mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 07:15:01 +08:00
Push logprob generation to LLMEngine (#3065)
Co-authored-by: Avnish Narayan <avnish@anyscale.com>
This commit is contained in:
parent
76e8a70476
commit
22de45235c
@ -213,14 +213,14 @@ async def test_single_chat_session(server, client: openai.AsyncOpenAI,
|
||||
messages=messages,
|
||||
max_tokens=10,
|
||||
logprobs=True,
|
||||
top_logprobs=10)
|
||||
top_logprobs=5)
|
||||
assert chat_completion.id is not None
|
||||
assert chat_completion.choices is not None and len(
|
||||
chat_completion.choices) == 1
|
||||
assert chat_completion.choices[0].message is not None
|
||||
assert chat_completion.choices[0].logprobs is not None
|
||||
assert chat_completion.choices[0].logprobs.top_logprobs is not None
|
||||
assert len(chat_completion.choices[0].logprobs.top_logprobs[0]) == 10
|
||||
assert len(chat_completion.choices[0].logprobs.top_logprobs[0]) == 5
|
||||
message = chat_completion.choices[0].message
|
||||
assert message.content is not None and len(message.content) >= 10
|
||||
assert message.role == "assistant"
|
||||
@ -229,7 +229,7 @@ async def test_single_chat_session(server, client: openai.AsyncOpenAI,
|
||||
# test multi-turn dialogue
|
||||
messages.append({"role": "user", "content": "express your result in json"})
|
||||
chat_completion = await client.chat.completions.create(
|
||||
model=MODEL_NAME,
|
||||
model=model_name,
|
||||
messages=messages,
|
||||
max_tokens=10,
|
||||
)
|
||||
@ -237,6 +237,61 @@ async def test_single_chat_session(server, client: openai.AsyncOpenAI,
|
||||
assert message.content is not None and len(message.content) >= 0
|
||||
|
||||
|
||||
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
||||
async def test_too_many_logprobs(server, client: openai.AsyncOpenAI,
|
||||
model_name: str):
|
||||
messages = [{
|
||||
"role": "system",
|
||||
"content": "you are a helpful assistant"
|
||||
}, {
|
||||
"role": "user",
|
||||
"content": "what is 1+1?"
|
||||
}]
|
||||
|
||||
# Default max_logprobs is 5, so this should raise an error
|
||||
with pytest.raises((openai.BadRequestError, openai.APIError)):
|
||||
stream = await client.chat.completions.create(model=model_name,
|
||||
messages=messages,
|
||||
max_tokens=10,
|
||||
logprobs=True,
|
||||
top_logprobs=10,
|
||||
stream=True)
|
||||
async for chunk in stream:
|
||||
...
|
||||
|
||||
with pytest.raises(openai.BadRequestError):
|
||||
await client.chat.completions.create(model=model_name,
|
||||
messages=messages,
|
||||
max_tokens=10,
|
||||
logprobs=True,
|
||||
top_logprobs=10,
|
||||
stream=False)
|
||||
|
||||
with pytest.raises((openai.BadRequestError, openai.APIError)):
|
||||
stream = await client.completions.create(model=model_name,
|
||||
prompt="Test",
|
||||
max_tokens=10,
|
||||
logprobs=10,
|
||||
stream=True)
|
||||
async for chunk in stream:
|
||||
...
|
||||
|
||||
with pytest.raises(openai.BadRequestError):
|
||||
await client.completions.create(model=model_name,
|
||||
prompt="Test",
|
||||
max_tokens=10,
|
||||
logprobs=10,
|
||||
stream=False)
|
||||
|
||||
# the server should still work afterwards
|
||||
chat_completion = await client.chat.completions.create(model=model_name,
|
||||
messages=messages,
|
||||
max_tokens=10,
|
||||
stream=False)
|
||||
message = chat_completion.choices[0].message
|
||||
assert message.content is not None and len(message.content) >= 0
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
# just test 1 lora hereafter
|
||||
"model_name",
|
||||
|
||||
@ -1,5 +1,6 @@
|
||||
import pytest
|
||||
import torch
|
||||
from tests.conftest import VllmRunner
|
||||
|
||||
from vllm import SamplingParams
|
||||
|
||||
@ -16,6 +17,7 @@ def test_get_prompt_logprobs(
|
||||
example_prompts,
|
||||
):
|
||||
max_tokens = 5
|
||||
num_top_logprobs = 6
|
||||
hf_model = hf_runner(model, dtype=dtype)
|
||||
hf_logprobs = hf_model.generate_greedy_logprobs(
|
||||
example_prompts,
|
||||
@ -23,19 +25,32 @@ def test_get_prompt_logprobs(
|
||||
)
|
||||
del hf_model
|
||||
|
||||
vllm_model = vllm_runner(model, dtype=dtype)
|
||||
vllm_model = vllm_runner(model, dtype=dtype, max_logprobs=num_top_logprobs)
|
||||
vllm_sampling_params = SamplingParams(max_tokens=max_tokens,
|
||||
logprobs=5,
|
||||
logprobs=num_top_logprobs,
|
||||
prompt_logprobs=5,
|
||||
temperature=0.0)
|
||||
vllm_results = vllm_model.model.generate(
|
||||
example_prompts, sampling_params=vllm_sampling_params)
|
||||
del vllm_model
|
||||
|
||||
# Test whether logprobs are included in the results.
|
||||
for result in vllm_results:
|
||||
assert result.prompt_logprobs is not None
|
||||
assert result.outputs[0].logprobs is not None
|
||||
assert len(result.outputs[0].logprobs) == max_tokens
|
||||
for logprobs in result.outputs[0].logprobs:
|
||||
assert len(logprobs) == num_top_logprobs
|
||||
output_text = result.outputs[0].text
|
||||
output_string_from_most_likely_tokens = []
|
||||
for top_logprobs in result.outputs[0].logprobs:
|
||||
top_logprob = next(iter(top_logprobs.values()))
|
||||
output_string_from_most_likely_tokens.append(
|
||||
top_logprob.decoded_token)
|
||||
output_string_from_most_likely_tokens = "".join(
|
||||
output_string_from_most_likely_tokens)
|
||||
assert output_text == output_string_from_most_likely_tokens, (
|
||||
"The output text from the top logprob for each token position "
|
||||
"should be the same as the output text in the result.")
