Push logprob generation to LLMEngine (#3065)

Co-authored-by: Avnish Narayan <avnish@anyscale.com>
This commit is contained in:
Antoni Baum 2024-03-04 11:54:06 -08:00 committed by GitHub
parent 76e8a70476
commit 22de45235c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
13 changed files with 551 additions and 331 deletions

View File

@ -213,14 +213,14 @@ async def test_single_chat_session(server, client: openai.AsyncOpenAI,
messages=messages,
max_tokens=10,
logprobs=True,
top_logprobs=10)
top_logprobs=5)
assert chat_completion.id is not None
assert chat_completion.choices is not None and len(
chat_completion.choices) == 1
assert chat_completion.choices[0].message is not None
assert chat_completion.choices[0].logprobs is not None
assert chat_completion.choices[0].logprobs.top_logprobs is not None
assert len(chat_completion.choices[0].logprobs.top_logprobs[0]) == 10
assert len(chat_completion.choices[0].logprobs.top_logprobs[0]) == 5
message = chat_completion.choices[0].message
assert message.content is not None and len(message.content) >= 10
assert message.role == "assistant"
@ -229,7 +229,7 @@ async def test_single_chat_session(server, client: openai.AsyncOpenAI,
# test multi-turn dialogue
messages.append({"role": "user", "content": "express your result in json"})
chat_completion = await client.chat.completions.create(
model=MODEL_NAME,
model=model_name,
messages=messages,
max_tokens=10,
)
@ -237,6 +237,61 @@ async def test_single_chat_session(server, client: openai.AsyncOpenAI,
assert message.content is not None and len(message.content) >= 0
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_too_many_logprobs(server, client: openai.AsyncOpenAI,
model_name: str):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role": "user",
"content": "what is 1+1?"
}]
# Default max_logprobs is 5, so this should raise an error
with pytest.raises((openai.BadRequestError, openai.APIError)):
stream = await client.chat.completions.create(model=model_name,
messages=messages,
max_tokens=10,
logprobs=True,
top_logprobs=10,
stream=True)
async for chunk in stream:
...
with pytest.raises(openai.BadRequestError):
await client.chat.completions.create(model=model_name,
messages=messages,
max_tokens=10,
logprobs=True,
top_logprobs=10,
stream=False)
with pytest.raises((openai.BadRequestError, openai.APIError)):
stream = await client.completions.create(model=model_name,
prompt="Test",
max_tokens=10,
logprobs=10,
stream=True)
async for chunk in stream:
...
with pytest.raises(openai.BadRequestError):
await client.completions.create(model=model_name,
prompt="Test",
max_tokens=10,
logprobs=10,
stream=False)
# the server should still work afterwards
chat_completion = await client.chat.completions.create(model=model_name,
messages=messages,
max_tokens=10,
stream=False)
message = chat_completion.choices[0].message
assert message.content is not None and len(message.content) >= 0
@pytest.mark.parametrize(
# just test 1 lora hereafter
"model_name",

View File

@ -1,5 +1,6 @@
import pytest
import torch
from tests.conftest import VllmRunner
from vllm import SamplingParams
@ -16,6 +17,7 @@ def test_get_prompt_logprobs(
example_prompts,
):
max_tokens = 5
num_top_logprobs = 6
hf_model = hf_runner(model, dtype=dtype)
hf_logprobs = hf_model.generate_greedy_logprobs(
example_prompts,
@ -23,19 +25,32 @@ def test_get_prompt_logprobs(
)
del hf_model
vllm_model = vllm_runner(model, dtype=dtype)
vllm_model = vllm_runner(model, dtype=dtype, max_logprobs=num_top_logprobs)
vllm_sampling_params = SamplingParams(max_tokens=max_tokens,
logprobs=5,
logprobs=num_top_logprobs,
prompt_logprobs=5,
temperature=0.0)
vllm_results = vllm_model.model.generate(
example_prompts, sampling_params=vllm_sampling_params)
del vllm_model
# Test whether logprobs are included in the results.
for result in vllm_results:
assert result.prompt_logprobs is not None
assert result.outputs[0].logprobs is not None
assert len(result.outputs[0].logprobs) == max_tokens
for logprobs in result.outputs[0].logprobs:
assert len(logprobs) == num_top_logprobs
output_text = result.outputs[0].text
output_string_from_most_likely_tokens = []
for top_logprobs in result.outputs[0].logprobs:
top_logprob = next(iter(top_logprobs.values()))
output_string_from_most_likely_tokens.append(
top_logprob.decoded_token)
output_string_from_most_likely_tokens = "".join(
output_string_from_most_likely_tokens)
assert output_text == output_string_from_most_likely_tokens, (
"The output text from the top logprob for each token position "
"should be the same as the output text in the result.")
# Test whether prompt logprobs are consistent with HF
for vllm_result, hf_logprob in zip(vllm_results, hf_logprobs):
@ -43,14 +58,29 @@ def test_get_prompt_logprobs(
vllm_prompt_logprobs = vllm_result.prompt_logprobs[1:]
for i, vllm_prompt_logprob_dict in enumerate(vllm_prompt_logprobs):
for token_id, logprob in vllm_prompt_logprob_dict.items():
torch.testing.assert_close(logprob,
torch.testing.assert_close(logprob.logprob,
hf_logprob[0][i][token_id].item(),
atol=1e-2,
rtol=1e-2)
vllm_sample_logprobs = vllm_result.outputs[0].logprobs
for i, vllm_sample_logprob_dict in enumerate(vllm_sample_logprobs):
for token_id, logprob in vllm_sample_logprob_dict.items():
for i, top_logprobs in enumerate(vllm_sample_logprobs):
for token_id, sample_logprob in top_logprobs.items():
logprob = sample_logprob.logprob
torch.testing.assert_close(logprob,
hf_logprob[i][-1][token_id].item(),
atol=1e-2,
rtol=1e-2)
assert isinstance(sample_logprob.decoded_token, str), \
("The token should be decoded by the time it is returned "
" to the user.")
def test_max_logprobs():
runner = VllmRunner("facebook/opt-125m", max_logprobs=1)
vllm_sampling_params = SamplingParams(logprobs=1)
# should pass
runner.generate(["Hello world"], sampling_params=vllm_sampling_params)
bad_sampling_params = SamplingParams(logprobs=2)
with pytest.raises(ValueError):
runner.generate(["Hello world"], sampling_params=bad_sampling_params)

