Basic attention kernel that supports cached KV + (multi-)prompts (#24)

This commit is contained in:
Siyuan (Ryans) Zhuang 2023-04-04 20:34:46 -07:00 committed by GitHub
parent 897cb2ae28
commit 21b3671bbc
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 622 additions and 0 deletions

View File

@ -11,9 +11,25 @@ void single_query_cached_kv_attention(
int block_size,
int max_context_len);
void multi_query_cached_kv_attention(
torch::Tensor& cu_query_lens,
torch::Tensor& out,
torch::Tensor& query,
torch::Tensor& key_cache,
torch::Tensor& value_cache,
float scale,
torch::Tensor& block_tables,
torch::Tensor& context_lens,
int block_size,
int max_context_len);
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def(
"single_query_cached_kv_attention",
&single_query_cached_kv_attention,
"Compute the attention between an input query and the cached key/value tensors");
m.def(
"multi_query_cached_kv_attention",
&multi_query_cached_kv_attention,
"Compute the attention between multiple input queries and the cached key/value tensors");
}

View File

@ -254,6 +254,287 @@ __global__ void single_query_cached_kv_attention_kernel(
}
}
// Grid: (num_heads, num_query_tokens).
template<
typename scalar_t,
int HEAD_SIZE,
int BLOCK_SIZE,
int NUM_THREADS>
__device__ void multi_query_cached_kv_attention_kernel_unoptimized_(
scalar_t* __restrict__ out, // [num_seqs, num_heads, head_size]
const scalar_t* __restrict__ q, // [num_seqs, num_heads, head_size]
const int seq_start_idx,
const int seq_len,
const scalar_t* __restrict__ k_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
const scalar_t* __restrict__ v_cache, // [num_blocks, num_heads, head_size, block_size]
const float scale,
const int* __restrict__ block_table, // [num_seqs, max_num_blocks_per_seq]
const int context_len,
const int max_num_blocks_per_seq) {
constexpr int THREAD_GROUP_SIZE = WARP_SIZE / BLOCK_SIZE;
constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
const int thread_idx = threadIdx.x;
const int warp_idx = thread_idx / WARP_SIZE;
const int lane = thread_idx % WARP_SIZE;
const int head_idx = blockIdx.x;
const int num_heads = gridDim.x;
const int seq_idx = blockIdx.y;
// A vector type to store a part of a key or a query.
// The vector size is configured in such a way that the threads in a thread group
// fetch or comput 16 bytes at a time.
// For example, if the size of a thread group is 4 and the data type is half,
// then the vector size is 16 / (4 * sizeof(half)) == 2.
constexpr int VEC_SIZE = 16 / (THREAD_GROUP_SIZE * sizeof(scalar_t));
using K_vec = typename Vec<scalar_t, VEC_SIZE>::Type;
using Q_vec = typename Vec<scalar_t, VEC_SIZE>::Type;
constexpr int NUM_ELEMS_PER_THREAD = HEAD_SIZE / THREAD_GROUP_SIZE;
constexpr int NUM_VECS_PER_THREAD = NUM_ELEMS_PER_THREAD / VEC_SIZE;
const int thread_group_idx = thread_idx / THREAD_GROUP_SIZE;
const int thread_group_offset = thread_idx % THREAD_GROUP_SIZE;
// Load the query to registers.
// Each thread in a thread group has a different part of the query.
// For example, if the the thread group size is 4, then the first thread in the group
// has 0, 4, 8, ... th vectors of the query, and the second thread has 1, 5, 9, ...
// th vectors of the query, and so on.
const scalar_t* q_ptr = q + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE;
Q_vec q_vecs[NUM_VECS_PER_THREAD];
#pragma unroll
for (int i = 0; i < NUM_VECS_PER_THREAD; i++) {
const int vec_idx = thread_group_offset + i * THREAD_GROUP_SIZE;
q_vecs[i] = *reinterpret_cast<const Q_vec*>(q_ptr + vec_idx * VEC_SIZE);
}
// Memory planning.
extern __shared__ char shared_mem[];
// NOTE(woosuk): We use FP32 logits and accumulation.
float *logits = reinterpret_cast<float*>(shared_mem);
// Workspace for reduction.
