[VLM][Model] Support image input for Chameleon (#6633)

This commit is contained in:
Roger Wang 2024-07-22 23:50:48 -07:00 committed by GitHub
parent c5201240a4
commit 22fa2e35cb
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 696 additions and 58 deletions

View File

@ -182,6 +182,10 @@ Vision Language Models
- Models
- Example HuggingFace Models
- :ref:`LoRA <lora>`
* - :code:`ChameleonForConditionalGeneration`
- Chameleon
- :code:`facebook/chameleon-7b` etc.
-
* - :code:`FuyuForCausalLM`
- Fuyu
- :code:`adept/fuyu-8b` etc.

View File

@ -0,0 +1,102 @@
import re
from typing import List, Optional, Type
import pytest
from vllm.multimodal.utils import rescale_image_size
from ..conftest import IMAGE_ASSETS, VllmRunner, _ImageAssets
pytestmark = pytest.mark.vlm
HF_IMAGE_PROMPTS = IMAGE_ASSETS.prompts({
"stop_sign":
"USER: <image>\nWhat's the content of the image?\nASSISTANT:",
"cherry_blossom":
"USER: <image>\nWhat is the season?\nASSISTANT:",
})
models = ["facebook/chameleon-7b"]
#TODO (ywang96): Add correctness test when chameleon is
# available on transformers.
def run_test(
vllm_runner: Type[VllmRunner],
image_assets: _ImageAssets,
model: str,
*,
size_factors: List[float],
dtype: str,
max_tokens: int,
tensor_parallel_size: int,
distributed_executor_backend: Optional[str] = None,
):
"""Test if the model can generate text given
a batch of images and prompts.
"""
images = [asset.pil_image for asset in image_assets]
inputs_per_image = [(
[prompt for _ in size_factors],
[rescale_image_size(image, factor) for factor in size_factors],
) for image, prompt in zip(images, HF_IMAGE_PROMPTS)]
with vllm_runner(model,
max_model_len=4096,
dtype=dtype,
tensor_parallel_size=tensor_parallel_size,
distributed_executor_backend=distributed_executor_backend,
enforce_eager=True) as vllm_model:
for prompts, images in inputs_per_image:
vllm_outputs = vllm_model.generate_greedy(prompts,
max_tokens,
images=images)
for i in range(len(vllm_outputs)):
# format prompt back to original
replacements = {
"<racm3:break>": "",
"<eoss>": "",
"<reserved08706>": ""
}
pattern = '|'.join(replacements.keys())
vllm_result = re.sub(
pattern,
lambda match: replacements[match.group(0)], #noqa B023
vllm_outputs[i][1])
vllm_result = vllm_result.replace("<image>", "", 1023)
assert vllm_result[:len(prompts[i])] == prompts[i]
# assert at least 10 new characters are generated
# (to take stop token into account)
assert len(vllm_outputs[i][1]) - len(prompts[i]) > 10
@pytest.mark.parametrize("model", models)
@pytest.mark.parametrize(
"size_factors",
[
# Single-scale
[1.0],
# Single-scale, batched
[1.0, 1.0, 1.0],
# Multi-scale
[0.25, 0.5, 1.0],
],
)
@pytest.mark.parametrize("dtype", ["bfloat16"])
@pytest.mark.parametrize("max_tokens", [128])
def test_models(vllm_runner, image_assets, model, size_factors, dtype: str,
max_tokens: int) -> None:
run_test(
vllm_runner,
image_assets,
model,
size_factors=size_factors,
dtype=dtype,
max_tokens=max_tokens,
tensor_parallel_size=1,
)

View File

@ -105,7 +105,8 @@ def _image_token_str(model_config: ModelConfig,
return None
if model_type.startswith("llava"):
return tokenizer.decode(model_config.hf_config.image_token_index)
if model_type == "chameleon":
return "<image>"
raise TypeError("Unknown model type: {model_type}")

