mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-15 02:15:32 +08:00
Push logprob generation to LLMEngine (#3065)
Co-authored-by: Avnish Narayan <avnish@anyscale.com>
This commit is contained in:
parent
76e8a70476
commit
22de45235c
@ -213,14 +213,14 @@ async def test_single_chat_session(server, client: openai.AsyncOpenAI,
|
|||||||
messages=messages,
|
messages=messages,
|
||||||
max_tokens=10,
|
max_tokens=10,
|
||||||
logprobs=True,
|
logprobs=True,
|
||||||
top_logprobs=10)
|
top_logprobs=5)
|
||||||
assert chat_completion.id is not None
|
assert chat_completion.id is not None
|
||||||
assert chat_completion.choices is not None and len(
|
assert chat_completion.choices is not None and len(
|
||||||
chat_completion.choices) == 1
|
chat_completion.choices) == 1
|
||||||
assert chat_completion.choices[0].message is not None
|
assert chat_completion.choices[0].message is not None
|
||||||
assert chat_completion.choices[0].logprobs is not None
|
assert chat_completion.choices[0].logprobs is not None
|
||||||
assert chat_completion.choices[0].logprobs.top_logprobs is not None
|
assert chat_completion.choices[0].logprobs.top_logprobs is not None
|
||||||
assert len(chat_completion.choices[0].logprobs.top_logprobs[0]) == 10
|
assert len(chat_completion.choices[0].logprobs.top_logprobs[0]) == 5
|
||||||
message = chat_completion.choices[0].message
|
message = chat_completion.choices[0].message
|
||||||
assert message.content is not None and len(message.content) >= 10
|
assert message.content is not None and len(message.content) >= 10
|
||||||
assert message.role == "assistant"
|
assert message.role == "assistant"
|
||||||
@ -229,7 +229,7 @@ async def test_single_chat_session(server, client: openai.AsyncOpenAI,
|
|||||||
# test multi-turn dialogue
|
# test multi-turn dialogue
|
||||||
messages.append({"role": "user", "content": "express your result in json"})
|
messages.append({"role": "user", "content": "express your result in json"})
|
||||||
chat_completion = await client.chat.completions.create(
|
chat_completion = await client.chat.completions.create(
|
||||||
model=MODEL_NAME,
|
model=model_name,
|
||||||
messages=messages,
|
messages=messages,
|
||||||
max_tokens=10,
|
max_tokens=10,
|
||||||
)
|
)
|
||||||
@ -237,6 +237,61 @@ async def test_single_chat_session(server, client: openai.AsyncOpenAI,
|
|||||||
assert message.content is not None and len(message.content) >= 0
|
assert message.content is not None and len(message.content) >= 0
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
||||||
|
async def test_too_many_logprobs(server, client: openai.AsyncOpenAI,
|
||||||
|
model_name: str):
|
||||||
|
messages = [{
|
||||||
|
"role": "system",
|
||||||
|
"content": "you are a helpful assistant"
|
||||||
|
}, {
|
||||||
|
"role": "user",
|
||||||
|
"content": "what is 1+1?"
|
||||||
|
}]
|
||||||
|
|
||||||
|
# Default max_logprobs is 5, so this should raise an error
|
||||||
|
with pytest.raises((openai.BadRequestError, openai.APIError)):
|
||||||
|
stream = await client.chat.completions.create(model=model_name,
|
||||||
|
messages=messages,
|
||||||
|
max_tokens=10,
|
||||||
|
logprobs=True,
|
||||||
|
top_logprobs=10,
|
||||||
|
stream=True)
|
||||||
|
async for chunk in stream:
|
||||||
|
...
|
||||||
|
|
||||||
|
with pytest.raises(openai.BadRequestError):
|
||||||
|
await client.chat.completions.create(model=model_name,
|
||||||
|
messages=messages,
|
||||||
|
max_tokens=10,
|
||||||
|
logprobs=True,
|
||||||
|
top_logprobs=10,
|
||||||
|
stream=False)
|
||||||
|
|
||||||
|
with pytest.raises((openai.BadRequestError, openai.APIError)):
|
||||||
|
stream = await client.completions.create(model=model_name,
|
||||||
|
prompt="Test",
|
||||||
|
max_tokens=10,
|
||||||
|
logprobs=10,
|
||||||
|
stream=True)
|
||||||
|
async for chunk in stream:
|
||||||
|
...
|
||||||
|
|
||||||
|
with pytest.raises(openai.BadRequestError):
|
||||||
|
await client.completions.create(model=model_name,
|
||||||
|
prompt="Test",
|
||||||
|
max_tokens=10,
|
||||||
|
logprobs=10,
|
||||||
|
stream=False)
|
||||||
|
|
||||||
|
# the server should still work afterwards
|
||||||
|
chat_completion = await client.chat.completions.create(model=model_name,
|
||||||
|
messages=messages,
|
||||||
|
max_tokens=10,
|
||||||
|
stream=False)
|
||||||
|
message = chat_completion.choices[0].message
|
||||||
|
assert message.content is not None and len(message.content) >= 0
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.parametrize(
|
@pytest.mark.parametrize(
|
||||||
# just test 1 lora hereafter
|
# just test 1 lora hereafter
|
||||||
"model_name",
|
"model_name",
|
||||||
|
|||||||
@ -1,5 +1,6 @@
|
|||||||
import pytest
|
import pytest
|
||||||
import torch
|
import torch
|
||||||
|
from tests.conftest import VllmRunner
|
||||||
|
|
||||||
from vllm import SamplingParams
|
from vllm import SamplingParams
|
||||||
|
|
||||||
@ -16,6 +17,7 @@ def test_get_prompt_logprobs(
|
|||||||
example_prompts,
|
example_prompts,
|
||||||
):
|
):
|
||||||
max_tokens = 5
|
max_tokens = 5
|
||||||
|
num_top_logprobs = 6
|
||||||
hf_model = hf_runner(model, dtype=dtype)
|
hf_model = hf_runner(model, dtype=dtype)
|
||||||
hf_logprobs = hf_model.generate_greedy_logprobs(
|
hf_logprobs = hf_model.generate_greedy_logprobs(
|
||||||
example_prompts,
|
example_prompts,
|
||||||
@ -23,19 +25,32 @@ def test_get_prompt_logprobs(
|
|||||||
)
|
)
|
||||||
del hf_model
|
del hf_model
|
||||||
|
|
||||||
vllm_model = vllm_runner(model, dtype=dtype)
|
vllm_model = vllm_runner(model, dtype=dtype, max_logprobs=num_top_logprobs)
|
||||||
vllm_sampling_params = SamplingParams(max_tokens=max_tokens,
|
vllm_sampling_params = SamplingParams(max_tokens=max_tokens,
|
||||||
logprobs=5,
|
logprobs=num_top_logprobs,
|
||||||
prompt_logprobs=5,
|
prompt_logprobs=5,
|
||||||
temperature=0.0)
|
temperature=0.0)
|
||||||
vllm_results = vllm_model.model.generate(
|
vllm_results = vllm_model.model.generate(
|
||||||
example_prompts, sampling_params=vllm_sampling_params)
|
example_prompts, sampling_params=vllm_sampling_params)
|
||||||
del vllm_model
|
|
||||||
|
|
||||||
# Test whether logprobs are included in the results.
|
# Test whether logprobs are included in the results.
|
||||||
for result in vllm_results:
|
for result in vllm_results:
|
||||||
assert result.prompt_logprobs is not None
|
assert result.prompt_logprobs is not None
|
||||||
assert result.outputs[0].logprobs is not None
|
assert result.outputs[0].logprobs is not None
|
||||||
|
assert len(result.outputs[0].logprobs) == max_tokens
|
||||||
|
for logprobs in result.outputs[0].logprobs:
|
||||||
|
assert len(logprobs) == num_top_logprobs
|
||||||
|
output_text = result.outputs[0].text
|
||||||
|
output_string_from_most_likely_tokens = []
|
||||||
|
for top_logprobs in result.outputs[0].logprobs:
|
||||||
|
top_logprob = next(iter(top_logprobs.values()))
|
||||||
|
output_string_from_most_likely_tokens.append(
|
||||||
|
top_logprob.decoded_token)
|
||||||
|
output_string_from_most_likely_tokens = "".join(
|
||||||
|
output_string_from_most_likely_tokens)
|
||||||
|
assert output_text == output_string_from_most_likely_tokens, (
|
||||||
|
"The output text from the top logprob for each token position "
|
||||||
|
"should be the same as the output text in the result.")