|
||||
|
||||
# Test whether prompt logprobs are consistent with HF
|
||||
for vllm_result, hf_logprob in zip(vllm_results, hf_logprobs):
|
||||
@ -43,14 +58,29 @@ def test_get_prompt_logprobs(
|
||||
vllm_prompt_logprobs = vllm_result.prompt_logprobs[1:]
|
||||
for i, vllm_prompt_logprob_dict in enumerate(vllm_prompt_logprobs):
|
||||
for token_id, logprob in vllm_prompt_logprob_dict.items():
|
||||
torch.testing.assert_close(logprob,
|
||||
torch.testing.assert_close(logprob.logprob,
|
||||
hf_logprob[0][i][token_id].item(),
|
||||
atol=1e-2,
|
||||
rtol=1e-2)
|
||||
vllm_sample_logprobs = vllm_result.outputs[0].logprobs
|
||||
for i, vllm_sample_logprob_dict in enumerate(vllm_sample_logprobs):
|
||||
for token_id, logprob in vllm_sample_logprob_dict.items():
|
||||
for i, top_logprobs in enumerate(vllm_sample_logprobs):
|
||||
for token_id, sample_logprob in top_logprobs.items():
|
||||
logprob = sample_logprob.logprob
|
||||
torch.testing.assert_close(logprob,
|
||||
hf_logprob[i][-1][token_id].item(),
|
||||
atol=1e-2,
|
||||
rtol=1e-2)
|
||||
assert isinstance(sample_logprob.decoded_token, str), \
|
||||
("The token should be decoded by the time it is returned "
|
||||
" to the user.")
|
||||
|
||||
|
||||
def test_max_logprobs():
|
||||
runner = VllmRunner("facebook/opt-125m", max_logprobs=1)
|
||||
vllm_sampling_params = SamplingParams(logprobs=1)
|
||||
# should pass
|
||||
runner.generate(["Hello world"], sampling_params=vllm_sampling_params)
|
||||
|
||||
bad_sampling_params = SamplingParams(logprobs=2)
|
||||
with pytest.raises(ValueError):
|
||||
runner.generate(["Hello world"], sampling_params=bad_sampling_params)
|
||||
|
||||
@ -4,7 +4,7 @@ from typing import List, Optional, Dict
|
||||
from vllm.worker.worker import Worker
|
||||
from vllm.utils import get_distributed_init_method, get_ip, get_open_port
|
||||
from vllm.engine.arg_utils import EngineArgs
|
||||
from vllm.sequence import SequenceGroupMetadata, SequenceData
|
||||
from vllm.sequence import Logprob, SequenceGroupMetadata, SequenceData
|
||||
from vllm.sampling_params import SamplingParams
|
||||
from vllm.worker.cache_engine import CacheEngine
|
||||
from vllm.model_executor.utils import set_random_seed
|
||||
@ -166,13 +166,15 @@ def create_seq_group_metadata_from_prompts(
|
||||
|
||||
|
||||
def assert_logprobs_dict_allclose(
|
||||
actual_logprobs: List[Dict[int, float]],
|
||||
expected_logprobs: List[Dict[int, float]]) -> None:
|
||||
actual_logprobs: List[Dict[int, Logprob]],
|
||||
expected_logprobs: List[Dict[int, Logprob]]) -> None:
|
||||
for single_step_actual_logprobs, single_step_expected_logprobs in zip(
|
||||
actual_logprobs, expected_logprobs):
|
||||
assert set(single_step_actual_logprobs.keys()) == set(
|
||||
single_step_expected_logprobs.keys())
|
||||
for token_id in single_step_actual_logprobs:
|
||||
actual = torch.tensor(single_step_actual_logprobs[token_id])
|
||||
expected = torch.tensor(single_step_expected_logprobs[token_id])
|
||||
actual = torch.tensor(
|
||||
single_step_actual_logprobs[token_id].logprob)
|
||||
expected = torch.tensor(
|
||||
single_step_expected_logprobs[token_id].logprob)
|
||||
assert torch.allclose(actual, expected)
|
||||
|
||||
@ -79,6 +79,7 @@ class ModelConfig:
|
||||
quantization: Optional[str] = None,
|
||||
enforce_eager: bool = False,
|
||||
max_context_len_to_capture: Optional[int] = None,
|
||||
max_logprobs: int = 5,
|
||||
) -> None:
|
||||
self.model = model
|
||||
self.tokenizer = tokenizer
|
||||
@ -93,6 +94,7 @@ class ModelConfig:
|
||||
self.quantization = quantization
|
||||
self.enforce_eager = enforce_eager
|
||||
self.max_context_len_to_capture = max_context_len_to_capture
|
||||
self.max_logprobs = max_logprobs
|
||||
|
||||
if os.environ.get("VLLM_USE_MODELSCOPE", "False").lower() == "true":
|
||||
# download model from ModelScope hub,
|
||||
|
||||
@ -31,6 +31,7 @@ class EngineArgs:
|
||||
max_num_batched_tokens: Optional[int] = None
|
||||
max_num_seqs: int = 256
|
||||
max_paddings: int = 256
|
||||
max_logprobs: int = 5 # OpenAI default value
|
||||
disable_log_stats: bool = False
|
||||
revision: Optional[str] = None
|
||||
code_revision: Optional[str] = None
|
||||
@ -212,6 +213,12 @@ class EngineArgs:
|
||||
type=int,
|
||||
default=EngineArgs.max_paddings,
|
||||
help='maximum number of paddings in a batch')
|
||||
parser.add_argument(
|
||||
'--max-logprobs',
|
||||
type=int,
|
||||
default=EngineArgs.max_logprobs,
|
||||
help=('max number of log probs to return logprobs is specified in'
|
||||
' SamplingParams'))
|
||||
parser.add_argument('--disable-log-stats',
|
||||
action='store_true',
|
||||
help='disable logging statistics')
|
||||
@ -300,7 +307,8 @@ class EngineArgs:
|
||||
self.trust_remote_code, self.download_dir, self.load_format,
|
||||
self.dtype, self.seed, self.revision, self.code_revision,
|
||||
self.tokenizer_revision, self.max_model_len, self.quantization,
|
||||
self.enforce_eager, self.max_context_len_to_capture)
|
||||
self.enforce_eager, self.max_context_len_to_capture,
|
||||
self.max_logprobs)
|
||||
cache_config = CacheConfig(self.block_size,
|
||||
self.gpu_memory_utilization,
|
||||
self.swap_space, self.kv_cache_dtype,
|
||||
|
||||
@ -47,7 +47,7 @@ class AsyncStream:
|
||||
self._queue = asyncio.Queue()
|
||||
self._finished = False
|
||||
|
||||
def put(self, item: RequestOutput) -> None:
|
||||
def put(self, item: Union[RequestOutput, Exception]) -> None:
|
||||
if self._finished:
|
||||
return
|
||||
self._queue.put_nowait(item)
|
||||
@ -110,6 +110,17 @@ class RequestTracker:
|
||||
logger.info(f"Finished request {request_id}.")
|
||||
self.abort_request(request_id)
|
||||
|
||||
def process_exception(self,
|
||||
request_id: str,
|
||||
exception: Exception,
|
||||
*,
|
||||
verbose: bool = False) -> None:
|
||||
"""Propagate an exception from the engine."""
|
||||
self._request_streams[request_id].put(exception)
|
||||
if verbose:
|
||||
logger.info(f"Finished request {request_id}.")