View File

@ -16,9 +16,10 @@ _GENERATION_MODELS = {
"BaiChuanForCausalLM": ("baichuan", "BaiChuanForCausalLM"), # baichuan-7b
"BaichuanForCausalLM": ("baichuan", "BaichuanForCausalLM"), # baichuan-13b
"BloomForCausalLM": ("bloom", "BloomForCausalLM"),
"ChameleonForCausalLM":
("chameleon", "ChameleonForConditionalGeneration"
), #TODO(ywang96): fix model name when huggingface fixes it
#TODO(ywang96): remove this when huggingface fixes the model repo
"ChameleonForCausalLM": ("chameleon", "ChameleonForConditionalGeneration"),
"ChameleonForConditionalGeneration":
("chameleon", "ChameleonForConditionalGeneration"),
"ChatGLMModel": ("chatglm", "ChatGLMForCausalLM"),
"ChatGLMForConditionalGeneration": ("chatglm", "ChatGLMForCausalLM"),
"CohereForCausalLM": ("commandr", "CohereForCausalLM"),

View File

@ -1,13 +1,17 @@
from functools import cached_property
from typing import Any, Dict, Iterable, List, Optional, Tuple
from typing import (Any, Dict, Iterable, List, Literal, Optional, Tuple,
TypedDict)
import torch
import torch.nn.functional as F
from PIL import Image
from torch import nn
from vllm.attention import Attention, AttentionMetadata
from vllm.config import CacheConfig
from vllm.config import CacheConfig, MultiModalConfig
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.inputs import INPUT_REGISTRY, InputContext, LLMInputs
from vllm.logger import init_logger
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
@ -22,10 +26,114 @@ from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors, SamplerOutput
from vllm.transformers_utils.configs import ChameleonConfig
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.image import (cached_get_tokenizer,
repeat_and_pad_image_tokens)
from vllm.sequence import IntermediateTensors, SamplerOutput, SequenceData
from vllm.transformers_utils.configs import (ChameleonConfig,
ChameleonVQVAEConfig)
from vllm.utils import print_warning_once
from .interfaces import SupportsVision
logger = init_logger(__name__)
# These configs are not part of the model config but the preprocessor
# and processor files, so we hardcode them in the model file for now.
CHAMELEON_CROP_SIZE_HEIGHT = CHAMELEON_CROP_SIZE_WIDTH = 512
CHAMELEON_IMAGE_SEQ_LENGTH = 1024
CHAMELEON_IMAGE_TOKEN_ID = 8711
CHAMELEON_IMAGE_START_TOKEN_ID = 8197
CHAMELEON_IMAGE_END_TOKEN_ID = 8196
CHAMELEON_SEP_TOKEN_ID = 8710
class ChameleonImagePixelInputs(TypedDict):
type: Literal["pixel_values"]
data: torch.Tensor
"""Shape: `(batch_size, num_channels, height, width)`"""
def get_max_chameleon_image_tokens(ctx: InputContext):
return CHAMELEON_IMAGE_SEQ_LENGTH
def dummy_seq_data_for_chameleon(
seq_len: int,
*,
image_token_id: int,
image_feature_size_override: Optional[int] = None,
):
if image_feature_size_override is None:
image_feature_size = CHAMELEON_IMAGE_SEQ_LENGTH
else:
image_feature_size = image_feature_size_override
token_ids = [image_token_id] * image_feature_size
token_ids += [0] * (seq_len - image_feature_size)
return SequenceData(token_ids)
def dummy_image_for_chameleon(
image_width_override: Optional[int] = None,
image_height_override: Optional[int] = None,
):
width = CHAMELEON_CROP_SIZE_WIDTH
height = CHAMELEON_CROP_SIZE_HEIGHT
if image_width_override is not None:
width = image_width_override
if image_height_override is not None:
height = image_height_override
image = Image.new("RGB", (width, height), color=0)
return {"image": image}
def dummy_data_for_chameleon(ctx: InputContext, seq_len: int):
seq_data = dummy_seq_data_for_chameleon(
seq_len,
image_token_id=CHAMELEON_IMAGE_TOKEN_ID,
)
mm_data = dummy_image_for_chameleon()
return seq_data, mm_data
def input_processor_for_chameleon(ctx: InputContext, llm_inputs: LLMInputs):
"""
Processing input prompt to insert required tokens for image placeholder.