|
||||||
|
|
||||||
# Test whether prompt logprobs are consistent with HF
|
# Test whether prompt logprobs are consistent with HF
|
||||||
for vllm_result, hf_logprob in zip(vllm_results, hf_logprobs):
|
for vllm_result, hf_logprob in zip(vllm_results, hf_logprobs):
|
||||||
@ -43,14 +58,29 @@ def test_get_prompt_logprobs(
|
|||||||
vllm_prompt_logprobs = vllm_result.prompt_logprobs[1:]
|
vllm_prompt_logprobs = vllm_result.prompt_logprobs[1:]
|
||||||
for i, vllm_prompt_logprob_dict in enumerate(vllm_prompt_logprobs):
|
for i, vllm_prompt_logprob_dict in enumerate(vllm_prompt_logprobs):
|
||||||
for token_id, logprob in vllm_prompt_logprob_dict.items():
|
for token_id, logprob in vllm_prompt_logprob_dict.items():
|
||||||
torch.testing.assert_close(logprob,
|
torch.testing.assert_close(logprob.logprob,
|
||||||
hf_logprob[0][i][token_id].item(),
|
hf_logprob[0][i][token_id].item(),
|
||||||
atol=1e-2,
|
atol=1e-2,
|
||||||
rtol=1e-2)
|
rtol=1e-2)
|
||||||
vllm_sample_logprobs = vllm_result.outputs[0].logprobs
|
vllm_sample_logprobs = vllm_result.outputs[0].logprobs
|
||||||
for i, vllm_sample_logprob_dict in enumerate(vllm_sample_logprobs):
|
for i, top_logprobs in enumerate(vllm_sample_logprobs):
|
||||||
for token_id, logprob in vllm_sample_logprob_dict.items():
|
for token_id, sample_logprob in top_logprobs.items():
|
||||||
|
logprob = sample_logprob.logprob
|
||||||
torch.testing.assert_close(logprob,
|
torch.testing.assert_close(logprob,
|
||||||
hf_logprob[i][-1][token_id].item(),
|
hf_logprob[i][-1][token_id].item(),
|
||||||
atol=1e-2,
|
atol=1e-2,
|
||||||
rtol=1e-2)
|
rtol=1e-2)
|
||||||
|
assert isinstance(sample_logprob.decoded_token, str), \
|
||||||
|
("The token should be decoded by the time it is returned "
|
||||||
|
" to the user.")
|
||||||
|
|
||||||
|
|
||||||
|
def test_max_logprobs():
|
||||||
|
runner = VllmRunner("facebook/opt-125m", max_logprobs=1)
|
||||||
|
vllm_sampling_params = SamplingParams(logprobs=1)
|
||||||
|
# should pass
|
||||||
|
runner.generate(["Hello world"], sampling_params=vllm_sampling_params)
|
||||||
|
|
||||||
|
bad_sampling_params = SamplingParams(logprobs=2)
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
runner.generate(["Hello world"], sampling_params=bad_sampling_params)
|
||||||
|
|||||||
@ -4,7 +4,7 @@ from typing import List, Optional, Dict
|
|||||||
from vllm.worker.worker import Worker
|
from vllm.worker.worker import Worker
|
||||||
from vllm.utils import get_distributed_init_method, get_ip, get_open_port
|
from vllm.utils import get_distributed_init_method, get_ip, get_open_port
|
||||||
from vllm.engine.arg_utils import EngineArgs
|
from vllm.engine.arg_utils import EngineArgs
|
||||||
from vllm.sequence import SequenceGroupMetadata, SequenceData
|
from vllm.sequence import Logprob, SequenceGroupMetadata, SequenceData
|
||||||
from vllm.sampling_params import SamplingParams
|
from vllm.sampling_params import SamplingParams
|
||||||
from vllm.worker.cache_engine import CacheEngine
|
from vllm.worker.cache_engine import CacheEngine
|
||||||
from vllm.model_executor.utils import set_random_seed
|
from vllm.model_executor.utils import set_random_seed
|
||||||
@ -166,13 +166,15 @@ def create_seq_group_metadata_from_prompts(
|
|||||||
|
|
||||||
|
|
||||||
def assert_logprobs_dict_allclose(
|
def assert_logprobs_dict_allclose(
|
||||||
actual_logprobs: List[Dict[int, float]],
|
actual_logprobs: List[Dict[int, Logprob]],
|
||||||
expected_logprobs: List[Dict[int, float]]) -> None:
|
expected_logprobs: List[Dict[int, Logprob]]) -> None:
|
||||||
for single_step_actual_logprobs, single_step_expected_logprobs in zip(
|
for single_step_actual_logprobs, single_step_expected_logprobs in zip(
|
||||||
actual_logprobs, expected_logprobs):
|
actual_logprobs, expected_logprobs):
|
||||||
assert set(single_step_actual_logprobs.keys()) == set(
|
assert set(single_step_actual_logprobs.keys()) == set(
|
||||||
single_step_expected_logprobs.keys())
|
single_step_expected_logprobs.keys())
|
||||||
for token_id in single_step_actual_logprobs:
|
for token_id in single_step_actual_logprobs:
|
||||||
actual = torch.tensor(single_step_actual_logprobs[token_id])
|
actual = torch.tensor(
|
||||||
expected = torch.tensor(single_step_expected_logprobs[token_id])
|
single_step_actual_logprobs[token_id].logprob)
|
||||||
|
expected = torch.tensor(
|
||||||
|
single_step_expected_logprobs[token_id].logprob)
|
||||||
assert torch.allclose(actual, expected)
|
assert torch.allclose(actual, expected)
|
||||||
|
|||||||
@ -79,6 +79,7 @@ class ModelConfig:
|
|||||||
quantization: Optional[str] = None,
|
quantization: Optional[str] = None,
|
||||||
enforce_eager: bool = False,
|
enforce_eager: bool = False,
|
||||||
max_context_len_to_capture: Optional[int] = None,
|
max_context_len_to_capture: Optional[int] = None,
|
||||||
|
max_logprobs: int = 5,
|
||||||
) -> None:
|
) -> None:
|
||||||
self.model = model
|
self.model = model
|
||||||
self.tokenizer = tokenizer
|
self.tokenizer = tokenizer
|
||||||
@ -93,6 +94,7 @@ class ModelConfig:
|
|||||||
self.quantization = quantization
|
self.quantization = quantization
|
||||||
self.enforce_eager = enforce_eager
|
self.enforce_eager = enforce_eager
|
||||||
self.max_context_len_to_capture = max_context_len_to_capture
|
self.max_context_len_to_capture = max_context_len_to_capture
|
||||||
|
self.max_logprobs = max_logprobs
|
||||||
|
|
||||||
if os.environ.get("VLLM_USE_MODELSCOPE", "False").lower() == "true":
|
if os.environ.get("VLLM_USE_MODELSCOPE", "False").lower() == "true":
|
||||||
# download model from ModelScope hub,
|
# download model from ModelScope hub,
|
||||||
|
|||||||
@ -31,6 +31,7 @@ class EngineArgs:
|
|||||||
max_num_batched_tokens: Optional[int] = None
|
max_num_batched_tokens: Optional[int] = None
|
||||||
max_num_seqs: int = 256
|
max_num_seqs: int = 256
|
||||||
max_paddings: int = 256
|
max_paddings: int = 256
|
||||||
|
max_logprobs: int = 5 # OpenAI default value
|
||||||
disable_log_stats: bool = False
|
disable_log_stats: bool = False
|
||||||
revision: Optional[str] = None
|
revision: Optional[str] = None
|
||||||
code_revision: Optional[str] = None
|
code_revision: Optional[str] = None
|
||||||
@ -212,6 +213,12 @@ class EngineArgs:
|
|||||||
type=int,
|
type=int,
|
||||||
default=EngineArgs.max_paddings,
|
default=EngineArgs.max_paddings,
|
||||||
help='maximum number of paddings in a batch')
|
help='maximum number of paddings in a batch')
|
||||||
|
parser.add_argument(
|
||||||
|
'--max-logprobs',
|
||||||
|
type=int,
|
||||||
|
default=EngineArgs.max_logprobs,
|
||||||
|
help=('max number of log probs to return logprobs is specified in'
|
||||||
|
' SamplingParams'))
|
||||||
parser.add_argument('--disable-log-stats',
|
parser.add_argument('--disable-log-stats',
|
||||||
action='store_true',
|
action='store_true',
|
||||||
help='disable logging statistics')
|
help='disable logging statistics')
|
||||||
@ -300,7 +307,8 @@ class EngineArgs:
|
|||||||
self.trust_remote_code, self.download_dir, self.load_format,
|
self.trust_remote_code, self.download_dir, self.load_format,
|
||||||
self.dtype, self.seed, self.revision, self.code_revision,
|
self.dtype, self.seed, self.revision, self.code_revision,
|
||||||
self.tokenizer_revision, self.max_model_len, self.quantization,
|
self.tokenizer_revision, self.max_model_len, self.quantization,
|
||||||
self.enforce_eager, self.max_context_len_to_capture)
|
self.enforce_eager, self.max_context_len_to_capture,
|
||||||
|
self.max_logprobs)
|
||||||
cache_config = CacheConfig(self.block_size,
|
cache_config = CacheConfig(self.block_size,
|
||||||
self.gpu_memory_utilization,
|
self.gpu_memory_utilization,
|
||||||
self.swap_space, self.kv_cache_dtype,
|
self.swap_space, self.kv_cache_dtype,
|
||||||
|
|||||||
@ -47,7 +47,7 @@ class AsyncStream:
|
|||||||
self._queue = asyncio.Queue()
|
self._queue = asyncio.Queue()
|
||||||
self._finished = False
|
self._finished = False
|
||||||
|
|
||||||
def put(self, item: RequestOutput) -> None:
|
def put(self, item: Union[RequestOutput, Exception]) -> None:
|
||||||
if self._finished:
|
if self._finished:
|
||||||
return
|
return
|
||||||
self._queue.put_nowait(item)
|
self._queue.put_nowait(item)
|
||||||
@ -110,6 +110,17 @@ class RequestTracker:
|
|||||||
logger.info(f"Finished request {request_id}.")