View File

@ -4,7 +4,7 @@ from typing import List, Optional, Dict
from vllm.worker.worker import Worker
from vllm.utils import get_distributed_init_method, get_ip, get_open_port
from vllm.engine.arg_utils import EngineArgs
from vllm.sequence import SequenceGroupMetadata, SequenceData
from vllm.sequence import Logprob, SequenceGroupMetadata, SequenceData
from vllm.sampling_params import SamplingParams
from vllm.worker.cache_engine import CacheEngine
from vllm.model_executor.utils import set_random_seed
@ -166,13 +166,15 @@ def create_seq_group_metadata_from_prompts(
def assert_logprobs_dict_allclose(
actual_logprobs: List[Dict[int, float]],
expected_logprobs: List[Dict[int, float]]) -> None:
actual_logprobs: List[Dict[int, Logprob]],
expected_logprobs: List[Dict[int, Logprob]]) -> None:
for single_step_actual_logprobs, single_step_expected_logprobs in zip(
actual_logprobs, expected_logprobs):
assert set(single_step_actual_logprobs.keys()) == set(
single_step_expected_logprobs.keys())
for token_id in single_step_actual_logprobs:
actual = torch.tensor(single_step_actual_logprobs[token_id])
expected = torch.tensor(single_step_expected_logprobs[token_id])
actual = torch.tensor(
single_step_actual_logprobs[token_id].logprob)
expected = torch.tensor(
single_step_expected_logprobs[token_id].logprob)
assert torch.allclose(actual, expected)

View File

@ -79,6 +79,7 @@ class ModelConfig:
quantization: Optional[str] = None,
enforce_eager: bool = False,
max_context_len_to_capture: Optional[int] = None,
max_logprobs: int = 5,
) -> None:
self.model = model
self.tokenizer = tokenizer
@ -93,6 +94,7 @@ class ModelConfig:
self.quantization = quantization
self.enforce_eager = enforce_eager
self.max_context_len_to_capture = max_context_len_to_capture
self.max_logprobs = max_logprobs
if os.environ.get("VLLM_USE_MODELSCOPE", "False").lower() == "true":
# download model from ModelScope hub,

View File

@ -31,6 +31,7 @@ class EngineArgs:
max_num_batched_tokens: Optional[int] = None
max_num_seqs: int = 256
max_paddings: int = 256
max_logprobs: int = 5 # OpenAI default value
disable_log_stats: bool = False
revision: Optional[str] = None
code_revision: Optional[str] = None
@ -212,6 +213,12 @@ class EngineArgs:
type=int,
default=EngineArgs.max_paddings,
help='maximum number of paddings in a batch')
parser.add_argument(
'--max-logprobs',
type=int,
default=EngineArgs.max_logprobs,
help=('max number of log probs to return logprobs is specified in'
' SamplingParams'))
parser.add_argument('--disable-log-stats',
action='store_true',
help='disable logging statistics')
@ -300,7 +307,8 @@ class EngineArgs:
self.trust_remote_code, self.download_dir, self.load_format,
self.dtype, self.seed, self.revision, self.code_revision,
self.tokenizer_revision, self.max_model_len, self.quantization,
self.enforce_eager, self.max_context_len_to_capture)
self.enforce_eager, self.max_context_len_to_capture,
self.max_logprobs)
cache_config = CacheConfig(self.block_size,
self.gpu_memory_utilization,
self.swap_space, self.kv_cache_dtype,

