[Feature] A calibration-free RTN-based quantization for accurate and accelerated INT4/INT8 inference (#18768)

Signed-off-by: Alex Kogan <alex.kogan@oracle.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
This commit is contained in:
Alex Kogan 2025-07-01 01:44:38 -04:00 committed by GitHub
parent bd5038af07
commit 27949354fa
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 319 additions and 0 deletions

View File

@ -0,0 +1,28 @@
# SPDX-License-Identifier: Apache-2.0
# Copyright © 2025, Oracle and/or its affiliates.
"""Tests RTN quantization startup and generation,
doesn't test correctness
"""
import pytest
from tests.quantization.utils import is_quant_method_supported
MODELS = ["microsoft/Phi-3-mini-4k-instruct"]
@pytest.mark.skipif(not is_quant_method_supported("rtn"),
reason="RTN is not supported on this GPU type.")
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["bfloat16"])
@pytest.mark.parametrize("max_tokens", [10])
def test_model_rtn_startup(
hf_runner,
vllm_runner,
example_prompts,
model: str,
dtype: str,
max_tokens: int,
) -> None:
with vllm_runner(model, dtype=dtype, quantization="rtn") as vllm_model:
vllm_model.generate_greedy(example_prompts, max_tokens)

View File

@ -35,6 +35,7 @@ QuantizationMethods = Literal[
"moe_wna16",
"torchao",
"auto-round",
"rtn",
]
QUANTIZATION_METHODS: list[str] = list(get_args(QuantizationMethods))
@ -110,6 +111,7 @@ def get_quantization_config(quantization: str) -> type[QuantizationConfig]:
from .neuron_quant import NeuronQuantConfig
from .ptpc_fp8 import PTPCFp8Config
from .qqq import QQQConfig
from .rtn import RTNConfig
from .torchao import TorchAOConfig
from .tpu_int8 import Int8TpuConfig
@ -142,6 +144,7 @@ def get_quantization_config(quantization: str) -> type[QuantizationConfig]:
"moe_wna16": MoeWNA16Config,
"torchao": TorchAOConfig,
"auto-round": AutoRoundConfig,
"rtn": RTNConfig
}
# Update the `method_to_config` with customized quantization methods.
method_to_config.update(_CUSTOMIZED_METHOD_TO_QUANT_CONFIG)