__shared__ float red_smem[2 * NUM_WARPS];
// x == THREAD_GROUP_SIZE * VEC_SIZE
// Each thread group fetches x elements from the key at a time.
constexpr int x = 16 / sizeof(scalar_t);
float qk_max = -FLT_MAX;
const int num_blocks = (context_len + BLOCK_SIZE - 1) / BLOCK_SIZE;
const int mask_boundary = context_len - seq_len + 1 + (seq_idx - seq_start_idx);
// Iterate over the key blocks.
// Each warp fetches a block of keys for each iteration.
// Each thread group in a warp fetches a key from the block, and computes
// dot product with the query.
for (int block_idx = warp_idx; block_idx < num_blocks; block_idx += NUM_WARPS) {
const int physical_block_number = block_table[block_idx];
const int physical_block_offset = thread_group_idx % BLOCK_SIZE;
const int token_idx = block_idx * BLOCK_SIZE + physical_block_offset;
// Load a key to registers.
// Each thread in a thread group has a different part of the key.
// For example, if the the thread group size is 4, then the first thread in the group
// has 0, 4, 8, ... th vectors of the key, and the second thread has 1, 5, 9, ... th
// vectors of the key, and so on.
K_vec k_vecs[NUM_VECS_PER_THREAD];
#pragma unroll
for (int i = 0; i < NUM_VECS_PER_THREAD; i++) {
const scalar_t* k_ptr = k_cache + physical_block_number * num_heads * HEAD_SIZE * BLOCK_SIZE
+ head_idx * HEAD_SIZE * BLOCK_SIZE
+ physical_block_offset * x;
const int vec_idx = thread_group_offset + i * THREAD_GROUP_SIZE;
const int offset1 = (vec_idx * VEC_SIZE) / x;
const int offset2 = (vec_idx * VEC_SIZE) % x;
k_vecs[i] = *reinterpret_cast<const K_vec*>(k_ptr + offset1 * BLOCK_SIZE * x + offset2);
}
// Compute dot product.
// This includes a reduction across the threads in the same thread group.
const float qk = scale * Qk_dot<scalar_t, THREAD_GROUP_SIZE>::dot(q_vecs, k_vecs);
const bool mask = token_idx >= mask_boundary;
if (thread_group_offset == 0) {
// Store the partial reductions to shared memory.
// NOTE(woosuk): It is required to zero out the masked logits.
logits[token_idx] = mask ? 0.f : qk;
// Update the max value.
qk_max = mask ? qk_max : fmaxf(qk_max, qk);
}
}
// Perform reduction across the threads in the same warp to get the
// max qk value for each "warp" (not across the thread block yet).
// The 0-th thread of each thread group already has its max qk value.
#pragma unroll
for (int mask = WARP_SIZE / 2; mask >= THREAD_GROUP_SIZE; mask /= 2) {
qk_max = fmaxf(qk_max, __shfl_xor_sync(uint32_t(-1), qk_max, mask));
}
if (lane == 0) {
red_smem[warp_idx] = qk_max;
}
__syncthreads();
// TODO(woosuk): Refactor this part.
// Get the max qk value for the sequence.
qk_max = lane < NUM_WARPS ? red_smem[lane] : -FLT_MAX;
#pragma unroll
for (int mask = NUM_WARPS / 2; mask >= 1; mask /= 2) {
qk_max = fmaxf(qk_max, __shfl_xor_sync(uint32_t(-1), qk_max, mask));
}
// Broadcast the max qk value to all threads.
qk_max = __shfl_sync(uint32_t(-1), qk_max, 0);
// Get the sum of the exp values.
float exp_sum = 0.f;
for (int i = thread_idx; i < mask_boundary; i += NUM_THREADS) {
float val = __expf(logits[i] - qk_max);
logits[i] = val;
exp_sum += val;
}
exp_sum = block_sum<NUM_WARPS>(&red_smem[NUM_WARPS], exp_sum);
// Compute softmax.