View File

@ -47,7 +47,7 @@ class AsyncStream:
self._queue = asyncio.Queue()
self._finished = False
def put(self, item: RequestOutput) -> None:
def put(self, item: Union[RequestOutput, Exception]) -> None:
if self._finished:
return
self._queue.put_nowait(item)
@ -110,6 +110,17 @@ class RequestTracker:
logger.info(f"Finished request {request_id}.")
self.abort_request(request_id)
def process_exception(self,
request_id: str,
exception: Exception,
*,
verbose: bool = False) -> None:
"""Propagate an exception from the engine."""
self._request_streams[request_id].put(exception)
if verbose:
logger.info(f"Finished request {request_id}.")
self.abort_request(request_id)
def add_request(self, request_id: str,
**engine_add_request_kwargs) -> AsyncStream:
"""Add a request to be sent to the engine on the next background
@ -377,10 +388,18 @@ class AsyncLLMEngine:
for new_request in new_requests:
# Add the request into the vLLM engine's waiting queue.
# TODO: Maybe add add_request_batch to reduce Ray overhead
if self.engine_use_ray:
await self.engine.add_request.remote(**new_request)
else:
await self.engine.add_request_async(**new_request)
try:
if self.engine_use_ray:
await self.engine.add_request.remote(**new_request)
else:
await self.engine.add_request_async(**new_request)
except ValueError as e:
# TODO: use a vLLM specific error for failed validation
self._request_tracker.process_exception(
new_request["request_id"],
e,
verbose=self.log_requests,
)
if finished_requests:
await self._engine_abort(finished_requests)

View File

@ -18,7 +18,7 @@ from vllm.engine.ray_utils import RayWorkerVllm, initialize_cluster, ray
from vllm.logger import init_logger
from vllm.outputs import RequestOutput
from vllm.sampling_params import SamplingParams
from vllm.sequence import (SamplerOutput, Sequence, SequenceGroup,
from vllm.sequence import (Logprob, SamplerOutput, Sequence, SequenceGroup,
SequenceGroupOutput, SequenceOutput, SequenceStatus)
from vllm.transformers_utils.tokenizer import (detokenize_incrementally,
TokenizerGroup)
@ -473,6 +473,13 @@ class LLMEngine:
if lora_request is not None and not self.lora_config:
raise ValueError(f"Got lora_request {lora_request} but LoRA is "
"not enabled!")
max_logprobs = self.get_model_config().max_logprobs
if (sampling_params.logprobs
and sampling_params.logprobs > max_logprobs) or (
sampling_params.prompt_logprobs
and sampling_params.prompt_logprobs > max_logprobs):
raise ValueError(f"Cannot request more than "
f"{max_logprobs} logprobs.")
if arrival_time is None:
arrival_time = time.monotonic()
prompt_token_ids = self.encode_request(
@ -583,6 +590,13 @@ class LLMEngine:
# Process prompt logprobs
prompt_logprobs = outputs.prompt_logprobs
if prompt_logprobs is not None:
# We can pick any sequence for the prompt.
seq = next(iter(seq_group.seqs_dict.values()))
all_token_ids = seq.get_token_ids()
for i, prompt_logprobs_for_token in enumerate(prompt_logprobs):
self._decode_logprobs(seq, seq_group.sampling_params,
prompt_logprobs_for_token,
all_token_ids[:i])
seq_group.prompt_logprobs = prompt_logprobs
# Process samples
@ -930,12 +944,36 @@ class LLMEngine:
time_e2e_requests=time_e2e_requests,
)
def _decode_logprobs(self, seq: Sequence, prms: SamplingParams,
logprobs: Dict[int, Logprob],
all_input_ids: List[int]) -> None:
if not logprobs:
return
for token_id, sample_logprob in logprobs.items():
if (sample_logprob.decoded_token is None and token_id != -1):
all_input_ids_with_logprob = all_input_ids[:-1] + [token_id]
_, new_text, prefix_offset, read_offset = detokenize_incrementally(
self.get_tokenizer_for_seq(seq),
all_input_ids=all_input_ids_with_logprob,
prev_tokens=seq.tokens,
prefix_offset=seq.prefix_offset,
read_offset=seq.read_offset,
skip_special_tokens=prms.skip_special_tokens,
spaces_between_special_tokens=prms.
spaces_between_special_tokens,
)
sample_logprob.decoded_token = new_text
def _decode_sequence(self, seq: Sequence, prms: SamplingParams) -> None:
"""Decodes the new token for a sequence."""
all_input_ids = seq.get_token_ids()
self._decode_logprobs(seq, prms, seq.output_logprobs[-1],
all_input_ids)
(new_tokens, new_output_text, prefix_offset,
read_offset) = detokenize_incrementally(
self.get_tokenizer_for_seq(seq),
all_input_ids=seq.get_token_ids(),
all_input_ids=all_input_ids,
prev_tokens=seq.tokens,
prefix_offset=seq.prefix_offset,
read_offset=seq.read_offset,