|
logger.info(f"Finished request {request_id}.")
|
||||||
self.abort_request(request_id)
|
self.abort_request(request_id)
|
||||||
|
|
||||||
|
def process_exception(self,
|
||||||
|
request_id: str,
|
||||||
|
exception: Exception,
|
||||||
|
*,
|
||||||
|
verbose: bool = False) -> None:
|
||||||
|
"""Propagate an exception from the engine."""
|
||||||
|
self._request_streams[request_id].put(exception)
|
||||||
|
if verbose:
|
||||||
|
logger.info(f"Finished request {request_id}.")
|
||||||
|
self.abort_request(request_id)
|
||||||
|
|
||||||
def add_request(self, request_id: str,
|
def add_request(self, request_id: str,
|
||||||
**engine_add_request_kwargs) -> AsyncStream:
|
**engine_add_request_kwargs) -> AsyncStream:
|
||||||
"""Add a request to be sent to the engine on the next background
|
"""Add a request to be sent to the engine on the next background
|
||||||
@ -377,10 +388,18 @@ class AsyncLLMEngine:
|
|||||||
for new_request in new_requests:
|
for new_request in new_requests:
|
||||||
# Add the request into the vLLM engine's waiting queue.
|
# Add the request into the vLLM engine's waiting queue.
|
||||||
# TODO: Maybe add add_request_batch to reduce Ray overhead
|
# TODO: Maybe add add_request_batch to reduce Ray overhead
|
||||||
|
try:
|
||||||
if self.engine_use_ray:
|
if self.engine_use_ray:
|
||||||
await self.engine.add_request.remote(**new_request)
|
await self.engine.add_request.remote(**new_request)
|
||||||
else:
|
else:
|
||||||
await self.engine.add_request_async(**new_request)
|
await self.engine.add_request_async(**new_request)
|
||||||
|
except ValueError as e:
|
||||||
|
# TODO: use a vLLM specific error for failed validation
|
||||||
|
self._request_tracker.process_exception(
|
||||||
|
new_request["request_id"],
|
||||||
|
e,
|
||||||
|
verbose=self.log_requests,
|
||||||
|
)
|
||||||
|
|
||||||
if finished_requests:
|
if finished_requests:
|
||||||
await self._engine_abort(finished_requests)
|
await self._engine_abort(finished_requests)
|
||||||
|
|||||||
@ -18,7 +18,7 @@ from vllm.engine.ray_utils import RayWorkerVllm, initialize_cluster, ray
|
|||||||
from vllm.logger import init_logger
|
from vllm.logger import init_logger
|
||||||
from vllm.outputs import RequestOutput
|
from vllm.outputs import RequestOutput
|
||||||
from vllm.sampling_params import SamplingParams
|
from vllm.sampling_params import SamplingParams
|
||||||
from vllm.sequence import (SamplerOutput, Sequence, SequenceGroup,
|
from vllm.sequence import (Logprob, SamplerOutput, Sequence, SequenceGroup,
|
||||||
SequenceGroupOutput, SequenceOutput, SequenceStatus)
|
SequenceGroupOutput, SequenceOutput, SequenceStatus)
|
||||||
from vllm.transformers_utils.tokenizer import (detokenize_incrementally,
|
from vllm.transformers_utils.tokenizer import (detokenize_incrementally,
|
||||||
TokenizerGroup)
|
TokenizerGroup)
|
||||||
@ -473,6 +473,13 @@ class LLMEngine:
|
|||||||
if lora_request is not None and not self.lora_config:
|
if lora_request is not None and not self.lora_config:
|
||||||
raise ValueError(f"Got lora_request {lora_request} but LoRA is "
|
raise ValueError(f"Got lora_request {lora_request} but LoRA is "
|
||||||
"not enabled!")
|
"not enabled!")
|
||||||
|
max_logprobs = self.get_model_config().max_logprobs
|
||||||
|
if (sampling_params.logprobs
|
||||||
|
and sampling_params.logprobs > max_logprobs) or (
|
||||||
|
sampling_params.prompt_logprobs
|
||||||
|
and sampling_params.prompt_logprobs > max_logprobs):
|
||||||
|
raise ValueError(f"Cannot request more than "
|
||||||
|
f"{max_logprobs} logprobs.")
|
||||||
if arrival_time is None:
|
if arrival_time is None:
|
||||||
arrival_time = time.monotonic()
|
arrival_time = time.monotonic()
|
||||||
prompt_token_ids = self.encode_request(
|
prompt_token_ids = self.encode_request(
|
||||||
@ -583,6 +590,13 @@ class LLMEngine:
|
|||||||
# Process prompt logprobs
|
# Process prompt logprobs
|
||||||
prompt_logprobs = outputs.prompt_logprobs
|
prompt_logprobs = outputs.prompt_logprobs
|
||||||
if prompt_logprobs is not None:
|
if prompt_logprobs is not None:
|
||||||
|
# We can pick any sequence for the prompt.
|
||||||
|
seq = next(iter(seq_group.seqs_dict.values()))
|
||||||
|
all_token_ids = seq.get_token_ids()
|
||||||
|
for i, prompt_logprobs_for_token in enumerate(prompt_logprobs):
|
||||||
|
self._decode_logprobs(seq, seq_group.sampling_params,
|
||||||
|
prompt_logprobs_for_token,
|
||||||
|
all_token_ids[:i])
|
||||||
seq_group.prompt_logprobs = prompt_logprobs
|
seq_group.prompt_logprobs = prompt_logprobs
|
||||||
|
|
||||||
# Process samples
|
# Process samples
|
||||||
@ -930,12 +944,36 @@ class LLMEngine:
|
|||||||
time_e2e_requests=time_e2e_requests,
|
time_e2e_requests=time_e2e_requests,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
def _decode_logprobs(self, seq: Sequence, prms: SamplingParams,
|
||||||
|
logprobs: Dict[int, Logprob],
|
||||||
|
all_input_ids: List[int]) -> None:
|
||||||
|
if not logprobs:
|
||||||
|
return
|
||||||
|
for token_id, sample_logprob in logprobs.items():
|
||||||
|
if (sample_logprob.decoded_token is None and token_id != -1):
|
||||||
|
all_input_ids_with_logprob = all_input_ids[:-1] + [token_id]
|
||||||
|
_, new_text, prefix_offset, read_offset = detokenize_incrementally(
|
||||||
|
self.get_tokenizer_for_seq(seq),
|
||||||
|
all_input_ids=all_input_ids_with_logprob,
|
||||||
|
prev_tokens=seq.tokens,
|
||||||
|
prefix_offset=seq.prefix_offset,
|
||||||
|
read_offset=seq.read_offset,
|
||||||
|
skip_special_tokens=prms.skip_special_tokens,
|
||||||
|
spaces_between_special_tokens=prms.