const float inv_sum = __fdividef(1.f, exp_sum + 1e-6f);
for (int i = thread_idx; i < context_len; i += NUM_THREADS) {
logits[i] *= inv_sum;
}
__syncthreads();
// Each thread will fetch 16 bytes from the value cache at a time.
constexpr int V_VEC_SIZE = 16 / sizeof(scalar_t);
using V_vec = typename Vec<scalar_t, V_VEC_SIZE>::Type;
using L_vec = typename FloatVec<V_vec>::Type;
constexpr int NUM_V_VECS_PER_ROW = BLOCK_SIZE / V_VEC_SIZE;
constexpr int NUM_ROWS_PER_ITER = WARP_SIZE / NUM_V_VECS_PER_ROW;
constexpr int NUM_ROWS_PER_THREAD = (HEAD_SIZE + NUM_ROWS_PER_ITER - 1) / NUM_ROWS_PER_ITER;
float accs[NUM_ROWS_PER_THREAD];
#pragma unroll
for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
accs[i] = 0.f;
}
for (int block_idx = warp_idx; block_idx < num_blocks; block_idx += NUM_WARPS) {
const int physical_block_number = block_table[block_idx];
const int physical_block_offset = (lane % NUM_V_VECS_PER_ROW) * V_VEC_SIZE;
const int token_idx = block_idx * BLOCK_SIZE + physical_block_offset;
L_vec logits_vec = *reinterpret_cast<L_vec*>(logits + token_idx);
const scalar_t* v_ptr = v_cache + physical_block_number * num_heads * HEAD_SIZE * BLOCK_SIZE
+ head_idx * HEAD_SIZE * BLOCK_SIZE;
#pragma unroll
for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
if (row_idx < HEAD_SIZE) {
const int offset = row_idx * BLOCK_SIZE + physical_block_offset;
V_vec v_vec = *reinterpret_cast<const V_vec*>(v_ptr + offset);
accs[i] += dot(logits_vec, cast_to_float(v_vec));
}
}
}
// Perform reduction within each warp.
#pragma unroll
for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
float acc = accs[i];
#pragma unroll
for (int mask = NUM_V_VECS_PER_ROW / 2; mask >= 1; mask /= 2) {
acc += __shfl_xor_sync(uint32_t(-1), acc, mask);
}
accs[i] = acc;
}
// NOTE(woosuk): A barrier is required because the shared memory space for logits
// is reused for the output.
__syncthreads();
// Perform reduction across warps.
float* out_smem = reinterpret_cast<float*>(shared_mem);
#pragma unroll
for (int i = NUM_WARPS; i > 1; i /= 2) {
int mid = i / 2;
// Upper warps write to shared memory.
if (warp_idx >= mid && warp_idx < i) {
float* dst = &out_smem[(warp_idx - mid) * HEAD_SIZE];
#pragma unroll
for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
if (row_idx < HEAD_SIZE && lane % NUM_V_VECS_PER_ROW == 0) {
dst[row_idx] = accs[i];
}
}
}
__syncthreads();
// Lower warps update the output.
if (warp_idx < mid) {
const float* src = &out_smem[warp_idx * HEAD_SIZE];
#pragma unroll
for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
if (row_idx < HEAD_SIZE && lane % NUM_V_VECS_PER_ROW == 0) {
accs[i] += src[row_idx];
}
}
}
__syncthreads();
}
// Write the final output.
if (warp_idx == 0) {
scalar_t* out_ptr = out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE;
#pragma unroll
for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
if (row_idx < HEAD_SIZE && lane % NUM_V_VECS_PER_ROW == 0) {
convert_from_float(*(out_ptr + row_idx), accs[i]);
}
}
}
}
// Grid: (num_heads, num_query_tokens).