See https://github.com/huggingface/transformers/blob/0fdea8607d7e01eb0e38a1ebeb7feee30a22f0cf/src/transformers/models/chameleon/processing_chameleon.py#L58
""" # noqa
multi_modal_data = llm_inputs.get("multi_modal_data")
if multi_modal_data is None or "image" not in multi_modal_data:
return llm_inputs
model_config = ctx.model_config
tokenizer = cached_get_tokenizer(model_config.tokenizer)
new_prompt, new_token_ids = repeat_and_pad_image_tokens(
tokenizer,
llm_inputs.get("prompt"),
llm_inputs["prompt_token_ids"],
image_token_id=CHAMELEON_IMAGE_TOKEN_ID,
repeat_count=CHAMELEON_IMAGE_SEQ_LENGTH,
pad_token_left=CHAMELEON_IMAGE_START_TOKEN_ID,
pad_token_right=CHAMELEON_IMAGE_END_TOKEN_ID,
)
# Appending sep token for chat mode to follow default processor
# behavior
new_prompt += tokenizer.sep_token
new_token_ids += [CHAMELEON_SEP_TOKEN_ID]
# NOTE: Create a defensive copy of the original inputs
return LLMInputs(prompt_token_ids=new_token_ids,
prompt=new_prompt,
multi_modal_data=multi_modal_data)
class ChameleonLayerNorm(nn.LayerNorm):
@ -318,12 +426,333 @@ class ChameleonSwinDecoderLayer(nn.Module):
return hidden_states, residual
# Copied from transformers.models.chameleon.modeling_chameleon.ChameleonVQVAEVectorQuantizer #noqa
class ChameleonVQVAEVectorQuantizer(nn.Module):
def __init__(self, config: ChameleonVQVAEConfig):
super().__init__()
self.num_embeddings = config.num_embeddings
self.embedding_dim = config.embed_dim
self.beta = getattr(config, "beta", 0.25)
self.embedding = nn.Embedding(self.num_embeddings, self.embedding_dim)
self.re_embed = self.num_embeddings
def forward(self, hidden_state: torch.Tensor):
hidden_state = hidden_state.permute(0, 2, 3, 1).contiguous()
hidden_state_flattened = hidden_state.view(-1, self.embedding_dim)
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
distances = (
torch.sum(hidden_state_flattened**2, dim=1, keepdim=True) +
torch.sum(self.embedding.weight**2, dim=1) -
2 * torch.einsum("bd,dn->bn", hidden_state_flattened,
self.embedding.weight.transpose(0, 1)))
min_encoding_indices = torch.argmin(distances, dim=1)
hidden_state_quant = self.embedding(min_encoding_indices).view(
hidden_state.shape)
# compute loss for embedding
loss = torch.mean((hidden_state_quant.detach() - hidden_state)**
2) + self.beta * torch.mean(
(hidden_state_quant - hidden_state.detach())**2)
# preserve gradients
hidden_state_quant = hidden_state + (hidden_state_quant -
hidden_state).detach()
# reshape back to match original input shape
hidden_state_quant = hidden_state_quant.permute(0, 3, 1,
2).contiguous()
return hidden_state_quant, loss, min_encoding_indices
# Copied from transformers.models.chameleon.modeling_chameleon.ChameleonVQVAEEncoderConvDownsample #noqa
class ChameleonVQVAEEncoderConvDownsample(nn.Module):
def __init__(self, in_channels: int):
super().__init__()
self.conv = nn.Conv2d(in_channels,
in_channels,
kernel_size=3,
stride=2,
padding=0)
def forward(self, hidden_states: torch.Tensor):
# no asymmetric padding in torch conv, must do it ourselves
hidden_states = F.pad(hidden_states,
pad=(0, 1, 0, 1),
mode="constant",
value=0)
hidden_states = self.conv(hidden_states)
return hidden_states
# Copied from transformers.models.chameleon.modeling_chameleon.ChameleonVQVAEEncoderResnetBlock #noqa
class ChameleonVQVAEEncoderResnetBlock(nn.Module):
def __init__(
self,
config: ChameleonVQVAEConfig,
in_channels: int,
out_channels=None,
conv_shortcut=False,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = in_channels if out_channels is None \
else out_channels
self.use_conv_shortcut = conv_shortcut
self.norm1 = torch.nn.GroupNorm(num_groups=32,
num_channels=in_channels,
eps=1e-6,
affine=True)
self.conv1 = torch.nn.Conv2d(in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1)
self.norm2 = torch.nn.GroupNorm(num_groups=32,
num_channels=out_channels,
eps=1e-6,
affine=True)
self.dropout = torch.nn.Dropout(config.dropout)