|
||||||
|
spaces_between_special_tokens,
|
||||||
|
)
|
||||||
|
sample_logprob.decoded_token = new_text
|
||||||
|
|
||||||
def _decode_sequence(self, seq: Sequence, prms: SamplingParams) -> None:
|
def _decode_sequence(self, seq: Sequence, prms: SamplingParams) -> None:
|
||||||
"""Decodes the new token for a sequence."""
|
"""Decodes the new token for a sequence."""
|
||||||
|
all_input_ids = seq.get_token_ids()
|
||||||
|
self._decode_logprobs(seq, prms, seq.output_logprobs[-1],
|
||||||
|
all_input_ids)
|
||||||
|
|
||||||
(new_tokens, new_output_text, prefix_offset,
|
(new_tokens, new_output_text, prefix_offset,
|
||||||
read_offset) = detokenize_incrementally(
|
read_offset) = detokenize_incrementally(
|
||||||
self.get_tokenizer_for_seq(seq),
|
self.get_tokenizer_for_seq(seq),
|
||||||
all_input_ids=seq.get_token_ids(),
|
all_input_ids=all_input_ids,
|
||||||
prev_tokens=seq.tokens,
|
prev_tokens=seq.tokens,
|
||||||
prefix_offset=seq.prefix_offset,
|
prefix_offset=seq.prefix_offset,
|
||||||
read_offset=seq.read_offset,
|
read_offset=seq.read_offset,
|
||||||
|
|||||||
@ -82,8 +82,12 @@ class OpenAIServingChat(OpenAIServing):
|
|||||||
return self.chat_completion_stream_generator(
|
return self.chat_completion_stream_generator(
|
||||||
request, result_generator, request_id)
|
request, result_generator, request_id)
|
||||||
else:
|
else:
|
||||||
|
try:
|
||||||
return await self.chat_completion_full_generator(
|
return await self.chat_completion_full_generator(
|
||||||
request, raw_request, result_generator, request_id)
|
request, raw_request, result_generator, request_id)
|
||||||
|
except ValueError as e:
|
||||||
|
# TODO: Use a vllm-specific Validation Error
|
||||||
|
return self.create_error_response(str(e))
|
||||||
|
|
||||||
def get_chat_request_role(self, request: ChatCompletionRequest) -> str:
|
def get_chat_request_role(self, request: ChatCompletionRequest) -> str:
|
||||||
if request.add_generation_prompt:
|
if request.add_generation_prompt:
|
||||||
@ -99,7 +103,19 @@ class OpenAIServingChat(OpenAIServing):
|
|||||||
model_name = request.model
|
model_name = request.model
|
||||||
created_time = int(time.monotonic())
|
created_time = int(time.monotonic())
|
||||||
chunk_object_type = "chat.completion.chunk"
|
chunk_object_type = "chat.completion.chunk"
|
||||||
|
first_iteration = True
|
||||||
|
|
||||||
|
# Send response for each token for each request.n (index)
|
||||||
|
previous_texts = [""] * request.n
|
||||||
|
previous_num_tokens = [0] * request.n
|
||||||
|
finish_reason_sent = [False] * request.n
|
||||||
|
try:
|
||||||
|
async for res in result_generator:
|
||||||
|
res: RequestOutput
|
||||||
|
# We need to do it here, because if there are exceptions in
|
||||||
|
# the result_generator, it needs to be sent as the FIRST
|
||||||
|
# response (by the try...catch).
|
||||||
|
if first_iteration:
|
||||||
# Send first response for each request.n (index) with the role
|
# Send first response for each request.n (index) with the role
|
||||||
role = self.get_chat_request_role(request)
|
role = self.get_chat_request_role(request)
|
||||||
for i in range(request.n):
|
for i in range(request.n):
|
||||||
@ -108,7 +124,8 @@ class OpenAIServingChat(OpenAIServing):
|
|||||||
delta=DeltaMessage(role=role),
|
delta=DeltaMessage(role=role),
|
||||||
logprobs=None,
|
logprobs=None,
|
||||||
finish_reason=None)
|
finish_reason=None)
|
||||||
chunk = ChatCompletionStreamResponse(id=request_id,
|
chunk = ChatCompletionStreamResponse(
|
||||||
|
id=request_id,
|
||||||
object=chunk_object_type,
|
object=chunk_object_type,
|
||||||
created=created_time,
|
created=created_time,
|
||||||
choices=[choice_data],
|
choices=[choice_data],
|
||||||
@ -120,7 +137,8 @@ class OpenAIServingChat(OpenAIServing):
|
|||||||
if request.echo:
|
if request.echo:
|
||||||
last_msg_content = ""
|
last_msg_content = ""
|
||||||
if request.messages and isinstance(
|
if request.messages and isinstance(
|
||||||
request.messages, list) and request.messages[-1].get(
|
request.messages,
|
||||||
|
list) and request.messages[-1].get(
|
||||||
"content") and request.messages[-1].get(
|
"content") and request.messages[-1].get(
|
||||||
"role") == role:
|
"role") == role:
|
||||||
last_msg_content = request.messages[-1]["content"]
|
last_msg_content = request.messages[-1]["content"]
|
||||||
@ -129,7 +147,8 @@ class OpenAIServingChat(OpenAIServing):
|
|||||||
for i in range(request.n):
|
for i in range(request.n):
|
||||||
choice_data = ChatCompletionResponseStreamChoice(
|
choice_data = ChatCompletionResponseStreamChoice(
|
||||||
index=i,
|
index=i,
|
||||||
delta=DeltaMessage(content=last_msg_content),
|
delta=DeltaMessage(
|
||||||
|
content=last_msg_content),
|
||||||
finish_reason=None)
|
finish_reason=None)
|
||||||
chunk = ChatCompletionStreamResponse(
|
chunk = ChatCompletionStreamResponse(
|
||||||
id=request_id,
|
id=request_id,
|
||||||
@ -138,15 +157,11 @@ class OpenAIServingChat(OpenAIServing):
|
|||||||
choices=[choice_data],
|
choices=[choice_data],
|
||||||
logprobs=None,
|
logprobs=None,
|
||||||
model=model_name)
|
model=model_name)
|
||||||
data = chunk.model_dump_json(exclude_unset=True)
|
data = chunk.model_dump_json(
|
||||||
|
exclude_unset=True)
|
||||||
yield f"data: {data}\n\n"
|
yield f"data: {data}\n\n"
|
||||||
|
first_iteration = False
|
||||||
|
|
||||||
# Send response for each token for each request.n (index)
|
|
||||||
previous_texts = [""] * request.n
|
|
||||||
previous_num_tokens = [0] * request.n
|
|
||||||
finish_reason_sent = [False] * request.n
|
|
||||||
async for res in result_generator:
|
|
||||||
res: RequestOutput
|
|
||||||
for output in res.outputs:
|
for output in res.outputs:
|
||||||
i = output.index
|
i = output.index
|
||||||
|
|
||||||
@ -191,7 +206,8 @@ class OpenAIServingChat(OpenAIServing):
|
|||||||
final_usage = UsageInfo(
|
final_usage = UsageInfo(
|
||||||
prompt_tokens=prompt_tokens,
|
prompt_tokens=prompt_tokens,
|
||||||
completion_tokens=previous_num_tokens[i],
|
completion_tokens=previous_num_tokens[i],
|
||||||
total_tokens=prompt_tokens + previous_num_tokens[i],
|
total_tokens=prompt_tokens +
|
||||||
|
previous_num_tokens[i],
|
||||||
)
|
)
|
||||||
choice_data = ChatCompletionResponseStreamChoice(
|
choice_data = ChatCompletionResponseStreamChoice(
|
||||||
index=i,
|
index=i,
|
||||||
@ -210,6 +226,10 @@ class OpenAIServingChat(OpenAIServing):
|
|||||||
exclude_none=True)
|
exclude_none=True)
|
||||||
yield f"data: {data}\n\n"
|
yield f"data: {data}\n\n"
|
||||||
finish_reason_sent[i] = True
|
finish_reason_sent[i] = True
|
||||||
|
except ValueError as e:
|
||||||
|
# TODO: Use a vllm-specific Validation Error
|
||||||
|
data = self.create_streaming_error_response(str(e))
|
||||||
|
yield f"data: {data}\n\n"
|
||||||
# Send the final done message after all response.n are finished
|
# Send the final done message after all response.n are finished
|
||||||
yield "data: [DONE]\n\n"
|
yield "data: [DONE]\n\n"
|
||||||
|
|
||||||
|
|||||||
@ -26,107 +26,6 @@ TypeCreateLogProbsFn = Callable[
|
|||||||
[TypeTokenIDs, TypeTopLogProbs, Optional[int], int], LogProbs]
|
[TypeTokenIDs, TypeTopLogProbs, Optional[int], int], LogProbs]
|
||||||
|
|
||||||
|
|
||||||
async def completion_stream_generator(
|
|
||||||
request: CompletionRequest,
|
|
||||||
raw_request: Request,
|
|
||||||
on_abort,
|
|
||||||
result_generator: AsyncIterator[Tuple[int, RequestOutput]],
|
|
||||||
create_logprobs_fn: TypeCreateLogProbsFn,
|
|
||||||
request_id: str,
|
|
||||||
created_time: int,
|
|
||||||
model_name: str,
|
|
||||||
num_prompts: int,
|
|
||||||
) -> AsyncGenerator[str, None]:
|
|
||||||
previous_texts = [""] * request.n * num_prompts
|
|
||||||
previous_num_tokens = [0] * request.n * num_prompts
|
|
||||||
has_echoed = [False] * request.n * num_prompts
|
|
||||||
|
|
||||||
async for prompt_idx, res in result_generator:
|
|
||||||
|
|
||||||
# Abort the request if the client disconnects.
|
|
||||||
if await raw_request.is_disconnected():
|
|
||||||
await on_abort(f"{request_id}-{prompt_idx}")
|
|
||||||
raise StopAsyncIteration()
|
|
||||||
|
|
||||||
for output in res.outputs:
|
|
||||||
i = output.index + prompt_idx * request.n
|
|
||||||
# TODO(simon): optimize the performance by avoiding full text O(n^2) sending.
|
|
||||||
|
|
||||||
if request.echo and request.max_tokens == 0:
|
|
||||||
# only return the prompt
|
|
||||||
delta_text = res.prompt
|
|
||||||
delta_token_ids = res.prompt_token_ids
|
|
||||||
top_logprobs = res.prompt_logprobs
|
|
||||||
has_echoed[i] = True
|
|
||||||
elif request.echo and request.max_tokens > 0 and not has_echoed[i]:
|
|
||||||
# echo the prompt and first token
|
|
||||||
delta_text = res.prompt + output.text
|
|
||||||
delta_token_ids = res.prompt_token_ids + output.token_ids
|
|
||||||
top_logprobs = res.prompt_logprobs + (output.logprobs or [])
|
|
||||||
has_echoed[i] = True
|
|
||||||
else:
|
|
||||||
# return just the delta
|
|
||||||
delta_text = output.text[len(previous_texts[i]):]
|
|
||||||
delta_token_ids = output.token_ids[previous_num_tokens[i]:]
|
|
||||||
top_logprobs = output.logprobs[
|
|
||||||
previous_num_tokens[i]:] if output.logprobs else None
|
|
||||||
|
|
||||||
if request.logprobs is not None:
|
|
||||||
assert top_logprobs is not None, "top_logprobs must be provided when logprobs is requested"
|
|
||||||
logprobs = create_logprobs_fn(
|
|
||||||
token_ids=delta_token_ids,
|
|
||||||
top_logprobs=top_logprobs,
|
|
||||||
num_output_top_logprobs=request.logprobs,
|
|
||||||
initial_text_offset=len(previous_texts[i]),
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
logprobs = None
|
|
||||||
|
|
||||||
previous_texts[i] = output.text
|
|
||||||
previous_num_tokens[i] = len(output.token_ids)
|
|
||||||
finish_reason = output.finish_reason
|
|
||||||
response_json = CompletionStreamResponse(
|
|
||||||
id=request_id,
|
|
||||||
created=created_time,
|
|
||||||
model=model_name,
|
|
||||||
choices=[
|
|
||||||
CompletionResponseStreamChoice(
|
|
||||||
index=i,
|
|
||||||
text=delta_text,
|
|
||||||
logprobs=logprobs,
|
|
||||||
finish_reason=finish_reason,
|
|
||||||
)
|
|
||||||
]).model_dump_json()
|
|
||||||
yield f"data: {response_json}\n\n"
|
|
||||||
|
|
||||||
if output.finish_reason is not None: # return final usage
|
|
||||||
logprobs = LogProbs() if request.logprobs is not None else None
|
|
||||||
prompt_tokens = len(res.prompt_token_ids)
|
|
||||||
completion_tokens = len(output.token_ids)
|
|
||||||
final_usage = UsageInfo(
|
|
||||||
prompt_tokens=prompt_tokens,
|
|
||||||
completion_tokens=completion_tokens,
|
|
||||||
total_tokens=prompt_tokens + completion_tokens,
|
|
||||||
)
|
|
||||||
response_json = CompletionStreamResponse(
|
|
||||||
id=request_id,
|
|
||||||
created=created_time,
|
|
||||||
model=model_name,
|
|
||||||
choices=[
|
|
||||||
CompletionResponseStreamChoice(
|
|
||||||
index=i,
|
|
||||||
text="",
|
|
||||||
logprobs=logprobs,
|
|
||||||
finish_reason=output.finish_reason,
|
|
||||||
)
|
|
||||||
],
|
|
||||||
usage=final_usage,
|
|
||||||
).model_dump_json()
|
|
||||||
yield f"data: {response_json}\n\n"
|
|
||||||
|
|
||||||
yield "data: [DONE]\n\n"
|
|
||||||
|
|
||||||
|
|
||||||
def parse_prompt_format(prompt) -> Tuple[bool, list]:
|
def parse_prompt_format(prompt) -> Tuple[bool, list]:
|
||||||
# get the prompt, openai supports the following
|
# get the prompt, openai supports the following
|
||||||
# "a string, array of strings, array of tokens, or array of token arrays."
|
# "a string, array of strings, array of tokens, or array of token arrays."
|
||||||
@ -151,73 +50,6 @@ def parse_prompt_format(prompt) -> Tuple[bool, list]:
|
|||||||
return prompt_is_tokens, prompts
|
return prompt_is_tokens, prompts
|
||||||
|
|
||||||
|
|
||||||
def request_output_to_completion_response(
|
|
||||||
final_res_batch: List[RequestOutput],
|
|
||||||
request: CompletionRequest,
|
|
||||||
create_logprobs_fn: TypeCreateLogProbsFn,
|
|
||||||
request_id: str,
|
|
||||||
created_time: int,
|
|
||||||
model_name: str,
|
|
||||||
) -> CompletionResponse:
|
|
||||||
choices = []
|
|
||||||
num_prompt_tokens = 0
|
|
||||||
num_generated_tokens = 0
|
|
||||||
for final_res in final_res_batch:
|
|
||||||
assert final_res is not None
|
|
||||||
prompt_token_ids = final_res.prompt_token_ids
|
|
||||||
prompt_logprobs = final_res.prompt_logprobs
|
|
||||||
prompt_text = final_res.prompt
|
|
||||||
|
|
||||||
for output in final_res.outputs:
|
|
||||||
if request.echo and request.max_tokens == 0:
|
|
||||||
token_ids = prompt_token_ids
|
|
||||||
top_logprobs = prompt_logprobs
|
|
||||||
output_text = prompt_text
|
|
||||||
elif request.echo and request.max_tokens > 0:
|
|
||||||
token_ids = prompt_token_ids + output.token_ids
|
|
||||||
top_logprobs = prompt_logprobs + output.logprobs
|
|
||||||
output_text = prompt_text + output.text
|
|
||||||
else:
|
|
||||||
token_ids = output.token_ids
|
|
||||||
top_logprobs = output.logprobs
|
|
||||||
output_text = output.text
|
|
||||||
|
|
||||||
if request.logprobs is not None:
|
|
||||||
logprobs = create_logprobs_fn(
|
|
||||||
token_ids=token_ids,
|
|
||||||
top_logprobs=top_logprobs,
|
|
||||||
num_output_top_logprobs=request.logprobs,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
logprobs = None
|
|
||||||
|
|
||||||
choice_data = CompletionResponseChoice(
|
|
||||||
index=len(choices),
|
|
||||||
text=output_text,
|
|
||||||
logprobs=logprobs,
|
|
||||||
finish_reason=output.finish_reason,
|
|
||||||
)
|
|
||||||
choices.append(choice_data)
|
|
||||||
|
|
||||||
num_prompt_tokens += len(prompt_token_ids)
|
|
||||||
num_generated_tokens += sum(
|
|
||||||
len(output.token_ids) for output in final_res.outputs)
|
|
||||||
|
|
||||||
usage = UsageInfo(
|
|
||||||
prompt_tokens=num_prompt_tokens,
|
|
||||||
completion_tokens=num_generated_tokens,
|
|
||||||
total_tokens=num_prompt_tokens + num_generated_tokens,
|
|
||||||
)
|
|
||||||
|
|
||||||
return CompletionResponse(
|
|
||||||
id=request_id,
|
|
||||||
created=created_time,
|
|
||||||
model=model_name,
|
|
||||||
choices=choices,
|
|
||||||
usage=usage,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def merge_async_iterators(*iterators):
|
def merge_async_iterators(*iterators):
|
||||||
"""Merge multiple asynchronous iterators into a single iterator.