template<
typename scalar_t,
int HEAD_SIZE,
int BLOCK_SIZE,
int NUM_THREADS>
__global__ void multi_query_cached_kv_attention_kernel(
const int* cu_query_lens, // [num_prompts+1]
const int* seq_prompt_mapping, // [num_seqs] mapping from seq_idx to prompt_idx
scalar_t* __restrict__ out, // [num_seqs, num_heads, head_size]
const scalar_t* __restrict__ q, // [num_seqs, num_heads, head_size]
const scalar_t* __restrict__ k_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
const scalar_t* __restrict__ v_cache, // [num_blocks, num_heads, head_size, block_size]
const float scale,
const int* __restrict__ block_tables, // [num_prompts, max_num_blocks_per_seq]
const int* __restrict__ context_lens, // [num_prompts]
const int max_num_blocks_per_seq) {
const int seq_idx = blockIdx.y;
const int prompt_idx = seq_prompt_mapping[seq_idx];
const int seq_start_idx = cu_query_lens[prompt_idx];
const int seq_len = cu_query_lens[prompt_idx + 1] - seq_start_idx;
const int* block_table = block_tables + prompt_idx * max_num_blocks_per_seq;
const int context_len = context_lens[prompt_idx];
multi_query_cached_kv_attention_kernel_unoptimized_<
scalar_t, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS>(
out,
q,
seq_start_idx,
seq_len,
k_cache,
v_cache,
scale,
block_table,
context_len,
max_num_blocks_per_seq);
}
} // namespace cacheflow
#define LAUNCH_ATTENTION_KERNEL(T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS) \
@ -402,4 +683,186 @@ void single_query_cached_kv_attention(
}
}
#define LAUNCH_MULTI_ATTENTION_KERNEL(T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS) \
cacheflow::multi_query_cached_kv_attention_kernel<T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS> \
<<<grid, block, shared_mem_size, stream>>>( \
cu_query_lens_ptr, \
seq_prompt_mapping_ptr, \
out_ptr, \
query_ptr, \
key_cache_ptr, \
value_cache_ptr, \
scale, \
block_tables_ptr, \
context_lens_ptr, \
max_num_blocks_per_seq);
// TODO(woosuk): Tune NUM_THREADS.
template<
typename T,
int BLOCK_SIZE,
int NUM_THREADS = 128>
void multi_query_cached_kv_attention_launcher(
torch::Tensor& cu_query_lens,
torch::Tensor& seq_prompt_mapping,
torch::Tensor& out,
torch::Tensor& query,
torch::Tensor& key_cache,
torch::Tensor& value_cache,
float scale,
torch::Tensor& block_tables,
torch::Tensor& context_lens,
int max_context_len) {
int num_seqs = query.size(0);
int num_heads = query.size(1);
int head_size = query.size(2);
int max_num_blocks_per_seq = block_tables.size(1);
int* cu_query_lens_ptr = cu_query_lens.data_ptr<int>();
int* seq_prompt_mapping_ptr = seq_prompt_mapping.data_ptr<int>();
T* out_ptr = reinterpret_cast<T*>(out.data_ptr());
T* query_ptr = reinterpret_cast<T*>(query.data_ptr());
T* key_cache_ptr = reinterpret_cast<T*>(key_cache.data_ptr());
T* value_cache_ptr = reinterpret_cast<T*>(value_cache.data_ptr());
int* block_tables_ptr = block_tables.data_ptr<int>();
int* context_lens_ptr = context_lens.data_ptr<int>();
constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
int padded_max_context_len = ((max_context_len + BLOCK_SIZE - 1) / BLOCK_SIZE) * BLOCK_SIZE;
int logits_size = padded_max_context_len * sizeof(float);
int outputs_size = (NUM_WARPS / 2) * head_size * sizeof(float);
int shared_mem_size = std::max(logits_size, outputs_size);
dim3 grid(num_heads, num_seqs);
dim3 block(NUM_THREADS);
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
switch (head_size) {
case 32:
LAUNCH_MULTI_ATTENTION_KERNEL(T, 32, BLOCK_SIZE, NUM_THREADS);
break;
case 64:
LAUNCH_MULTI_ATTENTION_KERNEL(T, 64, BLOCK_SIZE, NUM_THREADS);