View File

@ -82,8 +82,12 @@ class OpenAIServingChat(OpenAIServing):
return self.chat_completion_stream_generator(
request, result_generator, request_id)
else:
return await self.chat_completion_full_generator(
request, raw_request, result_generator, request_id)
try:
return await self.chat_completion_full_generator(
request, raw_request, result_generator, request_id)
except ValueError as e:
# TODO: Use a vllm-specific Validation Error
return self.create_error_response(str(e))
def get_chat_request_role(self, request: ChatCompletionRequest) -> str:
if request.add_generation_prompt:
@ -99,117 +103,133 @@ class OpenAIServingChat(OpenAIServing):
model_name = request.model
created_time = int(time.monotonic())
chunk_object_type = "chat.completion.chunk"
# Send first response for each request.n (index) with the role
role = self.get_chat_request_role(request)
for i in range(request.n):
choice_data = ChatCompletionResponseStreamChoice(
index=i,
delta=DeltaMessage(role=role),
logprobs=None,
finish_reason=None)
chunk = ChatCompletionStreamResponse(id=request_id,
object=chunk_object_type,
created=created_time,
choices=[choice_data],
model=model_name)
data = chunk.model_dump_json(exclude_unset=True)
yield f"data: {data}\n\n"
# Send response to echo the input portion of the last message
if request.echo:
last_msg_content = ""
if request.messages and isinstance(
request.messages, list) and request.messages[-1].get(
"content") and request.messages[-1].get(
"role") == role:
last_msg_content = request.messages[-1]["content"]
if last_msg_content:
for i in range(request.n):
choice_data = ChatCompletionResponseStreamChoice(
index=i,
delta=DeltaMessage(content=last_msg_content),
finish_reason=None)
chunk = ChatCompletionStreamResponse(
id=request_id,
object=chunk_object_type,
created=created_time,
choices=[choice_data],
logprobs=None,
model=model_name)
data = chunk.model_dump_json(exclude_unset=True)
yield f"data: {data}\n\n"
first_iteration = True
# Send response for each token for each request.n (index)
previous_texts = [""] * request.n
previous_num_tokens = [0] * request.n
finish_reason_sent = [False] * request.n
async for res in result_generator:
res: RequestOutput
for output in res.outputs:
i = output.index
try:
async for res in result_generator:
res: RequestOutput
# We need to do it here, because if there are exceptions in
# the result_generator, it needs to be sent as the FIRST
# response (by the try...catch).
if first_iteration:
# Send first response for each request.n (index) with the role
role = self.get_chat_request_role(request)
for i in range(request.n):
choice_data = ChatCompletionResponseStreamChoice(
index=i,
delta=DeltaMessage(role=role),
logprobs=None,
finish_reason=None)
chunk = ChatCompletionStreamResponse(
id=request_id,
object=chunk_object_type,
created=created_time,
choices=[choice_data],
model=model_name)
data = chunk.model_dump_json(exclude_unset=True)
yield f"data: {data}\n\n"
if finish_reason_sent[i]:
continue
# Send response to echo the input portion of the last message
if request.echo:
last_msg_content = ""
if request.messages and isinstance(
request.messages,
list) and request.messages[-1].get(
"content") and request.messages[-1].get(
"role") == role:
last_msg_content = request.messages[-1]["content"]
delta_token_ids = output.token_ids[previous_num_tokens[i]:]
top_logprobs = output.logprobs[
previous_num_tokens[i]:] if output.logprobs else None
if last_msg_content:
for i in range(request.n):
choice_data = ChatCompletionResponseStreamChoice(
index=i,
delta=DeltaMessage(
content=last_msg_content),
finish_reason=None)
chunk = ChatCompletionStreamResponse(
id=request_id,
object=chunk_object_type,