self.conv2 = torch.nn.Conv2d(out_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
self.conv_shortcut = torch.nn.Conv2d(in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1)
else:
self.nin_shortcut = torch.nn.Conv2d(in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0)
def forward(self, hidden_states: torch.Tensor):
residual = hidden_states
hidden_states = self.norm1(hidden_states)
hidden_states *= torch.sigmoid(hidden_states)
hidden_states = self.conv1(hidden_states)
hidden_states = self.norm2(hidden_states)
hidden_states *= torch.sigmoid(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.conv2(hidden_states)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
residual = self.conv_shortcut(residual)
else:
residual = self.nin_shortcut(residual)
return residual + hidden_states
# Copied from transformers.models.chameleon.modeling_chameleon.ChameleonVQVAEEncoderAttnBlock #noqa
class ChameleonVQVAEEncoderAttnBlock(nn.Module):
def __init__(self, in_channels: int):
super().__init__()
self.in_channels = in_channels
self.norm = torch.nn.GroupNorm(num_groups=32,
num_channels=in_channels,
eps=1e-6,
affine=True)
self.q = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.k = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.v = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.proj_out = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
def forward(self, hidden_states: torch.Tensor):
residual = hidden_states
hidden_states = self.norm(hidden_states)
query_states = self.q(hidden_states)
key_states = self.k(hidden_states)
value_states = self.v(hidden_states)
# compute attention
batch_size, channels, height, width = query_states.shape
query_states = query_states.reshape(batch_size, channels,
height * width).permute(0, 2, 1)
key_states = key_states.reshape(batch_size, channels, height * width)
attn_weights = torch.bmm(query_states, key_states)
attn_weights = attn_weights * (int(channels)**(-0.5))
attn_weights = F.softmax(attn_weights, dim=2)
# attend to values
value_states = value_states.reshape(batch_size, channels,
height * width)
attn_weights = attn_weights.permute(0, 2, 1)
attn_output = torch.bmm(value_states,
attn_weights).reshape(batch_size, channels,
height, width)
attn_output = self.proj_out(attn_output)
return residual + attn_output
# Copied from transformers.models.chameleon.modeling_chameleon.ChameleonVQVAEEncoder #noqa
class ChameleonVQVAEEncoder(nn.Module):
def __init__(self, config: ChameleonVQVAEConfig):
super().__init__()
self.num_resolutions = len(config.channel_multiplier)
self.num_res_blocks = config.num_res_blocks
base_channels = config.base_channels
resolution = config.resolution
in_channels = config.in_channels
double_latent = config.double_latent
latent_channels = config.latent_channels
channel_multiplier = config.channel_multiplier
self.conv_in = torch.nn.Conv2d(in_channels,
base_channels,
kernel_size=3,
stride=1,
padding=1)
curr_res = resolution
in_channel_multiplier = (1, ) + tuple(channel_multiplier)
self.in_channel_multiplier = in_channel_multiplier
self.down = nn.ModuleList()
for i_level in range(self.num_resolutions):
block = nn.ModuleList()
attn = nn.ModuleList()
block_in = base_channels * in_channel_multiplier[i_level]
block_out = base_channels * channel_multiplier[i_level]
for i_block in range(self.num_res_blocks):
block.append(
ChameleonVQVAEEncoderResnetBlock(
config=config,
in_channels=block_in,
out_channels=block_out,
))
block_in = block_out
if (config.attn_resolutions is not None
and curr_res in config.attn_resolutions
and config.attn_type == "vanilla"):
attn.append(ChameleonVQVAEEncoderAttnBlock(block_in))
down = nn.Module()
down.block = block
down.attn = attn
if i_level != self.num_resolutions - 1:
down.downsample = ChameleonVQVAEEncoderConvDownsample(block_in)
curr_res = curr_res // 2
self.down.append(down)
