[Mamba] Support TP>1 with quantization for mamba2 mixer in case n_groups % tp_size == 0 (#24593)

Signed-off-by: Tomer Asida <57313761+tomeras91@users.noreply.github.com>
Signed-off-by: tomeras91 <57313761+tomeras91@users.noreply.github.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
This commit is contained in:
tomeras91 2025-09-16 13:51:01 +03:00 committed by GitHub
parent 68dbde5dbb
commit 27fcfe7bcf
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -19,6 +19,7 @@ from vllm.distributed import (divide, get_tensor_model_parallel_rank,
from vllm.forward_context import ForwardContext, get_forward_context
from vllm.model_executor.custom_op import CustomOp
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
MergedColumnParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.mamba.abstract import MambaBase
from vllm.model_executor.layers.mamba.mamba2_metadata import (Mamba2Metadata,
@ -261,12 +262,14 @@ class MambaMixer2(MambaBase, CustomOp):
), "Tensor parallel world size must divide num heads."
assert (n_groups % self.tp_size) == 0 or n_groups == 1, (
"If tensor parallel world size does not divide num_heads, "
"If tensor parallel world size does not divide num_groups, "
"then num_groups must equal 1.")
assert (
self.tp_size == 1 or quant_config is None
), "Tensor parallel currently not supported for quantized models."
assert (n_groups % self.tp_size == 0) or self.tp_size == 1 or \
quant_config is None, (
"Tensor parallel currently supported for quantized models only "
"if tensor parallel world size divides num groups."
)
self.ssm_state_size = ssm_state_size
self.conv_kernel_size = conv_kernel_size
@ -285,94 +288,84 @@ class MambaMixer2(MambaBase, CustomOp):
n_groups, self.tp_size)
self.n_groups = n_groups + groups
self.conv_dim = intermediate_size + 2 * self.n_groups * ssm_state_size
self.conv1d = ColumnParallelLinear(
input_size=conv_kernel_size,
output_size=self.conv_dim,
bias=use_conv_bias,
quant_config=None,
prefix=f"{prefix}.conv1d",
)
# unsqueeze to fit conv1d weights shape into the linear weights shape.
# Can't do this in `weight_loader` since it already exists in
# `ColumnParallelLinear` and `set_weight_attrs`
# doesn't allow to override it
self.conv1d.weight.data = self.conv1d.weight.data.unsqueeze(1)
self.groups_ssm_state_size = self.n_groups * self.ssm_state_size
self.conv_dim = intermediate_size + 2 * self.groups_ssm_state_size
self.in_proj = ColumnParallelLinear(
input_size=hidden_size,
output_size=intermediate_size + self.conv_dim + self.num_heads,
bias=use_bias,
quant_config=quant_config,
prefix=f"{prefix}.in_proj",
)
if n_groups % self.tp_size == 0:
self.conv1d = MergedColumnParallelLinear(
input_size=conv_kernel_size,
output_sizes=[
intermediate_size,
self.groups_ssm_state_size,
self.groups_ssm_state_size,
],
bias=use_conv_bias,
quant_config=None,
prefix=f"{prefix}.conv1d",
)
# - because in_proj is a concatenation of 3 weights, we
# need to interleave them before sharding
# - use the custom weight loader mamba_v2_sharded_weight_loader
# for conv1d.bias, covn1d.weight and in_proj.weight
# - need to set these settings, to assign the groups to the head shards
group_shard_settings = (
self.n_groups * self.ssm_state_size, # expected model size
(self.n_groups - n_groups) *
self.ssm_state_size, # extra dims assigned
n_groups == 1, # if there was only one group
)
intermediate_settings = (intermediate_size, 0, False)
head_settings = (self.num_heads, 0, False)
self.in_proj = MergedColumnParallelLinear(
input_size=hidden_size,
output_sizes=[
intermediate_size,
intermediate_size,
self.groups_ssm_state_size,
self.groups_ssm_state_size,
self.num_heads,
],
bias=use_bias,
quant_config=quant_config,
prefix=f"{prefix}.in_proj",
)
else:
# This is the n_groups == 1 case,
# where we need to duplicate groups if TP>1.
# - the weight already has a "weight_loader" attribute
# which set_weight_attrs will raise if we do not
# delete before trying to override it
# - ditto for the other two weights below
delattr(self.conv1d.bias, "weight_loader")
set_weight_attrs(
self.conv1d.bias,
{
"weight_loader":
mamba_v2_sharded_weight_loader(
[
intermediate_settings,
group_shard_settings,
group_shard_settings,
],
self.tp_size,
tp_rank,
)
},
)
self.conv1d = ColumnParallelLinear(
input_size=conv_kernel_size,
output_size=self.conv_dim,
bias=use_conv_bias,
quant_config=None,
prefix=f"{prefix}.conv1d",
)
delattr(self.conv1d.weight, "weight_loader")
set_weight_attrs(
self.conv1d.weight,
{
"weight_loader":
mamba_v2_sharded_weight_loader(
[
intermediate_settings,
group_shard_settings,
group_shard_settings,
],
self.tp_size,
tp_rank,
)
},
)
self.in_proj = ColumnParallelLinear(
input_size=hidden_size,
output_size=intermediate_size + self.conv_dim + self.num_heads,
bias=use_bias,
quant_config=quant_config,
prefix=f"{prefix}.in_proj",
)
if quant_config is None:
# - quant layers do not have a weight loader
delattr(self.in_proj.weight, "weight_loader")
# - because in_proj is a concatenation of 3 weights, we
# need to interleave them before sharding
# - use the custom weight loader mamba_v2_sharded_weight_loader
# for conv1d.bias, covn1d.weight and in_proj.weight
# - need to set these settings, to assign the groups
# to the head shards
group_shard_settings = (
self.groups_ssm_state_size, # expected model size
(self.n_groups - n_groups) *
self.ssm_state_size, # extra dims assigned
n_groups == 1, # if there was only one group
)
intermediate_settings = (intermediate_size, 0, False)
head_settings = (self.num_heads, 0, False)
# - the weight already has a "weight_loader" attribute
# which set_weight_attrs will raise if we do not
# delete before trying to override it
# - ditto for the other two weights below
delattr(self.conv1d.bias, "weight_loader")
set_weight_attrs(
self.in_proj.weight,
self.conv1d.bias,
{
"weight_loader":
mamba_v2_sharded_weight_loader(
[
intermediate_settings, # for gate
intermediate_settings,
group_shard_settings,
group_shard_settings,
head_settings, # for dt
],
self.tp_size,
tp_rank,
@ -380,6 +373,50 @@ class MambaMixer2(MambaBase, CustomOp):
},
)
delattr(self.conv1d.weight, "weight_loader")
set_weight_attrs(
self.conv1d.weight,
{
"weight_loader":
mamba_v2_sharded_weight_loader(
[
intermediate_settings,
group_shard_settings,
group_shard_settings,
],
self.tp_size,
tp_rank,
)
},
)
if quant_config is None:
# - quant layers do not have a weight loader
delattr(self.in_proj.weight, "weight_loader")
set_weight_attrs(
self.in_proj.weight,
{
"weight_loader":
mamba_v2_sharded_weight_loader(
[
intermediate_settings, # for gate
intermediate_settings,
group_shard_settings,
group_shard_settings,
head_settings, # for dt
],
self.tp_size,
tp_rank,
)
},
)
# unsqueeze to fit conv1d weights shape into the linear weights shape.
# Can't do this in `weight_loader` since it already exists in
# `ColumnParallelLinear` and `MergedColumnParallelLinear`,
# and `set_weight_attrs` doesn't allow to override it
self.conv1d.weight.data = self.conv1d.weight.data.unsqueeze(1)
# - these are TPed by heads to reduce the size of the
# temporal shape
self.A = nn.Parameter(
@ -498,8 +535,6 @@ class MambaMixer2(MambaBase, CustomOp):
chunk_indices_p = mamba2_metadata.chunk_indices
chunk_offsets_p = mamba2_metadata.chunk_offsets
groups_time_state_size = self.n_groups * self.ssm_state_size
# 1. Gated MLP's linear projection
projected_states, _ = self.in_proj(hidden_states)
@ -524,8 +559,8 @@ class MambaMixer2(MambaBase, CustomOp):
hidden_states_B_C,
[
self.intermediate_size // self.tp_size,
groups_time_state_size // self.tp_size,
groups_time_state_size // self.tp_size,
self.groups_ssm_state_size // self.tp_size,
self.groups_ssm_state_size // self.tp_size,
],
dim=-1,
)