|
"""Merge multiple asynchronous iterators into a single iterator.
|
||||||
|
|
||||||
@ -230,8 +62,11 @@ def merge_async_iterators(*iterators):
|
|||||||
finished = [False] * len(iterators)
|
finished = [False] * len(iterators)
|
||||||
|
|
||||||
async def producer(i, iterator):
|
async def producer(i, iterator):
|
||||||
|
try:
|
||||||
async for item in iterator:
|
async for item in iterator:
|
||||||
await queue.put((i, item))
|
await queue.put((i, item))
|
||||||
|
except Exception as e:
|
||||||
|
await queue.put(e)
|
||||||
finished[i] = True
|
finished[i] = True
|
||||||
|
|
||||||
_tasks = [
|
_tasks = [
|
||||||
@ -242,6 +77,8 @@ def merge_async_iterators(*iterators):
|
|||||||
async def consumer():
|
async def consumer():
|
||||||
while not all(finished) or not queue.empty():
|
while not all(finished) or not queue.empty():
|
||||||
item = await queue.get()
|
item = await queue.get()
|
||||||
|
if isinstance(item, Exception):
|
||||||
|
raise item
|
||||||
yield item
|
yield item
|
||||||
await asyncio.gather(*_tasks)
|
await asyncio.gather(*_tasks)
|
||||||
|
|
||||||
@ -312,6 +149,7 @@ class OpenAIServingCompletion(OpenAIServing):
|
|||||||
prompt_token_ids=input_ids,
|
prompt_token_ids=input_ids,
|
||||||
lora_request=lora_request))
|
lora_request=lora_request))
|
||||||
except ValueError as e:
|
except ValueError as e:
|
||||||
|
# TODO: Use a vllm-specific Validation Error
|
||||||
return self.create_error_response(str(e))
|
return self.create_error_response(str(e))
|
||||||
|
|
||||||
result_generator: AsyncIterator[Tuple[
|
result_generator: AsyncIterator[Tuple[
|
||||||
@ -325,11 +163,9 @@ class OpenAIServingCompletion(OpenAIServing):
|
|||||||
|
|
||||||
# Streaming response
|
# Streaming response
|
||||||
if stream:
|
if stream:
|
||||||
return completion_stream_generator(request,
|
return self.completion_stream_generator(request,
|
||||||
raw_request,
|
raw_request,
|
||||||
self.engine.abort,
|
|
||||||
result_generator,
|
result_generator,
|
||||||
self._create_logprobs,
|
|
||||||
request_id,
|
request_id,
|
||||||
created_time,
|
created_time,
|
||||||
model_name,
|
model_name,
|
||||||
@ -337,15 +173,18 @@ class OpenAIServingCompletion(OpenAIServing):
|
|||||||
|
|
||||||
# Non-streaming response
|
# Non-streaming response
|
||||||
final_res_batch: RequestOutput = [None] * len(prompts)
|
final_res_batch: RequestOutput = [None] * len(prompts)
|
||||||
|
try:
|
||||||
async for i, res in result_generator:
|
async for i, res in result_generator:
|
||||||
if await raw_request.is_disconnected():
|
if await raw_request.is_disconnected():
|
||||||
# Abort the request if the client disconnects.
|
# Abort the request if the client disconnects.
|
||||||
await self.engine.abort(f"{request_id}-{i}")
|
await self.engine.abort(f"{request_id}-{i}")
|
||||||
return self.create_error_response("Client disconnected")
|
return self.create_error_response("Client disconnected")
|
||||||
final_res_batch[i] = res
|
final_res_batch[i] = res
|
||||||
response = request_output_to_completion_response(
|
response = self.request_output_to_completion_response(
|
||||||
final_res_batch, request, self._create_logprobs, request_id,
|
final_res_batch, request, request_id, created_time, model_name)
|
||||||
created_time, model_name)
|
except ValueError as e:
|
||||||
|
# TODO: Use a vllm-specific Validation Error
|
||||||
|
return self.create_error_response(str(e))
|
||||||
|
|
||||||
# When user requests streaming but we don't stream, we still need to
|
# When user requests streaming but we don't stream, we still need to
|
||||||
# return a streaming response with a single event.
|
# return a streaming response with a single event.
|
||||||
@ -359,3 +198,179 @@ class OpenAIServingCompletion(OpenAIServing):
|
|||||||
return fake_stream_generator()
|
return fake_stream_generator()
|
||||||
|
|
||||||
return response
|
return response
|
||||||
|
|
||||||
|
async def completion_stream_generator(
|
||||||
|
self,
|
||||||
|
request: CompletionRequest,
|
||||||
|
raw_request: Request,
|
||||||
|
result_generator: AsyncIterator[Tuple[int, RequestOutput]],
|
||||||
|
request_id: str,
|
||||||
|
created_time: int,
|
||||||
|
model_name: str,
|
||||||
|
num_prompts: int,
|
||||||
|
) -> AsyncGenerator[str, None]:
|
||||||
|
previous_texts = [""] * request.n * num_prompts
|
||||||
|
previous_num_tokens = [0] * request.n * num_prompts
|
||||||
|
has_echoed = [False] * request.n * num_prompts
|
||||||
|
|
||||||
|
try:
|
||||||
|
async for prompt_idx, res in result_generator:
|
||||||
|
|
||||||
|
# Abort the request if the client disconnects.
|
||||||
|
if await raw_request.is_disconnected():
|
||||||
|
await self.engine.abort(f"{request_id}-{prompt_idx}")
|
||||||
|
raise StopAsyncIteration()
|
||||||
|
|
||||||
|
for output in res.outputs:
|
||||||
|
i = output.index + prompt_idx * request.n
|
||||||
|
# TODO(simon): optimize the performance by avoiding full text O(n^2) sending.
|
||||||
|
|
||||||
|
if request.echo and request.max_tokens == 0:
|
||||||
|
# only return the prompt
|
||||||
|
delta_text = res.prompt
|
||||||
|
delta_token_ids = res.prompt_token_ids
|
||||||
|
top_logprobs = res.prompt_logprobs
|
||||||
|
has_echoed[i] = True
|
||||||
|
elif request.echo and request.max_tokens > 0 and not has_echoed[
|
||||||
|
i]:
|
||||||
|
# echo the prompt and first token
|
||||||
|
delta_text = res.prompt + output.text
|
||||||
|
delta_token_ids = res.prompt_token_ids + output.token_ids
|
||||||
|
top_logprobs = res.prompt_logprobs + (output.logprobs
|
||||||
|
or [])
|
||||||
|
has_echoed[i] = True
|
||||||
|
else:
|
||||||
|
# return just the delta
|
||||||
|
delta_text = output.text[len(previous_texts[i]):]
|
||||||
|
delta_token_ids = output.token_ids[
|
||||||
|
previous_num_tokens[i]:]
|
||||||
|
top_logprobs = output.logprobs[previous_num_tokens[
|
||||||
|
i]:] if output.logprobs else None
|
||||||
|
|
||||||
|
if request.logprobs is not None:
|
||||||
|
assert top_logprobs is not None, "top_logprobs must be provided when logprobs is requested"
|
||||||
|
logprobs = self._create_logprobs(
|
||||||
|
token_ids=delta_token_ids,
|
||||||
|
top_logprobs=top_logprobs,
|
||||||
|
num_output_top_logprobs=request.logprobs,
|
||||||
|
initial_text_offset=len(previous_texts[i]),
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logprobs = None
|
||||||
|
|
||||||
|
previous_texts[i] = output.text
|
||||||
|
previous_num_tokens[i] = len(output.token_ids)
|
||||||
|
finish_reason = output.finish_reason
|
||||||
|
response_json = CompletionStreamResponse(
|
||||||
|
id=request_id,
|
||||||
|
created=created_time,
|
||||||
|
model=model_name,
|
||||||
|
choices=[
|
||||||
|
CompletionResponseStreamChoice(
|
||||||
|
index=i,
|
||||||
|
text=delta_text,
|
||||||
|
logprobs=logprobs,
|
||||||
|
finish_reason=finish_reason,
|
||||||
|
)
|
||||||
|
]).model_dump_json()
|
||||||
|
yield f"data: {response_json}\n\n"
|
||||||
|
|
||||||
|
if output.finish_reason is not None: # return final usage
|
||||||
|
logprobs = LogProbs(
|
||||||
|
) if request.logprobs is not None else None
|
||||||
|
prompt_tokens = len(res.prompt_token_ids)
|
||||||
|
completion_tokens = len(output.token_ids)
|
||||||
|
final_usage = UsageInfo(
|
||||||
|
prompt_tokens=prompt_tokens,
|
||||||
|
completion_tokens=completion_tokens,
|
||||||
|
total_tokens=prompt_tokens + completion_tokens,
|
||||||
|
)
|
||||||
|
response_json = CompletionStreamResponse(
|
||||||
|
id=request_id,
|
||||||
|
created=created_time,
|
||||||
|
model=model_name,
|
||||||
|
choices=[
|
||||||
|
CompletionResponseStreamChoice(
|
||||||
|
index=i,
|
||||||
|
text="",
|
||||||
|
logprobs=logprobs,
|
||||||
|
finish_reason=output.finish_reason,
|
||||||
|
)
|
||||||
|
],
|
||||||
|
usage=final_usage,
|
||||||
|
).model_dump_json()
|
||||||
|
yield f"data: {response_json}\n\n"
|
||||||
|
except ValueError as e:
|
||||||
|
# TODO: Use a vllm-specific Validation Error
|
||||||
|
data = self.create_streaming_error_response(str(e))
|
||||||
|
print("yield", f"data: {data}\n\n")
|
||||||
|
yield f"data: {data}\n\n"
|
||||||
|
|
||||||
|
print("yield", "data: [DONE]\n\n")
|
||||||
|
yield "data: [DONE]\n\n"
|
||||||
|
|
||||||
|
def request_output_to_completion_response(
|
||||||
|
self,
|
||||||
|
final_res_batch: List[RequestOutput],
|
||||||
|
request: CompletionRequest,
|
||||||
|
request_id: str,
|
||||||
|
created_time: int,
|
||||||
|
model_name: str,
|
||||||
|
) -> CompletionResponse:
|
||||||
|
choices = []
|
||||||
|
num_prompt_tokens = 0
|
||||||
|
num_generated_tokens = 0
|
||||||
|
for final_res in final_res_batch:
|
||||||
|
assert final_res is not None
|
||||||
|
prompt_token_ids = final_res.prompt_token_ids
|
||||||
|
prompt_logprobs = final_res.prompt_logprobs
|
||||||
|
prompt_text = final_res.prompt
|
||||||
|
|
||||||
|
for output in final_res.outputs:
|
||||||
|
if request.echo and request.max_tokens == 0:
|
||||||
|
token_ids = prompt_token_ids
|
||||||
|
top_logprobs = prompt_logprobs
|
||||||
|
output_text = prompt_text
|
||||||
|
elif request.echo and request.max_tokens > 0:
|
||||||
|
token_ids = prompt_token_ids + output.token_ids
|
||||||
|
top_logprobs = prompt_logprobs + output.logprobs
|
||||||
|
output_text = prompt_text + output.text
|
||||||
|
else:
|
||||||
|
token_ids = output.token_ids
|
||||||
|
top_logprobs = output.logprobs
|
||||||
|
output_text = output.text
|
||||||
|
|
||||||
|
if request.logprobs is not None:
|
||||||
|
logprobs = self._create_logprobs(
|
||||||
|
token_ids=token_ids,
|
||||||
|
top_logprobs=top_logprobs,
|
||||||
|
num_output_top_logprobs=request.logprobs,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logprobs = None
|
||||||
|
|
||||||
|
choice_data = CompletionResponseChoice(
|
||||||
|
index=len(choices),
|
||||||
|
text=output_text,
|
||||||
|
logprobs=logprobs,
|
||||||
|
finish_reason=output.finish_reason,
|
||||||
|
)
|
||||||
|
choices.append(choice_data)
|
||||||
|
|
||||||
|
num_prompt_tokens += len(prompt_token_ids)
|
||||||
|
num_generated_tokens += sum(
|
||||||
|
len(output.token_ids) for output in final_res.outputs)
|
||||||
|
|
||||||
|
usage = UsageInfo(
|
||||||
|
prompt_tokens=num_prompt_tokens,
|
||||||
|
completion_tokens=num_generated_tokens,
|
||||||
|
total_tokens=num_prompt_tokens + num_generated_tokens,
|
||||||
|
)
|
||||||
|
|
||||||
|
return CompletionResponse(
|
||||||
|
id=request_id,
|
||||||
|
created=created_time,
|
||||||
|
model=model_name,
|
||||||
|
choices=choices,
|
||||||
|
usage=usage,
|
||||||
|
)
|
||||||
|
|||||||
@ -1,4 +1,5 @@
|
|||||||
import asyncio
|
import asyncio
|
||||||
|
import json
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
from http import HTTPStatus
|
from http import HTTPStatus
|
||||||
from typing import Dict, List, Optional, Union
|
from typing import Dict, List, Optional, Union
|
||||||
@ -11,6 +12,7 @@ from vllm.entrypoints.openai.protocol import (CompletionRequest,
|
|||||||
ModelCard, ModelList,
|
ModelCard, ModelList,
|
||||||
ModelPermission)
|
ModelPermission)
|
||||||
from vllm.lora.request import LoRARequest
|
from vllm.lora.request import LoRARequest
|
||||||
|
from vllm.sequence import Logprob
|
||||||
|
|
||||||
logger = init_logger(__name__)
|
logger = init_logger(__name__)
|
||||||
|
|
||||||
@ -83,7 +85,7 @@ class OpenAIServing:
|
|||||||
def _create_logprobs(
|
def _create_logprobs(
|
||||||
self,
|
self,
|
||||||
token_ids: List[int],
|
token_ids: List[int],
|
||||||
top_logprobs: Optional[List[Optional[Dict[int, float]]]] = None,
|
top_logprobs: Optional[List[Optional[Dict[int, Logprob]]]] = None,
|
||||||
num_output_top_logprobs: Optional[int] = None,
|
num_output_top_logprobs: Optional[int] = None,
|
||||||
initial_text_offset: int = 0,
|
initial_text_offset: int = 0,
|
||||||
) -> LogProbs:
|
) -> LogProbs:
|
||||||
@ -95,10 +97,10 @@ class OpenAIServing:
|
|||||||
for i, token_id in enumerate(token_ids):
|
for i, token_id in enumerate(token_ids):
|
||||||
step_top_logprobs = top_logprobs[i]
|
step_top_logprobs = top_logprobs[i]
|
||||||
if step_top_logprobs is not None:
|
if step_top_logprobs is not None:
|
||||||
token_logprob = step_top_logprobs[token_id]
|
token_logprob = step_top_logprobs[token_id].logprob
|
||||||
else:
|
else:
|
||||||
token_logprob = None
|
token_logprob = None
