torch.Tensor]()
for rank in range(tp_size):
start_idx = rank * max_len_per_rank
end_idx = start_idx + (grouped_pixel_values_len[rank] //
embed_dim_reduction_factor)
rank_embeddings.append(gathered_embeds[start_idx:end_idx])
patches_per_output_image = [(patch_size // embed_dim_reduction_factor)
for patch_size in patches_per_image]
# Reconstruct embeddings in the original order
original_order_embeddings = [None] * len(grid_thw_list)
current_idx = 0
for rank in range(tp_size):
count = gpu_sample_counts[rank]
if count > 0:
# Get images assigned to this rank in shuffled order
# GPU_0 = image_idxs_local [0]
# GPU_1 = image_idxs_local [2, 1, 3]
rank_images = image_to_tp_rank[current_idx:current_idx + count]
rank_embed = rank_embeddings[rank]
# Split rank embeddings back to individual images
embed_start = 0
for img_idx in rank_images:
img_patches = patches_per_output_image[img_idx]
original_order_embeddings[img_idx] = rank_embed[
embed_start:embed_start + img_patches]
embed_start += img_patches
current_idx += count
out_embeddings = tuple(embed for embed in original_order_embeddings
if embed is not None)
assert len(out_embeddings) == len(
original_order_embeddings), "Found unassigned embeddings"
return out_embeddings

View File

@ -3,13 +3,11 @@
import asyncio
import atexit
import itertools
import math
from collections.abc import Iterable
from concurrent.futures import ThreadPoolExecutor
from itertools import groupby
from pathlib import Path
from typing import TYPE_CHECKING, Any, Literal, Optional, TypeVar, Union
from typing import TYPE_CHECKING, Any, Optional, TypeVar, Union
from urllib.parse import ParseResult, urlparse
from urllib.request import url2pathname
@ -21,9 +19,6 @@ from typing_extensions import deprecated
import vllm.envs as envs
from vllm.connections import HTTPConnection, global_http_connection
from vllm.distributed import (get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
tensor_model_parallel_all_gather)
from .audio import AudioMediaIO
from .base import MediaIO
@ -33,12 +28,10 @@ from .video import VideoMediaIO
_M = TypeVar("_M")
if TYPE_CHECKING:
from .inputs import (BatchedTensorInputs, MultiModalKwargs,
MultiModalKwargsItem, MultiModalKwargsItems,
MultiModalPlaceholderDict)
from .inputs import (BatchedTensorInputs, MultiModalKwargsItem,
MultiModalKwargsItems, MultiModalPlaceholderDict)
else:
BatchedTensorInputs = Any
MultiModalKwargs = Any
MultiModalKwargsItem = Any
MultiModalKwargsItems = Any
MultiModalPlaceholderDict = Any
@ -93,7 +86,7 @@ class MediaConnector:
self,
url_spec: ParseResult,
media_io: MediaIO[_M],
) -> _M:
) -> _M: # type: ignore[type-var]
data_spec, data = url_spec.path.split(",", 1)
media_type, data_type = data_spec.split(";", 1)
@ -107,7 +100,7 @@ class MediaConnector:
self,
url_spec: ParseResult,
media_io: MediaIO[_M],
) -> _M:
) -> _M: # type: ignore[type-var]
allowed_local_media_path = self.allowed_local_media_path
if allowed_local_media_path is None:
raise RuntimeError("Cannot load local files without "
@ -127,7 +120,7 @@ class MediaConnector:
media_io: MediaIO[_M],
*,
fetch_timeout: Optional[int] = None,
) -> _M:
) -> _M: # type: ignore[type-var]
url_spec = urlparse(url)
if url_spec.scheme.startswith("http"):
@ -434,280 +427,6 @@ def group_mm_kwargs_by_modality(
yield modality, len(items_lst), mm_kwargs_group
def run_dp_sharded_vision_model(image_input: torch.Tensor,
vision_model: torch.nn.Module) -> torch.Tensor:
"""Run a vision model with data parallelism (DP) sharding. The function
will shard the input image tensor on the first dimension and run the vision
model
Args:
image_input (torch.Tensor): Image input tensor.
vision_model (torch.nn.Module): Vision model.