self.mid = nn.Module()
self.mid.block_1 = ChameleonVQVAEEncoderResnetBlock(
config=config,
in_channels=block_in,
out_channels=block_in,
)
self.mid.attn_1 = ChameleonVQVAEEncoderAttnBlock(
block_in) if config.attn_type == "vanilla" else nn.Identity()
self.mid.block_2 = ChameleonVQVAEEncoderResnetBlock(
config=config,
in_channels=block_in,
out_channels=block_in,
)
self.norm_out = torch.nn.GroupNorm(num_groups=32,
num_channels=block_in,
eps=1e-6,
affine=True)
self.conv_out = torch.nn.Conv2d(
block_in,
2 * latent_channels if double_latent else latent_channels,
kernel_size=3,
stride=1,
padding=1,
)
def forward(self, pixel_values: torch.Tensor):
# downsampling
hidden_states = [self.conv_in(pixel_values)]
for i_level in range(self.num_resolutions):
for i_block in range(self.num_res_blocks):
hidden_state = self.down[i_level].block[i_block](
hidden_states[-1], )
if len(self.down[i_level].attn) > 0:
hidden_state = self.down[i_level].attn[i_block](
hidden_state)
hidden_states.append(hidden_state)
if i_level != self.num_resolutions - 1:
hidden_states.append(self.down[i_level].downsample(
hidden_states[-1]))
# middle
last_hidden_state = hidden_states[-1]
last_hidden_state = self.mid.block_1(last_hidden_state)
last_hidden_state = self.mid.attn_1(last_hidden_state)
last_hidden_state = self.mid.block_2(last_hidden_state)
# end
last_hidden_state = self.norm_out(last_hidden_state)
last_hidden_state *= torch.sigmoid(last_hidden_state)
last_hidden_state = self.conv_out(last_hidden_state)
return last_hidden_state
# Adapted from transformers.models.chameleon.modeling_chameleon.ChameleonVQVAE #noqa
class ChameleonVQVAE(nn.Module):
def __init__(self, config: ChameleonVQVAEConfig):
super().__init__()
self.encoder = ChameleonVQVAEEncoder(config)
self.quantize = ChameleonVQVAEVectorQuantizer(config)
self.quant_conv = torch.nn.Conv2d(config.latent_channels,
config.embed_dim, 1)
self.post_quant_conv = torch.nn.Conv2d(config.embed_dim,
config.latent_channels, 1)
self.eval() # Chameleon's VQ model is frozen
def encode(
self, pixel_values: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
hidden_states = self.encoder(pixel_values)
hidden_states = self.quant_conv(hidden_states)
quant, emb_loss, indices = self.quantize(hidden_states)
return quant, emb_loss, indices
# Copied from transformers.models.chameleon.modeling_chameleon.ChameleonImageVocabularyMapping #noqa
class ChameleonImageVocabularyMapping:
"""
A class for mapping discrete image tokens from VQGAN to BPE tokens.
"""
def __init__(self, vocab_map):
def __init__(self, vocab_map: Dict[str, int]):
self.vocab_map = vocab_map
self.image_token_id = vocab_map.get("<image>")
@ -401,13 +830,23 @@ class ChameleonModel(nn.Module):
for _ in range(config.num_hidden_layers)
])
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
# TODO: Support image input
# self.vqmodel = ChameleonVQModel(config.vq_config)
self.vqmodel = ChameleonVQVAE(config.vq_config)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def get_image_tokens(self, pixel_values: torch.Tensor) -> torch.Tensor:
"""
Tokenizes images into discrete tokens with VQGAN module. Converts
obtained image tokens into BPE tokens and wraps with "boi" and "eoi"
special tokens.
"""
batch_size = pixel_values.shape[0]
_, _, image_toks = self.vqmodel.encode(pixel_values)
bpe_toks = self.vocabulary_mapping.convert_img2bpe(image_toks)
bpe_toks = bpe_toks.view(batch_size, -1)
return bpe_toks
def forward(
self,
input_ids: Optional[torch.Tensor],
@ -434,16 +873,22 @@ class ChameleonModel(nn.Module):
return hidden_states
class ChameleonForConditionalGeneration(nn.Module):
@MULTIMODAL_REGISTRY.register_image_input_mapper()
@MULTIMODAL_REGISTRY.register_max_image_tokens(get_max_chameleon_image_tokens)
@INPUT_REGISTRY.register_dummy_data(dummy_data_for_chameleon)
@INPUT_REGISTRY.register_input_processor(input_processor_for_chameleon)