created=created_time,
choices=[choice_data],
logprobs=None,
model=model_name)
data = chunk.model_dump_json(
exclude_unset=True)
yield f"data: {data}\n\n"
first_iteration = False
if request.logprobs:
logprobs = self._create_logprobs(
token_ids=delta_token_ids,
top_logprobs=top_logprobs,
num_output_top_logprobs=request.logprobs,
initial_text_offset=len(previous_texts[i]),
)
else:
logprobs = None
for output in res.outputs:
i = output.index
delta_text = output.text[len(previous_texts[i]):]
previous_texts[i] = output.text
previous_num_tokens[i] = len(output.token_ids)
if output.finish_reason is None:
# Send token-by-token response for each request.n
choice_data = ChatCompletionResponseStreamChoice(
index=i,
delta=DeltaMessage(content=delta_text),
logprobs=logprobs,
finish_reason=None)
chunk = ChatCompletionStreamResponse(
id=request_id,
object=chunk_object_type,
created=created_time,
choices=[choice_data],
model=model_name)
data = chunk.model_dump_json(exclude_unset=True)
yield f"data: {data}\n\n"
else:
# Send the finish response for each request.n only once
prompt_tokens = len(res.prompt_token_ids)
final_usage = UsageInfo(
prompt_tokens=prompt_tokens,
completion_tokens=previous_num_tokens[i],
total_tokens=prompt_tokens + previous_num_tokens[i],
)
choice_data = ChatCompletionResponseStreamChoice(
index=i,
delta=DeltaMessage(content=delta_text),
logprobs=logprobs,
finish_reason=output.finish_reason)
chunk = ChatCompletionStreamResponse(
id=request_id,
object=chunk_object_type,
created=created_time,
choices=[choice_data],
model=model_name)
if final_usage is not None:
chunk.usage = final_usage
data = chunk.model_dump_json(exclude_unset=True,
exclude_none=True)
yield f"data: {data}\n\n"
finish_reason_sent[i] = True
if finish_reason_sent[i]:
continue
delta_token_ids = output.token_ids[previous_num_tokens[i]:]
top_logprobs = output.logprobs[
previous_num_tokens[i]:] if output.logprobs else None
if request.logprobs:
logprobs = self._create_logprobs(
token_ids=delta_token_ids,
top_logprobs=top_logprobs,
num_output_top_logprobs=request.logprobs,
initial_text_offset=len(previous_texts[i]),
)
else:
logprobs = None
delta_text = output.text[len(previous_texts[i]):]
previous_texts[i] = output.text
previous_num_tokens[i] = len(output.token_ids)
if output.finish_reason is None:
# Send token-by-token response for each request.n
choice_data = ChatCompletionResponseStreamChoice(
index=i,
delta=DeltaMessage(content=delta_text),
logprobs=logprobs,
finish_reason=None)
chunk = ChatCompletionStreamResponse(
id=request_id,
object=chunk_object_type,
created=created_time,
choices=[choice_data],
model=model_name)
data = chunk.model_dump_json(exclude_unset=True)
yield f"data: {data}\n\n"
else:
# Send the finish response for each request.n only once
prompt_tokens = len(res.prompt_token_ids)
final_usage = UsageInfo(
prompt_tokens=prompt_tokens,
completion_tokens=previous_num_tokens[i],
total_tokens=prompt_tokens +
previous_num_tokens[i],
)
choice_data = ChatCompletionResponseStreamChoice(
index=i,
delta=DeltaMessage(content=delta_text),
logprobs=logprobs,
finish_reason=output.finish_reason)
chunk = ChatCompletionStreamResponse(
id=request_id,
object=chunk_object_type,
created=created_time,
choices=[choice_data],
model=model_name)
if final_usage is not None:
chunk.usage = final_usage
data = chunk.model_dump_json(exclude_unset=True,
exclude_none=True)
yield f"data: {data}\n\n"
finish_reason_sent[i] = True
except ValueError as e:
# TODO: Use a vllm-specific Validation Error
data = self.create_streaming_error_response(str(e))
yield f"data: {data}\n\n"
# Send the final done message after all response.n are finished
yield "data: [DONE]\n\n"