|
||||||
token = self.tokenizer.convert_ids_to_tokens(token_id)
|
token = step_top_logprobs[token_id].decoded_token
|
||||||
logprobs.tokens.append(token)
|
logprobs.tokens.append(token)
|
||||||
logprobs.token_logprobs.append(token_logprob)
|
logprobs.token_logprobs.append(token_logprob)
|
||||||
if len(logprobs.text_offset) == 0:
|
if len(logprobs.text_offset) == 0:
|
||||||
@ -110,7 +112,7 @@ class OpenAIServing:
|
|||||||
|
|
||||||
if num_output_top_logprobs:
|
if num_output_top_logprobs:
|
||||||
logprobs.top_logprobs.append({
|
logprobs.top_logprobs.append({
|
||||||
self.tokenizer.convert_ids_to_tokens(i): p
|
p.decoded_token: p.logprob
|
||||||
for i, p in step_top_logprobs.items()
|
for i, p in step_top_logprobs.items()
|
||||||
} if step_top_logprobs else None)
|
} if step_top_logprobs else None)
|
||||||
return logprobs
|
return logprobs
|
||||||
@ -124,6 +126,19 @@ class OpenAIServing:
|
|||||||
type=err_type,
|
type=err_type,
|
||||||
code=status_code.value)
|
code=status_code.value)
|
||||||
|
|
||||||
|
def create_streaming_error_response(
|
||||||
|
self,
|
||||||
|
message: str,
|
||||||
|
err_type: str = "BadRequestError",
|
||||||
|
status_code: HTTPStatus = HTTPStatus.BAD_REQUEST) -> str:
|
||||||
|
json_str = json.dumps({
|
||||||
|
"error":
|
||||||
|
self.create_error_response(message=message,
|
||||||
|
err_type=err_type,
|
||||||
|
status_code=status_code).model_dump()
|
||||||
|
})
|
||||||
|
return json_str
|
||||||
|
|
||||||
async def _check_model(self, request) -> Optional[ErrorResponse]:
|
async def _check_model(self, request) -> Optional[ErrorResponse]:
|
||||||
if request.model == self.served_model:
|
if request.model == self.served_model:
|
||||||
return
|
return
|
||||||
|
|||||||
@ -8,8 +8,9 @@ from vllm.model_executor.parallel_utils.communication_op import (
|
|||||||
tensor_model_parallel_gather)
|
tensor_model_parallel_gather)
|
||||||
from vllm.model_executor.sampling_metadata import SamplingMetadata, SamplingTensors
|
from vllm.model_executor.sampling_metadata import SamplingMetadata, SamplingTensors
|
||||||
from vllm.sampling_params import SamplingParams, SamplingType
|
from vllm.sampling_params import SamplingParams, SamplingType
|
||||||
from vllm.sequence import (PromptLogprobs, SampleLogprobs, SamplerOutput,
|
from vllm.sequence import (Logprob, PromptLogprobs, SampleLogprobs,
|
||||||
SequenceData, SequenceGroupOutput, SequenceOutput)
|
SamplerOutput, SequenceData, SequenceGroupOutput,
|
||||||
|
SequenceOutput)
|
||||||
from vllm.utils import is_neuron
|
from vllm.utils import is_neuron
|
||||||
|
|
||||||
|
|
||||||
@ -528,7 +529,10 @@ def _get_logprobs(
|
|||||||
prompt_logprobs_dict.update(
|
prompt_logprobs_dict.update(
|
||||||
zip(top_token_ids[sample_idx, :num_logprobs].tolist(),
|
zip(top_token_ids[sample_idx, :num_logprobs].tolist(),
|
||||||
top_logprobs[sample_idx, :num_logprobs].tolist()))
|
top_logprobs[sample_idx, :num_logprobs].tolist()))
|
||||||
group_prompt_logprobs.append(prompt_logprobs_dict)
|
group_prompt_logprobs.append({
|
||||||
|
token_id: Logprob(logprob)
|
||||||
|
for token_id, logprob in prompt_logprobs_dict.items()
|
||||||
|
})
|
||||||
sample_idx += 1
|
sample_idx += 1
|
||||||
query_result_idx += 1
|
query_result_idx += 1
|
||||||
result_prompt_logprobs.append(group_prompt_logprobs)
|
result_prompt_logprobs.append(group_prompt_logprobs)
|
||||||
@ -553,7 +557,10 @@ def _get_logprobs(
|
|||||||
parent_id, :num_logprobs].tolist(),
|
parent_id, :num_logprobs].tolist(),
|
||||||
top_logprobs[sample_idx +
|
top_logprobs[sample_idx +
|
||||||
parent_id, :num_logprobs].tolist()))
|
parent_id, :num_logprobs].tolist()))
|
||||||
group_sample_logprobs.append(sample_logprobs_dict)
|
group_sample_logprobs.append({
|
||||||
|
token_id: Logprob(logprob)
|
||||||
|
for token_id, logprob in sample_logprobs_dict.items()
|
||||||
|
})
|
||||||
result_sample_logprobs.append(group_sample_logprobs)
|
result_sample_logprobs.append(group_sample_logprobs)
|
||||||
sample_idx += len(seq_ids)
|
sample_idx += len(seq_ids)
|
||||||
|
|
||||||
|
|||||||
@ -8,8 +8,16 @@ from vllm.block import LogicalTokenBlock
|
|||||||
from vllm.sampling_params import SamplingParams
|
from vllm.sampling_params import SamplingParams
|
||||||
from vllm.lora.request import LoRARequest
|
from vllm.lora.request import LoRARequest
|
||||||
|
|
||||||
PromptLogprobs = List[Optional[Dict[int, float]]]
|
|
||||||
SampleLogprobs = List[Dict[int, float]]
|
@dataclass
|
||||||
|
class Logprob:
|
||||||
|
"""Infos for supporting OpenAI compatible logprobs."""
|
||||||
|
logprob: float
|
||||||
|
decoded_token: Optional[str] = None
|
||||||
|
|
||||||
|
|
||||||
|
PromptLogprobs = List[Optional[Dict[int, Logprob]]]
|
||||||
|
SampleLogprobs = List[Dict[int, Logprob]]
|
||||||
|
|
||||||
|
|
||||||
class SequenceStatus(enum.Enum):
|
class SequenceStatus(enum.Enum):
|
||||||
@ -196,12 +204,12 @@ class Sequence:
|
|||||||
def append_token_id(
|
def append_token_id(
|
||||||
self,
|
self,
|
||||||
token_id: int,
|
token_id: int,
|
||||||
logprobs: Dict[int, float],
|
logprobs: Dict[int, Logprob],
|
||||||
) -> None:
|
) -> None:
|
||||||
assert token_id in logprobs
|
assert token_id in logprobs
|
||||||
self._append_tokens_to_blocks([token_id])
|
self._append_tokens_to_blocks([token_id])
|
||||||
self.output_logprobs.append(logprobs)
|
self.output_logprobs.append(logprobs)
|
||||||
self.data.append_token_id(token_id, logprobs[token_id])
|
self.data.append_token_id(token_id, logprobs[token_id].logprob)
|
||||||
|
|
||||||
def get_len(self) -> int:
|
def get_len(self) -> int:
|
||||||
return self.data.get_len()
|
return self.data.get_len()
|
||||||
@ -456,7 +464,7 @@ class SequenceOutput:
|
|||||||
self,
|
self,
|
||||||
parent_seq_id: int,
|
parent_seq_id: int,
|
||||||
output_token: int,
|
output_token: int,
|
||||||
logprobs: Dict[int, float],
|
logprobs: Dict[int, Logprob],
|
||||||
) -> None:
|
) -> None:
|
||||||
self.parent_seq_id = parent_seq_id
|
self.parent_seq_id = parent_seq_id
|
||||||
self.output_token = output_token
|
self.output_token = output_token
|
||||||
@ -470,9 +478,10 @@ class SequenceOutput:
|
|||||||
def __eq__(self, other: object) -> bool:
|
def __eq__(self, other: object) -> bool:
|
||||||
if not isinstance(other, SequenceOutput):
|
if not isinstance(other, SequenceOutput):
|
||||||
raise NotImplementedError()
|
raise NotImplementedError()
|
||||||
return (self.parent_seq_id == other.parent_seq_id
|
equal = (self.parent_seq_id == other.parent_seq_id
|
||||||
and self.output_token == other.output_token
|
and self.output_token == other.output_token)
|
||||||
and self.logprobs == other.logprobs)
|
log_probs_equal = other.logprobs == self.logprobs
|
||||||
|
return equal and log_probs_equal
|
||||||
|
|
||||||
|
|
||||||
class SequenceGroupOutput:
|
class SequenceGroupOutput:
|
||||||
|
|||||||
@ -77,7 +77,7 @@ class MultiStepWorker(Worker):
|
|||||||
token_id = seq_output.output_token
|
token_id = seq_output.output_token
|
||||||
token_logprob = seq_output.logprobs[token_id]
|
token_logprob = seq_output.logprobs[token_id]
|
||||||
|
|
||||||
seq.append_token_id(token_id, token_logprob)
|
seq.append_token_id(token_id, token_logprob.logprob)
|
||||||
|
|
||||||
def _shallow_copy_inputs(
|
def _shallow_copy_inputs(
|
||||||
self, seq_group_metadata_list: List[SequenceGroupMetadata]
|
self, seq_group_metadata_list: List[SequenceGroupMetadata]
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user