mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-09 21:35:01 +08:00
[DOC] [ROCm] Add ROCm quickstart guide (#26505)
Signed-off-by: vllmellm <vllm.ellm@embeddedllm.com>
This commit is contained in:
parent
09a7e6f617
commit
265ecb05fb
@ -12,32 +12,56 @@ This guide will help you quickly get started with vLLM to perform:
|
||||
|
||||
## Installation
|
||||
|
||||
If you are using NVIDIA GPUs, you can install vLLM using [pip](https://pypi.org/project/vllm/) directly.
|
||||
=== "NVIDIA CUDA"
|
||||
|
||||
It's recommended to use [uv](https://docs.astral.sh/uv/), a very fast Python environment manager, to create and manage Python environments. Please follow the [documentation](https://docs.astral.sh/uv/#getting-started) to install `uv`. After installing `uv`, you can create a new Python environment and install vLLM using the following commands:
|
||||
If you are using NVIDIA GPUs, you can install vLLM using [pip](https://pypi.org/project/vllm/) directly.
|
||||
|
||||
```bash
|
||||
uv venv --python 3.12 --seed
|
||||
source .venv/bin/activate
|
||||
uv pip install vllm --torch-backend=auto
|
||||
```
|
||||
It's recommended to use [uv](https://docs.astral.sh/uv/), a very fast Python environment manager, to create and manage Python environments. Please follow the [documentation](https://docs.astral.sh/uv/#getting-started) to install `uv`. After installing `uv`, you can create a new Python environment and install vLLM using the following commands:
|
||||
|
||||
`uv` can [automatically select the appropriate PyTorch index at runtime](https://docs.astral.sh/uv/guides/integration/pytorch/#automatic-backend-selection) by inspecting the installed CUDA driver version via `--torch-backend=auto` (or `UV_TORCH_BACKEND=auto`). To select a specific backend (e.g., `cu126`), set `--torch-backend=cu126` (or `UV_TORCH_BACKEND=cu126`).
|
||||
```bash
|
||||
uv venv --python 3.12 --seed
|
||||
source .venv/bin/activate
|
||||
uv pip install vllm --torch-backend=auto
|
||||
```
|
||||
|
||||
Another delightful way is to use `uv run` with `--with [dependency]` option, which allows you to run commands such as `vllm serve` without creating any permanent environment:
|
||||
`uv` can [automatically select the appropriate PyTorch index at runtime](https://docs.astral.sh/uv/guides/integration/pytorch/#automatic-backend-selection) by inspecting the installed CUDA driver version via `--torch-backend=auto` (or `UV_TORCH_BACKEND=auto`). To select a specific backend (e.g., `cu126`), set `--torch-backend=cu126` (or `UV_TORCH_BACKEND=cu126`).
|
||||
|
||||
```bash
|
||||
uv run --with vllm vllm --help
|
||||
```
|
||||
Another delightful way is to use `uv run` with `--with [dependency]` option, which allows you to run commands such as `vllm serve` without creating any permanent environment:
|
||||
|
||||
You can also use [conda](https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html) to create and manage Python environments. You can install `uv` to the conda environment through `pip` if you want to manage it within the environment.
|
||||
```bash
|
||||
uv run --with vllm vllm --help
|
||||
```
|
||||
|
||||
```bash
|
||||
conda create -n myenv python=3.12 -y
|
||||
conda activate myenv
|
||||
pip install --upgrade uv
|
||||
uv pip install vllm --torch-backend=auto
|
||||
```
|
||||
You can also use [conda](https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html) to create and manage Python environments. You can install `uv` to the conda environment through `pip` if you want to manage it within the environment.
|
||||
|
||||
```bash
|
||||
conda create -n myenv python=3.12 -y
|
||||
conda activate myenv
|
||||
pip install --upgrade uv
|
||||
uv pip install vllm --torch-backend=auto
|
||||
```
|
||||
|
||||
=== "AMD ROCm"
|
||||
|
||||
Use a pre-built docker image from Docker Hub. The public stable image is [rocm/vllm:latest](https://hub.docker.com/r/rocm/vllm). There is also a development image at [rocm/vllm-dev](https://hub.docker.com/r/rocm/vllm-dev).
|
||||
|
||||
The `-v` flag in the `docker run` command below mounts a local directory into the container. Replace `<path/to/your/models>` with the path on your host machine to the directory containing your models. The models will then be accessible inside the container at `/app/models`.
|
||||
|
||||
???+ console "Commands"
|
||||
```bash
|
||||
docker pull rocm/vllm-dev:nightly # to get the latest image
|
||||
docker run -it --rm \
|
||||
--network=host \
|
||||
--group-add=video \
|
||||
--ipc=host \
|
||||
--cap-add=SYS_PTRACE \
|
||||
--security-opt seccomp=unconfined \
|
||||
--device /dev/kfd \
|
||||
--device /dev/dri \
|
||||
-v <path/to/your/models>:/app/models \
|
||||
-e HF_HOME="/app/models" \
|
||||
rocm/vllm-dev:nightly
|
||||
```
|
||||
|
||||
!!! note
|
||||
For more detail and non-CUDA platforms, please refer [here](installation/README.md) for specific instructions on how to install vLLM.
|
||||
@ -246,7 +270,17 @@ Alternatively, you can use the `openai` Python package:
|
||||
|
||||
Currently, vLLM supports multiple backends for efficient Attention computation across different platforms and accelerator architectures. It automatically selects the most performant backend compatible with your system and model specifications.
|
||||
|
||||
If desired, you can also manually set the backend of your choice by configuring the environment variable `VLLM_ATTENTION_BACKEND` to one of the following options: `FLASH_ATTN`, `FLASHINFER` or `XFORMERS`.
|
||||
If desired, you can also manually set the backend of your choice by configuring the environment variable `VLLM_ATTENTION_BACKEND` to one of the following options:
|
||||
|
||||
- On NVIDIA CUDA: `FLASH_ATTN`, `FLASHINFER` or `XFORMERS`.
|
||||
- On AMD ROCm: `TRITON_ATTN`, `ROCM_ATTN`, `ROCM_AITER_FA` or `ROCM_AITER_UNIFIED_ATTN`.
|
||||
|
||||
For AMD ROCm, you can futher control the specific Attention implementation using the following variables:
|
||||
|
||||
- Triton Unified Attention: `VLLM_ROCM_USE_AITER=0 VLLM_V1_USE_PREFILL_DECODE_ATTENTION=0 VLLM_ROCM_USE_AITER_MHA=0`
|
||||
- AITER Unified Attention: `VLLM_ROCM_USE_AITER=1 VLLM_USE_AITER_UNIFIED_ATTENTION=1 VLLM_V1_USE_PREFILL_DECODE_ATTENTION=0 VLLM_ROCM_USE_AITER_MHA=0`
|
||||
- Triton Prefill-Decode Attention: `VLLM_ROCM_USE_AITER=1 VLLM_V1_USE_PREFILL_DECODE_ATTENTION=1 VLLM_ROCM_USE_AITER_MHA=0`
|
||||
- AITER Multi-head Attention: `VLLM_ROCM_USE_AITER=1 VLLM_V1_USE_PREFILL_DECODE_ATTENTION=0 VLLM_ROCM_USE_AITER_MHA=1`
|
||||
|
||||
!!! warning
|
||||
There are no pre-built vllm wheels containing Flash Infer, so you must install it in your environment first. Refer to the [Flash Infer official docs](https://docs.flashinfer.ai/) or see [docker/Dockerfile](../../docker/Dockerfile) for instructions on how to install it.
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user