View File

@ -26,107 +26,6 @@ TypeCreateLogProbsFn = Callable[
[TypeTokenIDs, TypeTopLogProbs, Optional[int], int], LogProbs]
async def completion_stream_generator(
request: CompletionRequest,
raw_request: Request,
on_abort,
result_generator: AsyncIterator[Tuple[int, RequestOutput]],
create_logprobs_fn: TypeCreateLogProbsFn,
request_id: str,
created_time: int,
model_name: str,
num_prompts: int,
) -> AsyncGenerator[str, None]:
previous_texts = [""] * request.n * num_prompts
previous_num_tokens = [0] * request.n * num_prompts
has_echoed = [False] * request.n * num_prompts
async for prompt_idx, res in result_generator:
# Abort the request if the client disconnects.
if await raw_request.is_disconnected():
await on_abort(f"{request_id}-{prompt_idx}")
raise StopAsyncIteration()
for output in res.outputs:
i = output.index + prompt_idx * request.n
# TODO(simon): optimize the performance by avoiding full text O(n^2) sending.
if request.echo and request.max_tokens == 0:
# only return the prompt
delta_text = res.prompt
delta_token_ids = res.prompt_token_ids
top_logprobs = res.prompt_logprobs
has_echoed[i] = True
elif request.echo and request.max_tokens > 0 and not has_echoed[i]:
# echo the prompt and first token
delta_text = res.prompt + output.text
delta_token_ids = res.prompt_token_ids + output.token_ids
top_logprobs = res.prompt_logprobs + (output.logprobs or [])
has_echoed[i] = True
else:
# return just the delta
delta_text = output.text[len(previous_texts[i]):]
delta_token_ids = output.token_ids[previous_num_tokens[i]:]
top_logprobs = output.logprobs[
previous_num_tokens[i]:] if output.logprobs else None
if request.logprobs is not None:
assert top_logprobs is not None, "top_logprobs must be provided when logprobs is requested"
logprobs = create_logprobs_fn(
token_ids=delta_token_ids,
top_logprobs=top_logprobs,
num_output_top_logprobs=request.logprobs,
initial_text_offset=len(previous_texts[i]),
)
else:
logprobs = None
previous_texts[i] = output.text
previous_num_tokens[i] = len(output.token_ids)
finish_reason = output.finish_reason
response_json = CompletionStreamResponse(
id=request_id,
created=created_time,
model=model_name,
choices=[
CompletionResponseStreamChoice(
index=i,
text=delta_text,
logprobs=logprobs,
finish_reason=finish_reason,
)
]).model_dump_json()
yield f"data: {response_json}\n\n"
if output.finish_reason is not None: # return final usage
logprobs = LogProbs() if request.logprobs is not None else None
prompt_tokens = len(res.prompt_token_ids)
completion_tokens = len(output.token_ids)
final_usage = UsageInfo(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
response_json = CompletionStreamResponse(
id=request_id,
created=created_time,
model=model_name,
choices=[
CompletionResponseStreamChoice(
index=i,
text="",
logprobs=logprobs,
finish_reason=output.finish_reason,
)
],
usage=final_usage,
).model_dump_json()
yield f"data: {response_json}\n\n"
yield "data: [DONE]\n\n"
def parse_prompt_format(prompt) -> Tuple[bool, list]:
# get the prompt, openai supports the following
# "a string, array of strings, array of tokens, or array of token arrays."
@ -151,73 +50,6 @@ def parse_prompt_format(prompt) -> Tuple[bool, list]:
return prompt_is_tokens, prompts
def request_output_to_completion_response(
final_res_batch: List[RequestOutput],
request: CompletionRequest,
create_logprobs_fn: TypeCreateLogProbsFn,
request_id: str,
created_time: int,
model_name: str,
) -> CompletionResponse:
choices = []
num_prompt_tokens = 0
num_generated_tokens = 0
for final_res in final_res_batch:
assert final_res is not None
prompt_token_ids = final_res.prompt_token_ids
prompt_logprobs = final_res.prompt_logprobs
prompt_text = final_res.prompt
for output in final_res.outputs:
if request.echo and request.max_tokens == 0:
token_ids = prompt_token_ids
top_logprobs = prompt_logprobs
output_text = prompt_text
elif request.echo and request.max_tokens > 0:
token_ids = prompt_token_ids + output.token_ids
top_logprobs = prompt_logprobs + output.logprobs
output_text = prompt_text + output.text
else:
token_ids = output.token_ids
top_logprobs = output.logprobs
output_text = output.text
if request.logprobs is not None:
logprobs = create_logprobs_fn(
token_ids=token_ids,
top_logprobs=top_logprobs,
num_output_top_logprobs=request.logprobs,
)
else:
logprobs = None
choice_data = CompletionResponseChoice(
index=len(choices),
text=output_text,
logprobs=logprobs,
finish_reason=output.finish_reason,
)
choices.append(choice_data)
num_prompt_tokens += len(prompt_token_ids)
num_generated_tokens += sum(
len(output.token_ids) for output in final_res.outputs)
usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
completion_tokens=num_generated_tokens,
total_tokens=num_prompt_tokens + num_generated_tokens,
)
return CompletionResponse(
id=request_id,
created=created_time,
model=model_name,
choices=choices,
usage=usage,
)
def merge_async_iterators(*iterators):
"""Merge multiple asynchronous iterators into a single iterator.
@ -230,8 +62,11 @@ def merge_async_iterators(*iterators):
finished = [False] * len(iterators)
async def producer(i, iterator):
async for item in iterator:
await queue.put((i, item))
try:
async for item in iterator:
await queue.put((i, item))
except Exception as e:
await queue.put(e)
finished[i] = True
_tasks = [
@ -242,6 +77,8 @@ def merge_async_iterators(*iterators):
async def consumer():
while not all(finished) or not queue.empty():
item = await queue.get()
if isinstance(item, Exception):
raise item
yield item
await asyncio.gather(*_tasks)
@ -312,6 +149,7 @@ class OpenAIServingCompletion(OpenAIServing):
prompt_token_ids=input_ids,
lora_request=lora_request))
except ValueError as e:
# TODO: Use a vllm-specific Validation Error
return self.create_error_response(str(e))
result_generator: AsyncIterator[Tuple[
@ -325,27 +163,28 @@ class OpenAIServingCompletion(OpenAIServing):
# Streaming response
if stream:
return completion_stream_generator(request,
raw_request,
self.engine.abort,
result_generator,
self._create_logprobs,