Returns:
torch.Tensor: Output image embeddings
"""
num_chunks = image_input.shape[0]
mp_world_size = get_tensor_model_parallel_world_size()
num_chunks_per_rank = (num_chunks + mp_world_size - 1) // mp_world_size
num_padded_chunks = num_chunks_per_rank * mp_world_size - num_chunks
pad = (0, ) * (2 * (image_input.dim() - 1)) + (0, num_padded_chunks)
image_input_padded = torch.nn.functional.pad(image_input, pad)
rank = get_tensor_model_parallel_rank()
image_input_per_rank = image_input_padded[rank *
num_chunks_per_rank:(rank + 1) *
num_chunks_per_rank, ...]
vision_embeddings = vision_model(image_input_per_rank)
# Ensure tensor is contiguous before all_gather
vision_embeddings = vision_embeddings.contiguous()
vision_embeddings = tensor_model_parallel_all_gather(vision_embeddings,
dim=0)
vision_embeddings = vision_embeddings[:num_chunks, ...]
return vision_embeddings
def get_load_balance_assignment(
sizes: list[int],
num_gpus: int = 2,
) -> tuple[list[int], list[int], list[int]]:
"""
Generate load balancing assignment and metadata
for distributing data across GPUs.
The load is determined by the total image sizes,
not the number of images.
Args:
sizes: The size of each image
num_gpus: Number of GPUs to balance across
Returns:
shuffle_indices:
Indices to reorder data for balanced loading
gpu_sample_counts:
Number of samples assigned to each GPU
grouped_sizes_per_gpu:
Total size assigned to each GPU
Example:
```
sizes = [1000, 100, 200, 50]
num_gpus=2
```
"""
n_samples = len(sizes)
# Handle edge cases
if n_samples == 0:
return [], [0] * num_gpus, [0] * num_gpus
# Use greedy algorithm - balance by total size, not sample count
gpu_assignments = [list[int]() for _ in range(num_gpus)]
gpu_loads = [0] * num_gpus # This tracks total SIZE, not sample count
# Sort indices by size (largest first for better load balancing)
# sizes = [1000, 100, 200, 50]
# large_to_small_indices = [0, 2, 1, 3]
large_to_small_indices = sorted(range(n_samples),
key=lambda i: sizes[i],
reverse=True)
for idx in large_to_small_indices:
# Find GPU with minimum current load (by total size)
min_gpu = min(range(num_gpus), key=lambda i: gpu_loads[i])
gpu_assignments[min_gpu].append(idx)
gpu_loads[min_gpu] += sizes[idx]
# Create shuffle indices and counts
shuffle_indices = list[int]()
gpu_sample_counts = list[int]()
for gpu_id in range(num_gpus):
# GPU_0 = [1000] = [0]
# GPU_1 = [200, 100, 50] = [2, 1, 3]
# shuffle_indices = [0, 2, 1, 3]
shuffle_indices.extend(gpu_assignments[gpu_id])
# GPU_0 = [1]
# GPU_1 = [3]
# gpu_sample_counts = [1, 3]
gpu_sample_counts.append(len(gpu_assignments[gpu_id]))
return (shuffle_indices, gpu_sample_counts, gpu_loads)
def run_dp_sharded_mrope_vision_model(
vision_model: torch.nn.Module,
pixel_values: torch.Tensor,
grid_thw_list: list[list[int]],
*,
rope_type: Literal["rope_3d", "rope_2d"],
) -> tuple[torch.Tensor, ...]:
"""Run a vision model with data parallelism (DP) sharding.
The function will shard the input image tensor on the
first dimension and run the vision model.
This function is used to run the vision model with mrope.
Args:
vision_model (torch.nn.Module): Vision model.
pixel_values (torch.Tensor): Image/Video input tensor.
grid_thw_list: List of grid dimensions for each image
rope_type: Type of rope used in the vision model.
Different rope types have different dimension to do ViT.