|
||||
self.abort_request(request_id)
|
||||
|
||||
def add_request(self, request_id: str,
|
||||
**engine_add_request_kwargs) -> AsyncStream:
|
||||
"""Add a request to be sent to the engine on the next background
|
||||
@ -377,10 +388,18 @@ class AsyncLLMEngine:
|
||||
for new_request in new_requests:
|
||||
# Add the request into the vLLM engine's waiting queue.
|
||||
# TODO: Maybe add add_request_batch to reduce Ray overhead
|
||||
if self.engine_use_ray:
|
||||
await self.engine.add_request.remote(**new_request)
|
||||
else:
|
||||
await self.engine.add_request_async(**new_request)
|
||||
try:
|
||||
if self.engine_use_ray:
|
||||
await self.engine.add_request.remote(**new_request)
|
||||
else:
|
||||
await self.engine.add_request_async(**new_request)
|
||||
except ValueError as e:
|
||||
# TODO: use a vLLM specific error for failed validation
|
||||
self._request_tracker.process_exception(
|
||||
new_request["request_id"],
|
||||
e,
|
||||
verbose=self.log_requests,
|
||||
)
|
||||
|
||||
if finished_requests:
|
||||
await self._engine_abort(finished_requests)
|
||||
|
||||
@ -18,7 +18,7 @@ from vllm.engine.ray_utils import RayWorkerVllm, initialize_cluster, ray
|
||||
from vllm.logger import init_logger
|
||||
from vllm.outputs import RequestOutput
|
||||
from vllm.sampling_params import SamplingParams
|
||||
from vllm.sequence import (SamplerOutput, Sequence, SequenceGroup,
|
||||
from vllm.sequence import (Logprob, SamplerOutput, Sequence, SequenceGroup,
|
||||
SequenceGroupOutput, SequenceOutput, SequenceStatus)
|
||||
from vllm.transformers_utils.tokenizer import (detokenize_incrementally,
|
||||
TokenizerGroup)
|
||||
@ -473,6 +473,13 @@ class LLMEngine:
|
||||
if lora_request is not None and not self.lora_config:
|
||||
raise ValueError(f"Got lora_request {lora_request} but LoRA is "
|
||||
"not enabled!")
|
||||
max_logprobs = self.get_model_config().max_logprobs
|
||||
if (sampling_params.logprobs
|
||||
and sampling_params.logprobs > max_logprobs) or (
|
||||
sampling_params.prompt_logprobs
|
||||
and sampling_params.prompt_logprobs > max_logprobs):
|
||||
raise ValueError(f"Cannot request more than "
|
||||
f"{max_logprobs} logprobs.")
|
||||
if arrival_time is None:
|
||||
arrival_time = time.monotonic()
|
||||
prompt_token_ids = self.encode_request(
|
||||
@ -583,6 +590,13 @@ class LLMEngine:
|
||||
# Process prompt logprobs
|
||||
prompt_logprobs = outputs.prompt_logprobs
|
||||
if prompt_logprobs is not None:
|
||||
# We can pick any sequence for the prompt.
|
||||
seq = next(iter(seq_group.seqs_dict.values()))
|
||||
all_token_ids = seq.get_token_ids()
|
||||
for i, prompt_logprobs_for_token in enumerate(prompt_logprobs):
|
||||
self._decode_logprobs(seq, seq_group.sampling_params,
|
||||
prompt_logprobs_for_token,
|
||||
all_token_ids[:i])
|
||||
seq_group.prompt_logprobs = prompt_logprobs
|
||||
|
||||
# Process samples
|
||||
@ -930,12 +944,36 @@ class LLMEngine:
|
||||
time_e2e_requests=time_e2e_requests,
|
||||
)
|
||||
|
||||
def _decode_logprobs(self, seq: Sequence, prms: SamplingParams,
|
||||
logprobs: Dict[int, Logprob],
|
||||
all_input_ids: List[int]) -> None:
|
||||
if not logprobs:
|
||||
return
|
||||
for token_id, sample_logprob in logprobs.items():
|
||||
if (sample_logprob.decoded_token is None and token_id != -1):
|
||||
all_input_ids_with_logprob = all_input_ids[:-1] + [token_id]
|
||||
_, new_text, prefix_offset, read_offset = detokenize_incrementally(
|
||||
self.get_tokenizer_for_seq(seq),
|
||||
all_input_ids=all_input_ids_with_logprob,
|
||||
prev_tokens=seq.tokens,
|
||||
prefix_offset=seq.prefix_offset,
|
||||
read_offset=seq.read_offset,
|
||||
skip_special_tokens=prms.skip_special_tokens,
|
||||
spaces_between_special_tokens=prms.
|
||||
spaces_between_special_tokens,
|
||||
)
|
||||
sample_logprob.decoded_token = new_text
|
||||
|
||||
def _decode_sequence(self, seq: Sequence, prms: SamplingParams) -> None:
|
||||
"""Decodes the new token for a sequence."""
|
||||
all_input_ids = seq.get_token_ids()
|
||||
self._decode_logprobs(seq, prms, seq.output_logprobs[-1],
|
||||
all_input_ids)
|
||||
|
||||
(new_tokens, new_output_text, prefix_offset,
|
||||
read_offset) = detokenize_incrementally(
|
||||
self.get_tokenizer_for_seq(seq),
|
||||
all_input_ids=seq.get_token_ids(),
|
||||
all_input_ids=all_input_ids,
|
||||
prev_tokens=seq.tokens,
|
||||
prefix_offset=seq.prefix_offset,
|
||||
read_offset=seq.read_offset,
|
||||
|
||||
@ -82,8 +82,12 @@ class OpenAIServingChat(OpenAIServing):
|
||||
return self.chat_completion_stream_generator(
|
||||
request, result_generator, request_id)
|
||||
else:
|
||||
return await self.chat_completion_full_generator(
|
||||
request, raw_request, result_generator, request_id)
|
||||
try:
|
||||
return await self.chat_completion_full_generator(
|
||||
request, raw_request, result_generator, request_id)
|
||||
except ValueError as e:
|
||||
# TODO: Use a vllm-specific Validation Error
|
||||
return self.create_error_response(str(e))
|
||||
|
||||
def get_chat_request_role(self, request: ChatCompletionRequest) -> str:
|
||||
if request.add_generation_prompt:
|
||||
@ -99,117 +103,133 @@ class OpenAIServingChat(OpenAIServing):
|
||||
model_name = request.model
|
||||
created_time = int(time.monotonic())
|
||||
chunk_object_type = "chat.completion.chunk"
|
||||
|
||||
# Send first response for each request.n (index) with the role
|
||||
role = self.get_chat_request_role(request)
|
||||
for i in range(request.n):
|
||||
choice_data = ChatCompletionResponseStreamChoice(
|
||||
index=i,
|
||||
delta=DeltaMessage(role=role),
|
||||
logprobs=None,
|
||||
finish_reason=None)
|
||||
chunk = ChatCompletionStreamResponse(id=request_id,
|
||||
object=chunk_object_type,
|
||||
created=created_time,
|
||||
choices=[choice_data],
|
||||
model=model_name)
|
||||
data = chunk.model_dump_json(exclude_unset=True)
|
||||
yield f"data: {data}\n\n"
|
||||
|
||||
# Send response to echo the input portion of the last message
|
||||
if request.echo:
|
||||
last_msg_content = ""
|
||||
if request.messages and isinstance(
|
||||
request.messages, list) and request.messages[-1].get(
|
||||
"content") and request.messages[-1].get(
|
||||
"role") == role:
|
||||
last_msg_content = request.messages[-1]["content"]
|
||||
|
||||
if last_msg_content:
|
||||
for i in range(request.n):
|
||||
choice_data = ChatCompletionResponseStreamChoice(
|
||||
index=i,
|
||||
delta=DeltaMessage(content=last_msg_content),
|
||||
finish_reason=None)
|
||||
chunk = ChatCompletionStreamResponse(
|
||||
id=request_id,
|
||||
object=chunk_object_type,
|
||||
created=created_time,
|
||||
choices=[choice_data],
|
||||
logprobs=None,
|
||||
model=model_name)
|
||||
data = chunk.model_dump_json(exclude_unset=True)
|
||||
yield f"data: {data}\n\n"
|
||||
first_iteration = True
|
||||
|
||||
# Send response for each token for each request.n (index)
|
||||
previous_texts = [""] * request.n
|
||||
previous_num_tokens = [0] * request.n
|
||||
finish_reason_sent = [False] * request.n
|
||||
async for res in result_generator:
|
||||
res: RequestOutput
|
||||
for output in res.outputs:
|
||||
i = output.index
|
||||
try:
|
||||
async for res in result_generator:
|
||||
res: RequestOutput
|
||||
# We need to do it here, because if there are exceptions in
|
||||
# the result_generator, it needs to be sent as the FIRST
|
||||
# response (by the try...catch).
|
||||
if first_iteration:
|
||||
# Send first response for each request.n (index) with the role
|
||||
role = self.get_chat_request_role(request)
|
||||
for i in range(request.n):
|
||||
choice_data = ChatCompletionResponseStreamChoice(
|
||||
index=i,
|
||||
delta=DeltaMessage(role=role),
|
||||
logprobs=None,
|
||||
finish_reason=None)
|
||||
chunk = ChatCompletionStreamResponse(
|
||||
id=request_id,
|
||||
object=chunk_object_type,
|
||||
created=created_time,
|
||||
choices=[choice_data],
|
||||
model=model_name)
|
||||
data = chunk.model_dump_json(exclude_unset=True)
|
||||
yield f"data: {data}\n\n"
|
||||
|
||||
if finish_reason_sent[i]:
|
||||
continue
|
||||
# Send response to echo the input portion of the last message
|
||||
if request.echo:
|
||||
last_msg_content = ""
|
||||
if request.messages and isinstance(
|
||||
request.messages,
|
||||
list) and request.messages[-1].get(
|
||||
"content") and request.messages[-1].get(
|
||||
"role") == role:
|
||||
last_msg_content = request.messages[-1]["content"]
|
||||
|
||||
delta_token_ids = output.token_ids[previous_num_tokens[i]:]
|
||||
top_logprobs = output.logprobs[
|
||||
previous_num_tokens[i]:] if output.logprobs else None
|
||||
if last_msg_content:
|
||||
for i in range(request.n):
|
||||
choice_data = ChatCompletionResponseStreamChoice(
|
||||
index=i,
|
||||
delta=DeltaMessage(
|
||||
content=last_msg_content),
|
||||
finish_reason=None)
|
||||
chunk = ChatCompletionStreamResponse(
|
||||
id=request_id,
|
||||
object=chunk_object_type,
|
||||
created=created_time,
|
||||
choices=[choice_data],
|
||||
logprobs=None,
|
||||
model=model_name)
|
||||
data = chunk.model_dump_json(
|
||||
exclude_unset=True)
|
||||
yield f"data: {data}\n\n"
|
||||
first_iteration = False
|
||||
|
||||
if request.logprobs:
|
||||
logprobs = self._create_logprobs(
|
||||
token_ids=delta_token_ids,
|
||||
top_logprobs=top_logprobs,
|
||||
num_output_top_logprobs=request.logprobs,
|
||||
initial_text_offset=len(previous_texts[i]),
|
||||
)
|
||||
else:
|
||||
logprobs = None
|
||||
for output in res.outputs:
|
||||
i = output.index
|
||||
|
||||
delta_text = output.text[len(previous_texts[i]):]
|
||||
previous_texts[i] = output.text
|
||||
previous_num_tokens[i] = len(output.token_ids)
|
||||
if output.finish_reason is None:
|
||||
# Send token-by-token response for each request.n
|
||||
choice_data = ChatCompletionResponseStreamChoice(
|
||||
index=i,
|
||||
delta=DeltaMessage(content=delta_text),
|
||||
logprobs=logprobs,
|
||||
finish_reason=None)
|
||||
chunk = ChatCompletionStreamResponse(
|
||||
id=request_id,
|
||||
object=chunk_object_type,
|
||||
created=created_time,
|
||||
choices=[choice_data],
|
||||
model=model_name)
|
||||
data = chunk.model_dump_json(exclude_unset=True)
|
||||
yield f"data: {data}\n\n"
|
||||
else:
|
||||
# Send the finish response for each request.n only once
|
||||
prompt_tokens = len(res.prompt_token_ids)
|
||||
final_usage = UsageInfo(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=previous_num_tokens[i],
|
||||
total_tokens=prompt_tokens + previous_num_tokens[i],
|
||||
)
|
||||
choice_data = ChatCompletionResponseStreamChoice(
|
||||
index=i,
|
||||
delta=DeltaMessage(content=delta_text),
|
||||
logprobs=logprobs,
|
||||
finish_reason=output.finish_reason)
|
||||
chunk = ChatCompletionStreamResponse(
|
||||
id=request_id,
|
||||
object=chunk_object_type,
|
||||
created=created_time,
|
||||
choices=[choice_data],
|
||||
model=model_name)
|
||||
if final_usage is not None:
|
||||
chunk.usage = final_usage
|
||||
data = chunk.model_dump_json(exclude_unset=True,
|
||||
exclude_none=True)
|
||||
yield f"data: {data}\n\n"
|
||||
finish_reason_sent[i] = True
|
||||
if finish_reason_sent[i]:
|
||||
continue
|
||||
|
||||
delta_token_ids = output.token_ids[previous_num_tokens[i]:]
|
||||
top_logprobs = output.logprobs[
|
||||
previous_num_tokens[i]:] if output.logprobs else None
|
||||
|
||||
if request.logprobs:
|
||||
logprobs = self._create_logprobs(
|
||||
token_ids=delta_token_ids,
|
||||
top_logprobs=top_logprobs,
|
||||
num_output_top_logprobs=request.logprobs,
|
||||
initial_text_offset=len(previous_texts[i]),
|
||||
)
|
||||
else:
|
||||
logprobs = None
|
||||
|
||||
delta_text = output.text[len(previous_texts[i]):]
|
||||
previous_texts[i] = output.text
|
||||
previous_num_tokens[i] = len(output.token_ids)
|
||||
if output.finish_reason is None:
|
||||
# Send token-by-token response for each request.n
|
||||
choice_data = ChatCompletionResponseStreamChoice(
|
||||
index=i,
|
||||
delta=DeltaMessage(content=delta_text),
|
||||
logprobs=logprobs,
|
||||
finish_reason=None)
|
||||
chunk = ChatCompletionStreamResponse(
|
||||
id=request_id,
|
||||
object=chunk_object_type,
|
||||
created=created_time,
|
||||
choices=[choice_data],