class ChameleonForConditionalGeneration(nn.Module, SupportsVision):
def __init__(
self,
config: ChameleonConfig,
multimodal_config: MultiModalConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
super().__init__()
self.config = config
self.multimodal_config = multimodal_config
self.model = ChameleonModel(config, cache_config, quant_config)
self.unpadded_vocab_size = config.vocab_size
self.lm_head = ParallelLMHead(
@ -458,6 +903,36 @@ class ChameleonForConditionalGeneration(nn.Module):
config.vocab_size, logit_scale)
self.sampler = Sampler()
def _validate_pixel_values(self, data: torch.Tensor) -> torch.Tensor:
expected_dims = (3, CHAMELEON_CROP_SIZE_HEIGHT,
CHAMELEON_CROP_SIZE_WIDTH)
actual_dims = tuple(data.shape[1:])
if actual_dims != expected_dims:
expected_expr = ("batch_size", *map(str, expected_dims))
raise ValueError(
f"The expected shape of pixel values is {expected_expr}. "
f"You supplied {tuple(data.shape)}.")
return data
def _parse_and_validate_image_input(
self, **kwargs: object) -> Optional[ChameleonImagePixelInputs]:
pixel_values = kwargs.pop("pixel_values", None)
if pixel_values is None:
return None
if not isinstance(pixel_values, torch.Tensor):
raise ValueError("Incorrect type of pixel values. "
f"Got type: {type(pixel_values)}")
return ChameleonImagePixelInputs(
type="pixel_values",
data=self._validate_pixel_values(pixel_values),
)
def forward(
self,
input_ids: torch.Tensor,
@ -468,10 +943,17 @@ class ChameleonForConditionalGeneration(nn.Module):
**kwargs,
) -> torch.Tensor:
# TODO (ywang96): Support image input
# image_tokens = self.process_image_input(**kwargs)
# image_mask = input_ids == self.vocabulary_mapping.image_token_id
# input_ids[special_image_mask] = image_tokens.flatten().to(input_ids.dtype) #noqa
image_input = self._parse_and_validate_image_input(**kwargs)
if image_input is not None:
assert self.model.vqmodel is not None
image_tokens = self.model.get_image_tokens(image_input["data"].to(
self.config.torch_dtype))
image_token_id = self.model.vocabulary_mapping.image_token_id
special_image_mask = input_ids == image_token_id
image_tokens = image_tokens.to(input_ids.device, input_ids.dtype)
input_ids = input_ids.masked_scatter(special_image_mask,
image_tokens)
hidden_states = self.model(input_ids, positions, kv_caches,
attn_metadata)
@ -511,16 +993,20 @@ class ChameleonForConditionalGeneration(nn.Module):
if "rotary_emb.inv_freq" in name:
continue
# Skip loading vqgan
# TODO: add support for the vision model
if "vqmodel" in name:
continue
if ("rotary_emb.cos_cached" in name
or "rotary_emb.sin_cached" in name):
# Models trained using ColossalAI may include these tensors in
# the checkpoint. Skip them.
continue
for (param_name, weight_name, shard_id) in stacked_params_mapping:
use_default_weight_loading = False
if "vqmodel" in name:
if self.model.vqmodel is not None:
# We only do sharding for language model and
# not vqvae for now.
use_default_weight_loading = True
else:
for (param_name, weight_name,
shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
@ -541,10 +1027,10 @@ class ChameleonForConditionalGeneration(nn.Module):
".kv_scale", ".attn.kv_scale")
if remapped_kv_scale_name not in params_dict:
print_warning_once(
f"Found kv scale in the checkpoint (e.g. {name}), "
"but not found the expected name in the model "
f"(e.g. {remapped_kv_scale_name}). kv-scale is "
"not loaded.")
"Found kv scale in the checkpoint (e.g. "
f"{name}), but not found the expected name in "
f"the model (e.g. {remapped_kv_scale_name}). "
"kv-scale is not loaded.")
continue
else:
name = remapped_kv_scale_name
@ -552,3 +1038,8 @@ class ChameleonForConditionalGeneration(nn.Module):
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
if use_default_weight_loading and name in params_dict:
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)

