mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-27 12:35:16 +08:00
[Bugfix] Fix MoE LoRA bin/pt loading (#31161)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
This commit is contained in:
parent
73cfb7a722
commit
27c6c2f98c
@ -12,7 +12,6 @@ from vllm.lora.peft_helper import PEFTHelper
|
||||
from vllm.lora.utils import (
|
||||
get_lora_id,
|
||||
is_base_embeddding_weights,
|
||||
is_regex_target_modules,
|
||||
parse_fine_tuned_lora_name,
|
||||
)
|
||||
from vllm.model_executor.model_loader.tensorizer import TensorizerConfig
|
||||
@ -201,37 +200,13 @@ class LoRAModel:
|
||||
for module in f.keys(): # noqa
|
||||
tensors[module] = f.get_tensor(module)
|
||||
elif os.path.isfile(lora_bin_file_path) or os.path.isfile(lora_pt_file_path):
|
||||
# When a bin/pt file is provided, we rely on config to find
|
||||
# unexpected modules.
|
||||
unexpected_modules = []
|
||||
target_modules = peft_helper.target_modules
|
||||
if not isinstance(target_modules, list):
|
||||
target_modules = [target_modules]
|
||||
for module in target_modules:
|
||||
# Compatible with more modules,
|
||||
# such as:layers.11.self_attn.k_proj
|
||||
part_name = module.split(".")[-1]
|
||||
if part_name not in expected_lora_modules:
|
||||
unexpected_modules.append(module)
|
||||
# loaded lora's target modules must be a subset of
|
||||
# expected_lora_modules. It is not reliable. See
|
||||
# https://github.com/vllm-project/vllm/pull/5909. But there's no
|
||||
# other better mechanism.
|
||||
if unexpected_modules and not is_regex_target_modules(
|
||||
peft_helper.target_modules, expected_lora_modules
|
||||
):
|
||||
raise ValueError(
|
||||
f"While loading {lora_dir}, expected"
|
||||
f" target modules in {expected_lora_modules}"
|
||||
f" but received {unexpected_modules}."
|
||||
f" Please verify that the loaded LoRA module is correct"
|
||||
)
|
||||
lora_file_path = (
|
||||
lora_bin_file_path
|
||||
if os.path.isfile(lora_bin_file_path)
|
||||
else lora_pt_file_path
|
||||
)
|
||||
tensors = torch.load(lora_file_path, map_location=device, weights_only=True)
|
||||
check_unexpected_modules(tensors)
|
||||
else:
|
||||
raise ValueError(f"{lora_dir} doesn't contain tensors")
|
||||
|
||||
|
||||
@ -5,7 +5,6 @@ import os
|
||||
from typing import TYPE_CHECKING, Optional
|
||||
|
||||
import huggingface_hub
|
||||
import regex as re
|
||||
from huggingface_hub.utils import (
|
||||
EntryNotFoundError,
|
||||
HfHubHTTPError,
|
||||
@ -186,39 +185,6 @@ def is_base_embeddding_weights(name: str) -> bool:
|
||||
return name.endswith(embedding_suffixes)
|
||||
|
||||
|
||||
def is_regex_target_modules(
|
||||
load_modules: str | list[str], expected_lora_modules: set[str]
|
||||
) -> bool:
|
||||
"""
|
||||
PEFT supports passing `target_modules` in the form of regular expressions,
|
||||
such as `model.*(q_proj|k_proj|v_proj)$`. This function is mainly used to
|
||||
determine whether the suffix in the regular expression is present in the
|
||||
`expected_lora_modules`.
|
||||
"""
|
||||
|
||||
def is_valid_regex(pattern):
|
||||
try:
|
||||
re.compile(pattern)
|
||||
return True
|
||||
except re.error:
|
||||
return False
|
||||
|
||||
def is_subset(sub_list, full_set):
|
||||
return set(sub_list).issubset(full_set)
|
||||
|
||||
# Similar to PEFT's processing logic, regex-related operations are only
|
||||
# executed when the load_modules is a `str`.
|
||||
if not isinstance(load_modules, str):
|
||||
return False
|
||||
|
||||
if is_valid_regex(load_modules):
|
||||
match = re.search(r"\((.*?)\)\$?$", load_modules)
|
||||
if match:
|
||||
suffix = match.group(1).split("|")
|
||||
return is_subset(suffix, expected_lora_modules)
|
||||
return False
|
||||
|
||||
|
||||
def get_supported_lora_modules(model: nn.Module) -> list[str]:
|
||||
"""
|
||||
In vLLM, all linear layers support LoRA.
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user