|
||||
model=model_name)
|
||||
data = chunk.model_dump_json(exclude_unset=True)
|
||||
yield f"data: {data}\n\n"
|
||||
else:
|
||||
# Send the finish response for each request.n only once
|
||||
prompt_tokens = len(res.prompt_token_ids)
|
||||
final_usage = UsageInfo(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=previous_num_tokens[i],
|
||||
total_tokens=prompt_tokens +
|
||||
previous_num_tokens[i],
|
||||
)
|
||||
choice_data = ChatCompletionResponseStreamChoice(
|
||||
index=i,
|
||||
delta=DeltaMessage(content=delta_text),
|
||||
logprobs=logprobs,
|
||||
finish_reason=output.finish_reason)
|
||||
chunk = ChatCompletionStreamResponse(
|
||||
id=request_id,
|
||||
object=chunk_object_type,
|
||||
created=created_time,
|
||||
choices=[choice_data],
|
||||
model=model_name)
|
||||
if final_usage is not None:
|
||||
chunk.usage = final_usage
|
||||
data = chunk.model_dump_json(exclude_unset=True,
|
||||
exclude_none=True)
|
||||
yield f"data: {data}\n\n"
|
||||
finish_reason_sent[i] = True
|
||||
except ValueError as e:
|
||||
# TODO: Use a vllm-specific Validation Error
|
||||
data = self.create_streaming_error_response(str(e))
|
||||
yield f"data: {data}\n\n"
|
||||
# Send the final done message after all response.n are finished
|
||||
yield "data: [DONE]\n\n"
|
||||
|
||||
|
||||
@ -26,107 +26,6 @@ TypeCreateLogProbsFn = Callable[
|
||||
[TypeTokenIDs, TypeTopLogProbs, Optional[int], int], LogProbs]
|
||||
|
||||
|
||||
async def completion_stream_generator(
|
||||
request: CompletionRequest,
|
||||
raw_request: Request,
|
||||
on_abort,
|
||||
result_generator: AsyncIterator[Tuple[int, RequestOutput]],
|
||||
create_logprobs_fn: TypeCreateLogProbsFn,
|
||||
request_id: str,
|
||||
created_time: int,
|
||||
model_name: str,
|
||||
num_prompts: int,
|
||||
) -> AsyncGenerator[str, None]:
|
||||
previous_texts = [""] * request.n * num_prompts
|
||||
previous_num_tokens = [0] * request.n * num_prompts
|
||||
has_echoed = [False] * request.n * num_prompts
|
||||
|
||||
async for prompt_idx, res in result_generator:
|
||||
|
||||
# Abort the request if the client disconnects.
|
||||
if await raw_request.is_disconnected():
|
||||
await on_abort(f"{request_id}-{prompt_idx}")
|
||||
raise StopAsyncIteration()
|
||||
|
||||
for output in res.outputs:
|
||||
i = output.index + prompt_idx * request.n
|
||||
# TODO(simon): optimize the performance by avoiding full text O(n^2) sending.
|
||||
|
||||
if request.echo and request.max_tokens == 0:
|
||||
# only return the prompt
|
||||
delta_text = res.prompt
|
||||
delta_token_ids = res.prompt_token_ids
|
||||
top_logprobs = res.prompt_logprobs
|
||||
has_echoed[i] = True
|
||||
elif request.echo and request.max_tokens > 0 and not has_echoed[i]:
|
||||
# echo the prompt and first token
|
||||
delta_text = res.prompt + output.text
|
||||
delta_token_ids = res.prompt_token_ids + output.token_ids
|
||||
top_logprobs = res.prompt_logprobs + (output.logprobs or [])
|
||||
has_echoed[i] = True
|
||||
else:
|
||||
# return just the delta
|
||||
delta_text = output.text[len(previous_texts[i]):]
|
||||
delta_token_ids = output.token_ids[previous_num_tokens[i]:]
|
||||
top_logprobs = output.logprobs[
|
||||
previous_num_tokens[i]:] if output.logprobs else None
|
||||
|
||||
if request.logprobs is not None:
|
||||
assert top_logprobs is not None, "top_logprobs must be provided when logprobs is requested"
|
||||
logprobs = create_logprobs_fn(
|
||||
token_ids=delta_token_ids,
|
||||
top_logprobs=top_logprobs,
|
||||
num_output_top_logprobs=request.logprobs,
|
||||
initial_text_offset=len(previous_texts[i]),
|
||||
)
|
||||
else:
|
||||
logprobs = None
|
||||
|
||||
previous_texts[i] = output.text
|
||||
previous_num_tokens[i] = len(output.token_ids)
|
||||
finish_reason = output.finish_reason
|
||||
response_json = CompletionStreamResponse(
|
||||
id=request_id,
|
||||
created=created_time,
|
||||
model=model_name,
|
||||
choices=[
|
||||
CompletionResponseStreamChoice(
|
||||
index=i,
|
||||
text=delta_text,
|
||||
logprobs=logprobs,
|
||||
finish_reason=finish_reason,
|
||||
)
|
||||
]).model_dump_json()
|
||||
yield f"data: {response_json}\n\n"
|
||||
|
||||
if output.finish_reason is not None: # return final usage
|
||||
logprobs = LogProbs() if request.logprobs is not None else None
|
||||
prompt_tokens = len(res.prompt_token_ids)
|
||||
completion_tokens = len(output.token_ids)
|
||||
final_usage = UsageInfo(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
response_json = CompletionStreamResponse(
|
||||
id=request_id,
|
||||
created=created_time,
|
||||
model=model_name,
|
||||
choices=[
|
||||
CompletionResponseStreamChoice(
|
||||
index=i,
|
||||
text="",
|
||||
logprobs=logprobs,
|
||||
finish_reason=output.finish_reason,
|
||||
)
|
||||
],
|
||||
usage=final_usage,
|
||||
).model_dump_json()
|
||||
yield f"data: {response_json}\n\n"
|
||||
|
||||
yield "data: [DONE]\n\n"
|
||||
|
||||
|
||||
def parse_prompt_format(prompt) -> Tuple[bool, list]:
|
||||
# get the prompt, openai supports the following
|
||||
# "a string, array of strings, array of tokens, or array of token arrays."
|
||||
@ -151,73 +50,6 @@ def parse_prompt_format(prompt) -> Tuple[bool, list]:
|
||||
return prompt_is_tokens, prompts
|
||||
|
||||
|
||||
def request_output_to_completion_response(
|
||||
final_res_batch: List[RequestOutput],
|
||||
request: CompletionRequest,
|
||||
create_logprobs_fn: TypeCreateLogProbsFn,
|
||||
request_id: str,
|
||||
created_time: int,
|
||||
model_name: str,
|
||||
) -> CompletionResponse:
|
||||
choices = []
|
||||
num_prompt_tokens = 0
|
||||
num_generated_tokens = 0
|
||||
for final_res in final_res_batch:
|
||||
assert final_res is not None
|
||||
prompt_token_ids = final_res.prompt_token_ids
|
||||
prompt_logprobs = final_res.prompt_logprobs
|
||||
prompt_text = final_res.prompt
|
||||
|
||||
for output in final_res.outputs:
|
||||
if request.echo and request.max_tokens == 0:
|
||||
token_ids = prompt_token_ids
|
||||
top_logprobs = prompt_logprobs
|
||||
output_text = prompt_text
|
||||
elif request.echo and request.max_tokens > 0:
|
||||
token_ids = prompt_token_ids + output.token_ids
|
||||
top_logprobs = prompt_logprobs + output.logprobs
|
||||
output_text = prompt_text + output.text
|
||||
else:
|
||||
token_ids = output.token_ids
|
||||
top_logprobs = output.logprobs
|
||||
output_text = output.text
|
||||
|
||||
if request.logprobs is not None:
|
||||
logprobs = create_logprobs_fn(
|
||||
token_ids=token_ids,
|
||||
top_logprobs=top_logprobs,
|
||||
num_output_top_logprobs=request.logprobs,
|
||||
)
|
||||
else:
|
||||
logprobs = None
|
||||
|
||||
choice_data = CompletionResponseChoice(
|
||||
index=len(choices),
|
||||
text=output_text,
|
||||
logprobs=logprobs,
|
||||
finish_reason=output.finish_reason,
|
||||
)
|
||||
choices.append(choice_data)
|
||||
|
||||
num_prompt_tokens += len(prompt_token_ids)
|
||||
num_generated_tokens += sum(
|
||||
len(output.token_ids) for output in final_res.outputs)
|
||||
|
||||
usage = UsageInfo(
|
||||
prompt_tokens=num_prompt_tokens,
|
||||
completion_tokens=num_generated_tokens,
|
||||
total_tokens=num_prompt_tokens + num_generated_tokens,
|
||||
)
|
||||
|
||||
return CompletionResponse(
|
||||
id=request_id,
|
||||
created=created_time,
|
||||
model=model_name,
|
||||
choices=choices,
|
||||
usage=usage,
|
||||
)
|
||||
|
||||
|
||||
def merge_async_iterators(*iterators):
|
||||
"""Merge multiple asynchronous iterators into a single iterator.
|
||||
|
||||
@ -230,8 +62,11 @@ def merge_async_iterators(*iterators):
|
||||
finished = [False] * len(iterators)
|
||||
|
||||
async def producer(i, iterator):
|
||||
async for item in iterator:
|
||||
await queue.put((i, item))
|
||||
try:
|
||||
async for item in iterator:
|
||||
await queue.put((i, item))
|
||||
except Exception as e:
|
||||
await queue.put(e)
|
||||
finished[i] = True
|
||||
|
||||
_tasks = [
|
||||
@ -242,6 +77,8 @@ def merge_async_iterators(*iterators):
|
||||
async def consumer():
|
||||
while not all(finished) or not queue.empty():
|
||||
item = await queue.get()
|
||||
if isinstance(item, Exception):
|
||||
raise item
|
||||
yield item
|
||||
await asyncio.gather(*_tasks)
|
||||
|
||||
@ -312,6 +149,7 @@ class OpenAIServingCompletion(OpenAIServing):
|
||||
prompt_token_ids=input_ids,
|
||||
lora_request=lora_request))
|
||||
except ValueError as e:
|
||||
# TODO: Use a vllm-specific Validation Error
|
||||
return self.create_error_response(str(e))
|
||||
|
||||
result_generator: AsyncIterator[Tuple[
|
||||
@ -325,27 +163,28 @@ class OpenAIServingCompletion(OpenAIServing):
|
||||
|
||||
# Streaming response
|
||||
if stream:
|
||||
return completion_stream_generator(request,
|
||||
raw_request,
|
||||
self.engine.abort,
|
||||
result_generator,
|
||||
self._create_logprobs,
|
||||
request_id,
|
||||
created_time,
|
||||
model_name,
|
||||
num_prompts=len(prompts))
|
||||
return self.completion_stream_generator(request,
|
||||
raw_request,
|
||||
result_generator,
|
||||
request_id,
|
||||
created_time,
|
||||
model_name,
|
||||
num_prompts=len(prompts))
|
||||
|
||||
# Non-streaming response
|
||||
final_res_batch: RequestOutput = [None] * len(prompts)
|
||||
async for i, res in result_generator:
|
||||
if await raw_request.is_disconnected():
|
||||
# Abort the request if the client disconnects.
|
||||
await self.engine.abort(f"{request_id}-{i}")
|
||||
return self.create_error_response("Client disconnected")
|
||||
final_res_batch[i] = res
|
||||
response = request_output_to_completion_response(
|
||||
final_res_batch, request, self._create_logprobs, request_id,
|
||||
created_time, model_name)
|
||||
try:
|
||||
async for i, res in result_generator:
|
||||
if await raw_request.is_disconnected():
|
||||
# Abort the request if the client disconnects.
|
||||
await self.engine.abort(f"{request_id}-{i}")
|
||||
return self.create_error_response("Client disconnected")
|
||||
final_res_batch[i] = res
|
||||
response = self.request_output_to_completion_response(
|
||||
final_res_batch, request, request_id, created_time, model_name)
|
||||
except ValueError as e:
|
||||
# TODO: Use a vllm-specific Validation Error
|
||||
return self.create_error_response(str(e))
|
||||
|
||||
# When user requests streaming but we don't stream, we still need to
|
||||
# return a streaming response with a single event.
|
||||
@ -359,3 +198,179 @@ class OpenAIServingCompletion(OpenAIServing):
|
||||
return fake_stream_generator()
|
||||
|
||||
return response
|
||||
|
||||
async def completion_stream_generator(
|
||||
self,
|
||||
request: CompletionRequest,
|
||||
raw_request: Request,
|
||||
result_generator: AsyncIterator[Tuple[int, RequestOutput]],
|
||||
request_id: str,
|
||||
created_time: int,
|
||||
model_name: str,
|
||||
num_prompts: int,
|
||||
) -> AsyncGenerator[str, None]:
|
||||
previous_texts = [""] * request.n * num_prompts
|
||||
previous_num_tokens = [0] * request.n * num_prompts
|
||||
has_echoed = [False] * request.n * num_prompts
|
||||
|
||||
try:
|
||||
async for prompt_idx, res in result_generator:
|
||||
|
||||
# Abort the request if the client disconnects.
|
||||
if await raw_request.is_disconnected():
|
||||
await self.engine.abort(f"{request_id}-{prompt_idx}")
|
||||
raise StopAsyncIteration()
|
||||
|
||||
for output in res.outputs:
|
||||
i = output.index + prompt_idx * request.n
|
||||
# TODO(simon): optimize the performance by avoiding full text O(n^2) sending.
|
||||
|
||||
if request.echo and request.max_tokens == 0:
|
||||
# only return the prompt
|
||||
delta_text = res.prompt
|
||||
delta_token_ids = res.prompt_token_ids
|
||||
top_logprobs = res.prompt_logprobs
|
||||
has_echoed[i] = True
|
||||
elif request.echo and request.max_tokens > 0 and not has_echoed[
|
||||
i]:
|
||||
# echo the prompt and first token
|
||||
delta_text = res.prompt + output.text
|
||||
delta_token_ids = res.prompt_token_ids + output.token_ids
|
||||
top_logprobs = res.prompt_logprobs + (output.logprobs
|
||||
or [])
|
||||
has_echoed[i] = True
|
||||
else:
|
||||
# return just the delta
|
||||
delta_text = output.text[len(previous_texts[i]):]
|
||||
delta_token_ids = output.token_ids[
|
||||
previous_num_tokens[i]:]
|
||||
top_logprobs = output.logprobs[previous_num_tokens[
|
||||
i]:] if output.logprobs else None
|
||||
|
||||
if request.logprobs is not None:
|
||||
assert top_logprobs is not None, "top_logprobs must be provided when logprobs is requested"
|
||||
logprobs = self._create_logprobs(
|
||||
token_ids=delta_token_ids,
|
||||
top_logprobs=top_logprobs,
|
||||
num_output_top_logprobs=request.logprobs,
|
||||
initial_text_offset=len(previous_texts[i]),
|
||||
)
|
||||
else:
|
||||
logprobs = None
|
||||
|
||||
previous_texts[i] = output.text
|
||||
previous_num_tokens[i] = len(output.token_ids)
|
||||
finish_reason = output.finish_reason
|
||||
response_json = CompletionStreamResponse(
|
||||
id=request_id,
|
||||
created=created_time,
|
||||
model=model_name,
|
||||
choices=[
|
||||
CompletionResponseStreamChoice(
|
||||
index=i,
|
||||
text=delta_text,
|
||||
logprobs=logprobs,
|
||||
finish_reason=finish_reason,
|
||||
)
|
||||
]).model_dump_json()
|
||||
yield f"data: {response_json}\n\n"
|
||||
|
||||
if output.finish_reason is not None: # return final usage
|
||||
logprobs = LogProbs(
|
||||
) if request.logprobs is not None else None
|
||||
prompt_tokens = len(res.prompt_token_ids)
|
||||
completion_tokens = len(output.token_ids)
|
||||
final_usage = UsageInfo(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
response_json = CompletionStreamResponse(
|
||||
id=request_id,
|
||||
created=created_time,
|
||||
model=model_name,
|
||||
choices=[
|
||||
CompletionResponseStreamChoice(
|
||||
index=i,
|
||||
text="",
|
||||
logprobs=logprobs,
|
||||
finish_reason=output.finish_reason,
|
||||
)
|
||||
],
|
||||
usage=final_usage,
|
||||
).model_dump_json()
|
||||
yield f"data: {response_json}\n\n"
|
||||
except ValueError as e:
|
||||
# TODO: Use a vllm-specific Validation Error
|
||||
data = self.create_streaming_error_response(str(e))
|
||||
print("yield", f"data: {data}\n\n")
|
||||
yield f"data: {data}\n\n"
|
||||
|
||||
print("yield", "data: [DONE]\n\n")
|
||||
yield "data: [DONE]\n\n"
|
||||
|
||||
def request_output_to_completion_response(
|
||||
self,
|
||||
final_res_batch: List[RequestOutput],
|
||||
request: CompletionRequest,
|
||||
request_id: str,
|
||||
created_time: int,
|
||||
model_name: str,
|
||||
) -> CompletionResponse:
|
||||
choices = []
|
||||
num_prompt_tokens = 0
|
||||
num_generated_tokens = 0
|
||||
for final_res in final_res_batch:
|
||||
assert final_res is not None
|
||||
prompt_token_ids = final_res.prompt_token_ids
|
||||
prompt_logprobs = final_res.prompt_logprobs
|
||||
prompt_text = final_res.prompt
|
||||
|
||||
for output in final_res.outputs:
|
||||
if request.echo and request.max_tokens == 0:
|
||||
token_ids = prompt_token_ids
|
||||
top_logprobs = prompt_logprobs
|
||||
output_text = prompt_text
|
||||
elif request.echo and request.max_tokens > 0:
|
||||
token_ids = prompt_token_ids + output.token_ids
|
||||
top_logprobs = prompt_logprobs + output.logprobs
|
||||
output_text = prompt_text + output.text
|
||||
else:
|
||||
token_ids = output.token_ids
|
||||
top_logprobs = output.logprobs
|
||||
output_text = output.text
|
||||
|
||||
if request.logprobs is not None:
|
||||
logprobs = self._create_logprobs(
|
||||
token_ids=token_ids,
|
||||
top_logprobs=top_logprobs,
|
||||
num_output_top_logprobs=request.logprobs,
|
||||
)
|
||||
else:
|
||||
logprobs = None
|
||||
|
||||
choice_data = CompletionResponseChoice(
|
||||
index=len(choices),
|
||||
text=output_text,
|
||||
logprobs=logprobs,
|
||||
finish_reason=output.finish_reason,
|
||||
)
|
||||
choices.append(choice_data)
|
||||
|
||||
num_prompt_tokens += len(prompt_token_ids)
|
||||
num_generated_tokens += sum(
|
||||
len(output.token_ids) for output in final_res.outputs)
|
||||
|
||||
usage = UsageInfo(
|
||||
prompt_tokens=num_prompt_tokens,
|
||||
completion_tokens=num_generated_tokens,
|
||||
total_tokens=num_prompt_tokens + num_generated_tokens,
|
||||
)
|
||||
|
||||
return CompletionResponse(
|
||||
id=request_id,
|
||||
created=created_time,
|
||||
model=model_name,
|
||||
choices=choices,
|
||||
usage=usage,
|
||||
)
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
import asyncio
|
||||
import json
|
||||
from dataclasses import dataclass
|
||||
from http import HTTPStatus
|
||||
from typing import Dict, List, Optional, Union
|
||||
@ -11,6 +12,7 @@ from vllm.entrypoints.openai.protocol import (CompletionRequest,
|
||||
ModelCard, ModelList,
|
||||
ModelPermission)
|
||||
from vllm.lora.request import LoRARequest
|
||||
from vllm.sequence import Logprob
|
||||
|
||||
logger = init_logger(__name__)
|
||||
|
||||
@ -83,7 +85,7 @@ class OpenAIServing:
|
||||
def _create_logprobs(
|
||||
self,
|
||||
token_ids: List[int],
|
||||
top_logprobs: Optional[List[Optional[Dict[int, float]]]] = None,
|
||||
top_logprobs: Optional[List[Optional[Dict[int, Logprob]]]] = None,