request_id,
created_time,
model_name,
num_prompts=len(prompts))
return self.completion_stream_generator(request,
raw_request,
result_generator,
request_id,
created_time,
model_name,
num_prompts=len(prompts))
# Non-streaming response
final_res_batch: RequestOutput = [None] * len(prompts)
async for i, res in result_generator:
if await raw_request.is_disconnected():
# Abort the request if the client disconnects.
await self.engine.abort(f"{request_id}-{i}")
return self.create_error_response("Client disconnected")
final_res_batch[i] = res
response = request_output_to_completion_response(
final_res_batch, request, self._create_logprobs, request_id,
created_time, model_name)
try:
async for i, res in result_generator:
if await raw_request.is_disconnected():
# Abort the request if the client disconnects.
await self.engine.abort(f"{request_id}-{i}")
return self.create_error_response("Client disconnected")
final_res_batch[i] = res
response = self.request_output_to_completion_response(
final_res_batch, request, request_id, created_time, model_name)
except ValueError as e:
# TODO: Use a vllm-specific Validation Error
return self.create_error_response(str(e))
# When user requests streaming but we don't stream, we still need to
# return a streaming response with a single event.
@ -359,3 +198,179 @@ class OpenAIServingCompletion(OpenAIServing):
return fake_stream_generator()
return response
async def completion_stream_generator(
self,
request: CompletionRequest,
raw_request: Request,
result_generator: AsyncIterator[Tuple[int, RequestOutput]],
request_id: str,
created_time: int,
model_name: str,
num_prompts: int,
) -> AsyncGenerator[str, None]:
previous_texts = [""] * request.n * num_prompts
previous_num_tokens = [0] * request.n * num_prompts
has_echoed = [False] * request.n * num_prompts
try:
async for prompt_idx, res in result_generator:
# Abort the request if the client disconnects.
if await raw_request.is_disconnected():
await self.engine.abort(f"{request_id}-{prompt_idx}")
raise StopAsyncIteration()
for output in res.outputs:
i = output.index + prompt_idx * request.n
# TODO(simon): optimize the performance by avoiding full text O(n^2) sending.
if request.echo and request.max_tokens == 0:
# only return the prompt
delta_text = res.prompt
delta_token_ids = res.prompt_token_ids
top_logprobs = res.prompt_logprobs
has_echoed[i] = True
elif request.echo and request.max_tokens > 0 and not has_echoed[
i]:
# echo the prompt and first token
delta_text = res.prompt + output.text
delta_token_ids = res.prompt_token_ids + output.token_ids
top_logprobs = res.prompt_logprobs + (output.logprobs
or [])
has_echoed[i] = True
else:
# return just the delta
delta_text = output.text[len(previous_texts[i]):]
delta_token_ids = output.token_ids[
previous_num_tokens[i]:]
top_logprobs = output.logprobs[previous_num_tokens[
i]:] if output.logprobs else None
if request.logprobs is not None:
assert top_logprobs is not None, "top_logprobs must be provided when logprobs is requested"
logprobs = self._create_logprobs(
token_ids=delta_token_ids,
top_logprobs=top_logprobs,
num_output_top_logprobs=request.logprobs,
initial_text_offset=len(previous_texts[i]),
)
else:
logprobs = None
previous_texts[i] = output.text
previous_num_tokens[i] = len(output.token_ids)
finish_reason = output.finish_reason
response_json = CompletionStreamResponse(
id=request_id,
created=created_time,
model=model_name,
choices=[
CompletionResponseStreamChoice(
index=i,
text=delta_text,
logprobs=logprobs,
finish_reason=finish_reason,
)
]).model_dump_json()
yield f"data: {response_json}\n\n"
if output.finish_reason is not None: # return final usage
logprobs = LogProbs(
) if request.logprobs is not None else None
prompt_tokens = len(res.prompt_token_ids)
completion_tokens = len(output.token_ids)
final_usage = UsageInfo(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
response_json = CompletionStreamResponse(
id=request_id,
created=created_time,
model=model_name,
choices=[
CompletionResponseStreamChoice(
index=i,
text="",
logprobs=logprobs,
finish_reason=output.finish_reason,
)
],
usage=final_usage,
).model_dump_json()
yield f"data: {response_json}\n\n"
except ValueError as e:
# TODO: Use a vllm-specific Validation Error
data = self.create_streaming_error_response(str(e))
print("yield", f"data: {data}\n\n")
yield f"data: {data}\n\n"
print("yield", "data: [DONE]\n\n")
yield "data: [DONE]\n\n"
def request_output_to_completion_response(
self,
final_res_batch: List[RequestOutput],
request: CompletionRequest,
request_id: str,
created_time: int,
model_name: str,
) -> CompletionResponse:
choices = []
num_prompt_tokens = 0
num_generated_tokens = 0
for final_res in final_res_batch:
assert final_res is not None
prompt_token_ids = final_res.prompt_token_ids
prompt_logprobs = final_res.prompt_logprobs
prompt_text = final_res.prompt
for output in final_res.outputs:
if request.echo and request.max_tokens == 0:
token_ids = prompt_token_ids
top_logprobs = prompt_logprobs
output_text = prompt_text
elif request.echo and request.max_tokens > 0:
token_ids = prompt_token_ids + output.token_ids
top_logprobs = prompt_logprobs + output.logprobs
output_text = prompt_text + output.text
else:
token_ids = output.token_ids
top_logprobs = output.logprobs
output_text = output.text
if request.logprobs is not None:
logprobs = self._create_logprobs(
token_ids=token_ids,
top_logprobs=top_logprobs,
num_output_top_logprobs=request.logprobs,
)
else:
logprobs = None
choice_data = CompletionResponseChoice(
index=len(choices),
text=output_text,
logprobs=logprobs,
finish_reason=output.finish_reason,
)
choices.append(choice_data)
num_prompt_tokens += len(prompt_token_ids)
num_generated_tokens += sum(
len(output.token_ids) for output in final_res.outputs)
usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
completion_tokens=num_generated_tokens,
total_tokens=num_prompt_tokens + num_generated_tokens,
)
return CompletionResponse(
id=request_id,
created=created_time,
model=model_name,
choices=choices,
usage=usage,
)