View File

@ -1,4 +1,5 @@
from vllm.transformers_utils.configs.chameleon import ChameleonConfig
from vllm.transformers_utils.configs.chameleon import (ChameleonConfig,
ChameleonVQVAEConfig)
from vllm.transformers_utils.configs.chatglm import ChatGLMConfig
from vllm.transformers_utils.configs.dbrx import DbrxConfig
# RWConfig is for the original tiiuae/falcon-40b(-instruct) and
@ -12,6 +13,7 @@ from vllm.transformers_utils.configs.mpt import MPTConfig
__all__ = [
"ChameleonConfig",
"ChameleonVQVAEConfig",
"ChatGLMConfig",
"DbrxConfig",
"MPTConfig",

View File

@ -1,3 +1,5 @@
from typing import List, Optional
from transformers import PretrainedConfig
@ -5,9 +7,7 @@ from transformers import PretrainedConfig
# transformers once the new release with Chameleon support
# is available.
class ChameleonConfig(PretrainedConfig):
model_type = "chameleon"
is_composition = True
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
@ -31,7 +31,7 @@ class ChameleonConfig(PretrainedConfig):
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
qk_layernorm=False,
model_parallel_size=1,
swin_norm=False,
vq_config=None,
vocabulary_map=None,
@ -46,10 +46,6 @@ class ChameleonConfig(PretrainedConfig):
self.num_attention_heads = num_attention_heads
self.mlp_bias = mlp_bias
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
@ -60,10 +56,14 @@ class ChameleonConfig(PretrainedConfig):
self._rope_scaling_validation()
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.qk_layernorm = qk_layernorm
self.model_parallel_size = model_parallel_size
self.swin_norm = swin_norm
# vq config is currently ignored
# self.vq_config = ChameleonVQConfig(**vq_config)
if vq_config is None:
vq_config = {}
self.vq_config = ChameleonVQVAEConfig(**vq_config)
self.vocabulary_map = vocabulary_map
super().__init__(
@ -99,3 +99,40 @@ class ChameleonConfig(PretrainedConfig):
raise ValueError(
"`rope_scaling`'s factor field must be a float > 1, "
f"got {rope_scaling_factor}")
class ChameleonVQVAEConfig(PretrainedConfig):
model_type = "chameleon_vqgan"
def __init__(
self,
embed_dim: int = 256,
num_embeddings: int = 8192,
double_latent: bool = False,
latent_channels: int = 256,
resolution: int = 512,
in_channels: int = 3,
base_channels: int = 128,
channel_multiplier: List[int] = [1, 1, 2, 2, 4], #noqa
num_res_blocks: int = 2,
attn_resolutions: Optional[List[int]] = None,
dropout: float = 0.0,
attn_type: str = "vanilla",
initializer_range=0.02,
**kwargs,
):
super().__init__(**kwargs)
self.embed_dim = embed_dim
self.num_embeddings = num_embeddings
self.double_latent = double_latent
self.latent_channels = latent_channels
self.resolution = resolution
self.in_channels = in_channels
self.base_channels = base_channels
self.channel_multiplier = channel_multiplier
self.num_res_blocks = num_res_blocks
self.attn_resolutions = attn_resolutions
self.dropout = dropout
self.attn_type = attn_type
self.initializer_range = initializer_range