break;
case 80:
LAUNCH_MULTI_ATTENTION_KERNEL(T, 80, BLOCK_SIZE, NUM_THREADS);
break;
case 96:
LAUNCH_MULTI_ATTENTION_KERNEL(T, 96, BLOCK_SIZE, NUM_THREADS);
break;
case 128:
LAUNCH_MULTI_ATTENTION_KERNEL(T, 128, BLOCK_SIZE, NUM_THREADS);
break;
case 160:
LAUNCH_MULTI_ATTENTION_KERNEL(T, 160, BLOCK_SIZE, NUM_THREADS);
break;
case 192:
LAUNCH_MULTI_ATTENTION_KERNEL(T, 192, BLOCK_SIZE, NUM_THREADS);
break;
case 256:
LAUNCH_MULTI_ATTENTION_KERNEL(T, 256, BLOCK_SIZE, NUM_THREADS);
break;
default:
assert(false);
break;
}
}
void multi_query_cached_kv_attention(
torch::Tensor& cu_query_lens,
torch::Tensor& out,
torch::Tensor& query,
torch::Tensor& key_cache,
torch::Tensor& value_cache,
float scale,
torch::Tensor& block_tables,
torch::Tensor& context_lens,
int block_size,
int max_context_len) {
torch::Tensor query_lens = cu_query_lens.to(torch::kCPU);
int num_queries = query_lens.size(0) - 1;
const int* query_lens_ptr = query_lens.data_ptr<int>();
int num_seqs = query.size(0);
torch::Tensor cpu_tensor = torch::empty({num_seqs}, torch::dtype(torch::kInt32));
auto accessor = cpu_tensor.accessor<int32_t, 1>();
for (int i = 0, query_cursor = 0; i < num_seqs; ++i) {
if (i >= query_lens_ptr[query_cursor + 1]) {
++query_cursor;
}
accessor[i] = query_cursor;
}
// TODO(suquark): This can be slow, as it to(torch::kCPU) and to(torch::kCUDA)
// implicitly synchronizes the CPU and GPU. And we can avoid this issue by giving
// the mapping as an input parameter. Let's do this optimization in a later PR.
torch::Tensor seq_prompt_mapping = cpu_tensor.to(torch::kCUDA);
// TODO(woosuk): Support BF16.
if (query.element_size() == 2) {
// Half.
if (block_size == 8) {
multi_query_cached_kv_attention_launcher<uint16_t, 8>(
cu_query_lens,
seq_prompt_mapping,
out,
query,
key_cache,
value_cache,
scale,
block_tables,
context_lens,
max_context_len);
} else if (block_size == 16) {
multi_query_cached_kv_attention_launcher<uint16_t, 16>(
cu_query_lens,
seq_prompt_mapping,
out,
query,
key_cache,
value_cache,
scale,
block_tables,
context_lens,
max_context_len);
} else {
assert(false);
}
} else if (query.element_size() == 4) {
// Float.
if (block_size == 8) {
multi_query_cached_kv_attention_launcher<float, 8>(
cu_query_lens,
seq_prompt_mapping,
out,
query,
key_cache,
value_cache,
scale,
block_tables,
context_lens,
max_context_len);
} else if (block_size == 16) {
multi_query_cached_kv_attention_launcher<float, 16>(
cu_query_lens,
seq_prompt_mapping,
out,
query,
key_cache,
value_cache,
scale,
block_tables,
context_lens,
max_context_len);
} else {
assert(false);
}
} else {
assert(false);
}
}
#undef WARP_SIZE

View File

@ -97,6 +97,61 @@ def ref_multi_query_kv_attention(
return ref_output
def ref_multi_query_cached_kv_attention(
cu_query_lens: List[int],
query: torch.Tensor,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
block_tables: torch.Tensor,
context_lens: torch.Tensor,
dtype: torch.dtype,
) -> torch.Tensor:
num_heads = value_cache.shape[1]
head_size = value_cache.shape[2]
block_size = value_cache.shape[3]
scale = 1.0 / (head_size ** 0.5)
num_queries = len(cu_query_lens) - 1
ref_outputs = []
for i in range(num_queries):
start_idx = cu_query_lens[i]
end_idx = cu_query_lens[i + 1]
query_len = end_idx - start_idx
context_len = int(context_lens[i])
block_table = block_tables[i]
# Create attention mask
attn_mask = torch.triu(
torch.ones(query_len, context_len), diagonal=context_len - query_len + 1) * -1e5
attn_mask = attn_mask.to(dtype=dtype, device='cuda')
keys = []
values = []