View File

@ -1,4 +1,5 @@
import asyncio
import json
from dataclasses import dataclass
from http import HTTPStatus
from typing import Dict, List, Optional, Union
@ -11,6 +12,7 @@ from vllm.entrypoints.openai.protocol import (CompletionRequest,
ModelCard, ModelList,
ModelPermission)
from vllm.lora.request import LoRARequest
from vllm.sequence import Logprob
logger = init_logger(__name__)
@ -83,7 +85,7 @@ class OpenAIServing:
def _create_logprobs(
self,
token_ids: List[int],
top_logprobs: Optional[List[Optional[Dict[int, float]]]] = None,
top_logprobs: Optional[List[Optional[Dict[int, Logprob]]]] = None,
num_output_top_logprobs: Optional[int] = None,
initial_text_offset: int = 0,
) -> LogProbs:
@ -95,10 +97,10 @@ class OpenAIServing:
for i, token_id in enumerate(token_ids):
step_top_logprobs = top_logprobs[i]
if step_top_logprobs is not None:
token_logprob = step_top_logprobs[token_id]
token_logprob = step_top_logprobs[token_id].logprob
else:
token_logprob = None
token = self.tokenizer.convert_ids_to_tokens(token_id)
token = step_top_logprobs[token_id].decoded_token
logprobs.tokens.append(token)
logprobs.token_logprobs.append(token_logprob)
if len(logprobs.text_offset) == 0:
@ -110,7 +112,7 @@ class OpenAIServing:
if num_output_top_logprobs:
logprobs.top_logprobs.append({
self.tokenizer.convert_ids_to_tokens(i): p
p.decoded_token: p.logprob
for i, p in step_top_logprobs.items()
} if step_top_logprobs else None)
return logprobs
@ -124,6 +126,19 @@ class OpenAIServing:
type=err_type,
code=status_code.value)
def create_streaming_error_response(
self,
message: str,
err_type: str = "BadRequestError",
status_code: HTTPStatus = HTTPStatus.BAD_REQUEST) -> str:
json_str = json.dumps({
"error":
self.create_error_response(message=message,
err_type=err_type,
status_code=status_code).model_dump()
})
return json_str
async def _check_model(self, request) -> Optional[ErrorResponse]:
if request.model == self.served_model:
return

View File

@ -8,8 +8,9 @@ from vllm.model_executor.parallel_utils.communication_op import (
tensor_model_parallel_gather)
from vllm.model_executor.sampling_metadata import SamplingMetadata, SamplingTensors
from vllm.sampling_params import SamplingParams, SamplingType
from vllm.sequence import (PromptLogprobs, SampleLogprobs, SamplerOutput,
SequenceData, SequenceGroupOutput, SequenceOutput)
from vllm.sequence import (Logprob, PromptLogprobs, SampleLogprobs,
SamplerOutput, SequenceData, SequenceGroupOutput,
SequenceOutput)
from vllm.utils import is_neuron
@ -528,7 +529,10 @@ def _get_logprobs(
prompt_logprobs_dict.update(
zip(top_token_ids[sample_idx, :num_logprobs].tolist(),
top_logprobs[sample_idx, :num_logprobs].tolist()))
group_prompt_logprobs.append(prompt_logprobs_dict)
group_prompt_logprobs.append({
token_id: Logprob(logprob)
for token_id, logprob in prompt_logprobs_dict.items()
})
sample_idx += 1
query_result_idx += 1
result_prompt_logprobs.append(group_prompt_logprobs)
@ -553,7 +557,10 @@ def _get_logprobs(
parent_id, :num_logprobs].tolist(),
top_logprobs[sample_idx +
parent_id, :num_logprobs].tolist()))
group_sample_logprobs.append(sample_logprobs_dict)
group_sample_logprobs.append({
token_id: Logprob(logprob)
for token_id, logprob in sample_logprobs_dict.items()
})
result_sample_logprobs.append(group_sample_logprobs)
sample_idx += len(seq_ids)

View File

@ -8,8 +8,16 @@ from vllm.block import LogicalTokenBlock
from vllm.sampling_params import SamplingParams
from vllm.lora.request import LoRARequest
PromptLogprobs = List[Optional[Dict[int, float]]]
SampleLogprobs = List[Dict[int, float]]
@dataclass
class Logprob:
"""Infos for supporting OpenAI compatible logprobs."""
logprob: float
decoded_token: Optional[str] = None
PromptLogprobs = List[Optional[Dict[int, Logprob]]]
SampleLogprobs = List[Dict[int, Logprob]]
class SequenceStatus(enum.Enum):
@ -196,12 +204,12 @@ class Sequence:
def append_token_id(
self,
token_id: int,
logprobs: Dict[int, float],
logprobs: Dict[int, Logprob],
) -> None:
assert token_id in logprobs
self._append_tokens_to_blocks([token_id])
self.output_logprobs.append(logprobs)
self.data.append_token_id(token_id, logprobs[token_id])
self.data.append_token_id(token_id, logprobs[token_id].logprob)
def get_len(self) -> int:
return self.data.get_len()
@ -456,7 +464,7 @@ class SequenceOutput:
self,
parent_seq_id: int,
output_token: int,
logprobs: Dict[int, float],
logprobs: Dict[int, Logprob],
) -> None:
self.parent_seq_id = parent_seq_id
self.output_token = output_token
@ -470,9 +478,10 @@ class SequenceOutput:
def __eq__(self, other: object) -> bool:
if not isinstance(other, SequenceOutput):
raise NotImplementedError()
return (self.parent_seq_id == other.parent_seq_id
and self.output_token == other.output_token
and self.logprobs == other.logprobs)
equal = (self.parent_seq_id == other.parent_seq_id
and self.output_token == other.output_token)
log_probs_equal = other.logprobs == self.logprobs
return equal and log_probs_equal
class SequenceGroupOutput:

View File

@ -77,7 +77,7 @@ class MultiStepWorker(Worker):
token_id = seq_output.output_token
token_logprob = seq_output.logprobs[token_id]
seq.append_token_id(token_id, token_logprob)
seq.append_token_id(token_id, token_logprob.logprob)
def _shallow_copy_inputs(
self, seq_group_metadata_list: List[SequenceGroupMetadata]