View File

@ -0,0 +1,288 @@
# SPDX-License-Identifier: Apache-2.0
# Copyright © 2025, Oracle and/or its affiliates.
import os
from typing import Any, Optional
import torch
import torch.nn.functional as F
from torch.nn.parameter import Parameter
from vllm.logger import init_logger
from vllm.model_executor.layers.linear import (LinearBase, LinearMethodBase,
set_weight_attrs)
from vllm.model_executor.layers.quantization import QuantizationMethods
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig)
logger = init_logger(__name__)
"""By default, use 8 bit as target precision, but it can be
overridden by setting the RTN_NUM_BITS envvar
"""
NUM_BITS = os.getenv('RTN_NUM_BITS', "8")
"""By default, use group size of 128 parameters, but it can be
overridden by setting the RTN_GROUP_SIZE envvar
"""
GROUP_SIZE = os.getenv('RTN_GROUP_SIZE', "128")
class RTNConfig(QuantizationConfig):
"""Config class for RTN.
"""
def __init__(
self,
weight_bits: int = int(NUM_BITS),
group_size: int = int(GROUP_SIZE),
) -> None:
self.weight_bits = weight_bits
self.group_size = group_size
if self.weight_bits != 4 and self.weight_bits != 8:
raise ValueError(
"Currently, only 4-bit or 8-bit weight quantization is "
f"supported for RTN, but got {self.weight_bits} bits.")
def __repr__(self) -> str:
return (f"RTNConfig(weight_bits={self.weight_bits}, "
f"group_size={self.group_size})")
@classmethod
def get_name(cls) -> QuantizationMethods:
return "rtn"
@classmethod
def get_supported_act_dtypes(cls) -> list[torch.dtype]:
return [torch.bfloat16, torch.half]
@classmethod
def get_min_capability(cls) -> int:
return 80
@classmethod
def get_config_filenames(cls) -> list[str]:
return []
@classmethod
def from_config(cls, config: dict[str, Any]) -> "RTNConfig":
weight_bits = cls.get_from_keys(config, ["bits"])
group_size = cls.get_from_keys(config, ["group_size"])
return cls(weight_bits, group_size)
def get_quant_method(self, layer: torch.nn.Module,
prefix: str) -> Optional["RTNLinearMethod"]:
if isinstance(layer, LinearBase):
return RTNLinearMethod(self)
return None
class RTNTensor:
"""A wrapper over Tensor that enables quantization on-the-fly by
overloading the copy_ method.
"""
def __init__(self, data: torch.Tensor, scale: torch.Tensor,
quant_config: RTNConfig) -> None:
self.data = data
self.scale = scale
self.quant_config = quant_config
def narrow(self, dim, start, length):
factor = 1 if self.quant_config.weight_bits == 8 else 2
return RTNTensor(
self.data.narrow(dim, start // factor, length // factor),
self.scale.narrow(dim, start, length), self.quant_config)
@property
def shape(self):
shape = self.data.shape
factor = 1 if self.quant_config.weight_bits == 8 else 2
return torch.Size((shape[0] * factor, shape[1]))
def copy_(self, loaded_weight: torch.Tensor) -> None:
qweight, weight_scale = rtn_quantize(loaded_weight.cuda(),
self.quant_config.weight_bits,
self.quant_config.group_size)
self.data.copy_(qweight)
self.scale.data.copy_(weight_scale)
class RTNParameter(Parameter):
"""A wrapper over Parameter that returns RTNTensor (a wrapper over Tensor)
when its data is accessed. We need this wrapper for the data loading phase
only, so we can intercept a weight copying function (torch.Tensor.copy_)
and apply quantization on-the-fly.
"""
def __new__(cls, data: torch.Tensor, **kwargs):
return super().__new__(cls, data=data, requires_grad=False)
def __init__(self, data: torch.Tensor, scale: torch.Tensor,
quant_config: RTNConfig) -> None:
self.scale = scale
self.quant_config = quant_config
@property
def data(self):
return RTNTensor(super().data, self.scale, self.quant_config)
class RTNLinearMethod(LinearMethodBase):
"""Linear method for RTN.
Args:
quant_config: The RTN quantization config.
"""
def __init__(self, quant_config: RTNConfig):
self.quant_config = quant_config
def create_weights(
self,
layer: torch.nn.Module,
input_size_per_partition: int,
output_partition_sizes: list[int],
input_size: int,
output_size: int,
params_dtype: torch.dtype,
**extra_weight_attrs,
):
output_size_per_partition = sum(output_partition_sizes)
num_groups_per_col = (input_size_per_partition //
self.quant_config.group_size
if self.quant_config.group_size != -1 else 1)
scale = Parameter(
torch.empty(output_size_per_partition,
num_groups_per_col,
dtype=params_dtype),
requires_grad=False,
)
factor = 1 if self.quant_config.weight_bits == 8 else 2
weight = RTNParameter(data=torch.empty(output_size_per_partition //
factor,
input_size_per_partition,
dtype=torch.int8),
scale=scale,
quant_config=self.quant_config)
layer.register_parameter("weight", weight)
set_weight_attrs(weight, {
**extra_weight_attrs,
"input_dim": 1,
"output_dim": 0,
})
layer.register_parameter("scale", scale)
layer.output_size_per_partition = output_size_per_partition
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
"""torch.compile does not know how to deal with a Parameter subclass
(aka RTNParameter). As we don't really need RTNParameters for the
forward pass, we replace them with equivalent instances of Parameters.
"""
old_weight = layer.weight
assert isinstance(old_weight, RTNParameter)
data = old_weight.data.data
delattr(layer, "weight")
new_weight = Parameter(data=data, requires_grad=False)
layer.register_parameter("weight", new_weight)
def apply(self,
layer: torch.nn.Module,
x: torch.Tensor,
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
qweight = layer.weight
scale = layer.scale
weight = rtn_dequantize(qweight, scale)
out = F.linear(x, weight)
del weight
if bias is not None:
out.add_(bias)
return out
def rtn_quantize(tensor: torch.Tensor, num_bits: int,
group_size: int) -> tuple[torch.Tensor, torch.Tensor]:
"""Quantize a tensor using per-group static scaling factor.
Args:
tensor: The input tensor.
num_bits: Target precision for the result (supported values are
8 or 4).
group_size: Quantization granularity.
If equal to -1, each row in the input tensor is treated
as one group.
"""
q_range = 2**num_bits
num_groups = (tensor.shape[0] * tensor.shape[1] //
group_size if group_size != -1 else tensor.shape[0])
"""Calculate a scaling factor per input group.
"""
input_flat = tensor.reshape(num_groups, -1)
input_min = torch.min(input_flat, dim=1, keepdim=True)[0]
input_max = torch.max(input_flat, dim=1, keepdim=True)[0]
input_max_abs = torch.max(input_min.abs(), input_max.abs())
scale = (input_max_abs * 2.0 / (q_range - 1))
"""Scale each input group, truncate and round to the nearest integer.
"""
scaled_input = input_flat / scale
scaled_input = scaled_input.clamp(-q_range // 2, q_range // 2 - 1)
scaled_input = scaled_input.round()
scale = scale.reshape(tensor.shape[0], -1).contiguous()
inputs_q = scaled_input.reshape(tensor.shape).to(torch.int8)
inputs_q = inputs_q.contiguous()
if num_bits == 4:
"""Pack two 4-bit values into each byte.
"""
inputs_q = (inputs_q[:, 1::2] << 4) | (inputs_q[:, ::2] & 0xf)
inputs_q = inputs_q.reshape(tensor.shape[0] // 2, tensor.shape[1])
inputs_q = inputs_q.contiguous()
return inputs_q, scale
def rtn_dequantize(tensor: torch.Tensor, scale: torch.Tensor) -> torch.Tensor:
"""Dequantize a tensor using per-group static scaling factors.
Args:
tensor: The input tensor.
scale: The tensor with per-group scale factors.
"""
num_groups = scale.size(0) * scale.size(1)
input_dim, output_dim = tensor.shape
num_bits = 8 if input_dim == scale.size(0) else 4
if num_bits == 4:
input_dim *= 2
data = torch.empty((input_dim, output_dim),
dtype=scale.dtype,
device=tensor.device)
if num_bits == 8:
data.copy_(tensor)
else:
"""Unpack two 4-bit values from each byte.
"""
tensor = tensor.reshape(input_dim, output_dim // 2)
for i in range(2):
data[:, i::2] = (tensor << 4 * (1 - i)) >> 4
"""Scale each input group with its scaling factor.
"""
scale = scale.reshape(num_groups, -1)
data = data.reshape(num_groups, -1)
data = torch.mul(data, scale)
input_deq = data.reshape((input_dim, output_dim)).contiguous()
return input_deq