"rope_3d" for 3D rope (e.g., Qwen2.5-VL)
"rope_2d" for 2D rope (e.g., Kimi-VL)
Returns:
torch.Tensor: Output image embeddings
Example:
```
vision_model.out_hidden_size = 64
vision_model.spatial_merge_size = 2
pixel_values.shape = (1350, channel)
grid_thw_list = [[1, 10, 100], [1, 10, 10], [1, 10, 20], [1, 50]]
tp_size=2
```
"""
tp_size = get_tensor_model_parallel_world_size()
# GPU_0 tp_rank_local = 0
# GPU_1 tp_rank_local = 1
tp_rank_local = get_tensor_model_parallel_rank()
# patches_per_image = [1000, 100, 200, 50]
patches_per_image = [math.prod(grid_thw) for grid_thw in grid_thw_list]
# patches_per_image = [0, 1000, 1100, 1300, 1350]
cum_patches_per_image = [0, *itertools.accumulate(patches_per_image)]
# Get load balancing assignment with all metadata
# image_to_tp_rank = [0, 2, 1, 3]
# gpu_sample_counts = [1, 3]
# grouped_pixel_values_len = [1000, 350]
(image_to_tp_rank, gpu_sample_counts,
grouped_pixel_values_len) = get_load_balance_assignment(
patches_per_image, tp_size)
# cu_gpu_sample_counts = [0, 1, 4]
cum_gpu_sample_counts = [0, *itertools.accumulate(gpu_sample_counts)]
# GPU_0 image_idxs_local = [0]
# GPU_1 image_idxs_local = [2, 1, 3]
image_idxs_local = image_to_tp_rank[cum_gpu_sample_counts[tp_rank_local]:
cum_gpu_sample_counts[tp_rank_local +
1]]
# Get the pixel values for the local images based on the image_idxs_local
if len(image_idxs_local) > 0:
pixel_values_local = torch.cat([
pixel_values[cum_patches_per_image[i]:cum_patches_per_image[i + 1]]
for i in image_idxs_local
])
else:
# Handle case where this rank has no images
pixel_values_local = torch.empty((0, pixel_values.shape[1]),
device=pixel_values.device,
dtype=pixel_values.dtype)
# embed_dim_reduction_factor = 2 * 2
if rope_type == "rope_2d":
embed_dim_reduction_factor = (vision_model.merge_kernel_size[0] *
vision_model.merge_kernel_size[1])
else:
embed_dim_reduction_factor = (vision_model.spatial_merge_size *
vision_model.spatial_merge_size)
# Find the max length across all ranks
# The output embedding of every DP rank has to be
# padded to this length for tensor_model_parallel_all_gather
# to work
max_len_per_rank = max(
grouped_pixel_values_len) // embed_dim_reduction_factor
local_grid_thw_list = [grid_thw_list[i] for i in image_idxs_local]
# Run the vision model on the local pixel_values_local
if rope_type == "rope_2d":
if pixel_values_local.shape[0] > 0:
image_embeds_local = vision_model(
pixel_values_local, torch.tensor(local_grid_thw_list))
if isinstance(image_embeds_local, list):
image_embeds_local = torch.cat(image_embeds_local, dim=0)
else:
out_dim = getattr(vision_model.config, "hidden_size", None)
image_embeds_local = torch.empty(
(0, embed_dim_reduction_factor, out_dim),
device=pixel_values.device,
dtype=pixel_values.dtype)
else:
if pixel_values_local.shape[0] > 0:
image_embeds_local = vision_model(pixel_values_local,
local_grid_thw_list)
else:
# Handle empty case
image_embeds_local = torch.empty((0, vision_model.out_hidden_size),
device=pixel_values.device,
dtype=pixel_values.dtype)
# Pad the output based on max_len_per_rank
# for tensor_model_parallel_all_gather to work
current_len = image_embeds_local.shape[0]
if current_len < max_len_per_rank:
padding_size = max_len_per_rank - current_len
if rope_type == "rope_2d":
padding = torch.empty((padding_size, image_embeds_local.shape[1],
image_embeds_local.shape[2]),
dtype=image_embeds_local.dtype,
device=image_embeds_local.device)
else:
padding = torch.empty((padding_size, image_embeds_local.shape[1]),
dtype=image_embeds_local.dtype,
device=image_embeds_local.device)
image_embeds_local_padded = torch.cat([image_embeds_local, padding],
dim=0)
else:
image_embeds_local_padded = image_embeds_local
# Do all_gather to collect embeddings from all ranks
gathered_embeds = tensor_model_parallel_all_gather(
image_embeds_local_padded, dim=0)
# Remove padding and reconstruct per-rank embeddings
rank_embeddings = list[torch.Tensor]()
for rank in range(tp_size):
start_idx = rank * max_len_per_rank
end_idx = start_idx + (grouped_pixel_values_len[rank] //
embed_dim_reduction_factor)
rank_embeddings.append(gathered_embeds[start_idx:end_idx])
patches_per_output_image = [(patch_size // embed_dim_reduction_factor)
for patch_size in patches_per_image]
# Reconstruct embeddings in the original order
original_order_embeddings = [None] * len(grid_thw_list)
current_idx = 0
for rank in range(tp_size):
count = gpu_sample_counts[rank]
if count > 0:
# Get images assigned to this rank in shuffled order
# GPU_0 = image_idxs_local [0]
# GPU_1 = image_idxs_local [2, 1, 3]
rank_images = image_to_tp_rank[current_idx:current_idx + count]
rank_embed = rank_embeddings[rank]
# Split rank embeddings back to individual images
embed_start = 0
for img_idx in rank_images:
img_patches = patches_per_output_image[img_idx]
original_order_embeddings[img_idx] = rank_embed[
embed_start:embed_start + img_patches]
embed_start += img_patches
current_idx += count
out_embeddings = tuple(embed for embed in original_order_embeddings
if embed is not None)
assert len(out_embeddings) == len(
original_order_embeddings), "Found unassigned embeddings"
return out_embeddings
def fetch_audio(
audio_url: str,
audio_io_kwargs: Optional[dict[str, Any]] = None,