|
||||
num_output_top_logprobs: Optional[int] = None,
|
||||
initial_text_offset: int = 0,
|
||||
) -> LogProbs:
|
||||
@ -95,10 +97,10 @@ class OpenAIServing:
|
||||
for i, token_id in enumerate(token_ids):
|
||||
step_top_logprobs = top_logprobs[i]
|
||||
if step_top_logprobs is not None:
|
||||
token_logprob = step_top_logprobs[token_id]
|
||||
token_logprob = step_top_logprobs[token_id].logprob
|
||||
else:
|
||||
token_logprob = None
|
||||
token = self.tokenizer.convert_ids_to_tokens(token_id)
|
||||
token = step_top_logprobs[token_id].decoded_token
|
||||
logprobs.tokens.append(token)
|
||||
logprobs.token_logprobs.append(token_logprob)
|
||||
if len(logprobs.text_offset) == 0:
|
||||
@ -110,7 +112,7 @@ class OpenAIServing:
|
||||
|
||||
if num_output_top_logprobs:
|
||||
logprobs.top_logprobs.append({
|
||||
self.tokenizer.convert_ids_to_tokens(i): p
|
||||
p.decoded_token: p.logprob
|
||||
for i, p in step_top_logprobs.items()
|
||||
} if step_top_logprobs else None)
|
||||
return logprobs
|
||||
@ -124,6 +126,19 @@ class OpenAIServing:
|
||||
type=err_type,
|
||||
code=status_code.value)
|
||||
|
||||
def create_streaming_error_response(
|
||||
self,
|
||||
message: str,
|
||||
err_type: str = "BadRequestError",
|
||||
status_code: HTTPStatus = HTTPStatus.BAD_REQUEST) -> str:
|
||||
json_str = json.dumps({
|
||||
"error":
|
||||
self.create_error_response(message=message,
|
||||
err_type=err_type,
|
||||
status_code=status_code).model_dump()
|
||||
})
|
||||
return json_str
|
||||
|
||||
async def _check_model(self, request) -> Optional[ErrorResponse]:
|
||||
if request.model == self.served_model:
|
||||
return
|
||||
|
||||
@ -8,8 +8,9 @@ from vllm.model_executor.parallel_utils.communication_op import (
|
||||
tensor_model_parallel_gather)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata, SamplingTensors
|
||||
from vllm.sampling_params import SamplingParams, SamplingType
|
||||
from vllm.sequence import (PromptLogprobs, SampleLogprobs, SamplerOutput,
|
||||
SequenceData, SequenceGroupOutput, SequenceOutput)
|
||||
from vllm.sequence import (Logprob, PromptLogprobs, SampleLogprobs,
|
||||
SamplerOutput, SequenceData, SequenceGroupOutput,
|
||||
SequenceOutput)
|
||||
from vllm.utils import is_neuron
|
||||
|
||||
|
||||
@ -528,7 +529,10 @@ def _get_logprobs(
|
||||
prompt_logprobs_dict.update(
|
||||
zip(top_token_ids[sample_idx, :num_logprobs].tolist(),
|
||||
top_logprobs[sample_idx, :num_logprobs].tolist()))
|
||||
group_prompt_logprobs.append(prompt_logprobs_dict)
|
||||
group_prompt_logprobs.append({
|
||||
token_id: Logprob(logprob)
|
||||
for token_id, logprob in prompt_logprobs_dict.items()
|
||||
})
|
||||
sample_idx += 1
|
||||
query_result_idx += 1
|
||||
result_prompt_logprobs.append(group_prompt_logprobs)
|
||||
@ -553,7 +557,10 @@ def _get_logprobs(
|
||||
parent_id, :num_logprobs].tolist(),
|
||||
top_logprobs[sample_idx +
|
||||
parent_id, :num_logprobs].tolist()))
|
||||
group_sample_logprobs.append(sample_logprobs_dict)
|
||||
group_sample_logprobs.append({
|
||||
token_id: Logprob(logprob)
|
||||
for token_id, logprob in sample_logprobs_dict.items()
|
||||
})
|
||||
result_sample_logprobs.append(group_sample_logprobs)
|
||||
sample_idx += len(seq_ids)
|
||||
|
||||
|
||||
@ -8,8 +8,16 @@ from vllm.block import LogicalTokenBlock
|
||||
from vllm.sampling_params import SamplingParams
|
||||
from vllm.lora.request import LoRARequest
|
||||
|
||||
PromptLogprobs = List[Optional[Dict[int, float]]]
|
||||
SampleLogprobs = List[Dict[int, float]]
|
||||
|
||||
@dataclass
|
||||
class Logprob:
|
||||
"""Infos for supporting OpenAI compatible logprobs."""
|
||||
logprob: float
|
||||
decoded_token: Optional[str] = None
|
||||
|
||||
|
||||
PromptLogprobs = List[Optional[Dict[int, Logprob]]]
|
||||
SampleLogprobs = List[Dict[int, Logprob]]
|
||||
|
||||
|
||||
class SequenceStatus(enum.Enum):
|
||||
@ -196,12 +204,12 @@ class Sequence:
|
||||
def append_token_id(
|
||||
self,
|
||||
token_id: int,
|
||||
logprobs: Dict[int, float],
|
||||
logprobs: Dict[int, Logprob],
|
||||
) -> None:
|
||||
assert token_id in logprobs
|
||||
self._append_tokens_to_blocks([token_id])
|
||||
self.output_logprobs.append(logprobs)
|
||||
self.data.append_token_id(token_id, logprobs[token_id])
|
||||
self.data.append_token_id(token_id, logprobs[token_id].logprob)
|
||||
|
||||
def get_len(self) -> int:
|
||||
return self.data.get_len()
|
||||
@ -456,7 +464,7 @@ class SequenceOutput:
|
||||
self,
|
||||
parent_seq_id: int,
|
||||
output_token: int,
|
||||
logprobs: Dict[int, float],
|
||||
logprobs: Dict[int, Logprob],
|
||||
) -> None:
|
||||
self.parent_seq_id = parent_seq_id
|
||||
self.output_token = output_token
|
||||
@ -470,9 +478,10 @@ class SequenceOutput:
|
||||
def __eq__(self, other: object) -> bool:
|
||||
if not isinstance(other, SequenceOutput):
|
||||
raise NotImplementedError()
|
||||
return (self.parent_seq_id == other.parent_seq_id
|
||||
and self.output_token == other.output_token
|
||||
and self.logprobs == other.logprobs)
|
||||
equal = (self.parent_seq_id == other.parent_seq_id
|
||||
and self.output_token == other.output_token)
|
||||
log_probs_equal = other.logprobs == self.logprobs
|
||||
return equal and log_probs_equal
|
||||
|
||||
|
||||
class SequenceGroupOutput:
|
||||
|
||||
@ -77,7 +77,7 @@ class MultiStepWorker(Worker):
|
||||
token_id = seq_output.output_token
|
||||
token_logprob = seq_output.logprobs[token_id]
|
||||
|
||||
seq.append_token_id(token_id, token_logprob)
|
||||
seq.append_token_id(token_id, token_logprob.logprob)
|
||||
|
||||
def _shallow_copy_inputs(
|
||||
self, seq_group_metadata_list: List[SequenceGroupMetadata]
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user