for j in range(context_len):
block_number = int(block_table[j // block_size])
block_offset = j % block_size
k = key_cache[block_number, :, :, block_offset, :]
k = k.reshape(num_heads, head_size)
keys.append(k)
v = value_cache[block_number, :, :, block_offset]
values.append(v)
keys = torch.stack(keys, dim=0)
values = torch.stack(values, dim=0)
ref_output = ref_masked_attention(
query[start_idx:end_idx],
keys,
values,
scale,
attn_mask=attn_mask,
)
ref_outputs.append(ref_output)
ref_output = torch.cat(ref_outputs, dim=0)
return ref_output
def test_single_query_cached_kv_attention(
num_tokens: int,
num_heads: int,
@ -216,6 +271,76 @@ def test_multi_query_kv_attention(
assert torch.allclose(output, ref_output, atol=1e-3, rtol=1e-5)
def test_multi_query_cached_kv_attention(
num_queries: int,
num_heads: int,
head_size: int,
block_size: int,
num_blocks: int,
dtype: torch.dtype,
) -> None:
query_lens = random.sample(range(1, MAX_SEQ_LEN), num_queries)
cu_query_lens = [0]
for query_len in query_lens:
cu_query_lens.append(cu_query_lens[-1] + query_len)
num_total_tokens = cu_query_lens[-1]
query = torch.randn(
num_total_tokens, num_heads, head_size, dtype=dtype, device='cuda')
x = 16 // torch.tensor([], dtype=dtype).element_size()
key_block_shape = (num_heads, head_size // x, block_size, x)
key_cache = torch.randn(
size=(num_blocks, *key_block_shape), dtype=dtype, device='cuda')
value_block_shape = (num_heads, head_size, block_size)
value_cache = torch.randn(
size=(num_blocks, *value_block_shape), dtype=dtype, device='cuda')
cu_query_lens = torch.tensor(cu_query_lens, dtype=torch.int, device='cuda')
context_lens = [
query_len + random.randint(0, MAX_SEQ_LEN - query_len)
for query_len in query_lens
]
max_context_len = max(context_lens)
context_lens = torch.tensor(context_lens, dtype=torch.int, device='cuda')
max_num_blocks_per_seq = (max_context_len + block_size - 1) // block_size
block_tables = []
for _ in range(num_queries):
block_table = [
random.randint(0, num_blocks - 1)
for _ in range(max_num_blocks_per_seq)
]
block_tables.append(block_table)
block_tables = torch.tensor(block_tables, dtype=torch.int, device='cuda')
scale = float(1.0 / (head_size ** 0.5))
output = torch.empty_like(query)
attention_ops.multi_query_cached_kv_attention(
cu_query_lens,
output,
query,
key_cache,
value_cache,
scale,
block_tables,
context_lens,
block_size,
max_context_len,
)
ref_output = ref_multi_query_cached_kv_attention(
cu_query_lens,
query,
key_cache,
value_cache,
block_tables,
context_lens,
dtype,
)
assert torch.allclose(output, ref_output, atol=1e-3, rtol=1e-5)
@torch.inference_mode()
def test_attention(seed: int) -> None:
# NOTE(woosuk): Even when the seed is fixed, there is a chance that
@ -237,6 +362,24 @@ def test_attention(seed: int) -> None:
dtype=dtype,
)
# NOTE(siyuan): Same as above. Re-run the test if it fails. Also
# note that the test is also more likely to fail due to the much
# larger amount of tokens in the input may increase the variance.
for dtype in [torch.half, torch.float]:
for block_size in [8, 16]:
for head_size in [32, 64, 80, 96, 128, 160, 192, 256]:
print(f'Testing multi_query_cached_kv_attention with '
f'dtype={dtype}, block_size={block_size}, '
f'head_size={head_size}')
test_multi_query_cached_kv_attention(
num_queries=11,
num_heads=3,
head_size=head_size,
block_size=block_size,
num_blocks=1024,
dtype=dtype,
)
# NOTE(woosuk): FlashAttention does not support FP32.
for dtype in [torch.half]:
# NOTE(woosuk): FlashAttention does not support head_size > 128.