mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 04:15:01 +08:00
[Mamba] Support TP>1 with quantization for mamba2 mixer in case n_groups % tp_size == 0 (#24593)
Signed-off-by: Tomer Asida <57313761+tomeras91@users.noreply.github.com> Signed-off-by: tomeras91 <57313761+tomeras91@users.noreply.github.com> Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
This commit is contained in:
parent
68dbde5dbb
commit
27fcfe7bcf
@ -19,6 +19,7 @@ from vllm.distributed import (divide, get_tensor_model_parallel_rank,
|
||||
from vllm.forward_context import ForwardContext, get_forward_context
|
||||
from vllm.model_executor.custom_op import CustomOp
|
||||
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
||||
MergedColumnParallelLinear,
|
||||
RowParallelLinear)
|
||||
from vllm.model_executor.layers.mamba.abstract import MambaBase
|
||||
from vllm.model_executor.layers.mamba.mamba2_metadata import (Mamba2Metadata,
|
||||
@ -261,12 +262,14 @@ class MambaMixer2(MambaBase, CustomOp):
|
||||
), "Tensor parallel world size must divide num heads."
|
||||
|
||||
assert (n_groups % self.tp_size) == 0 or n_groups == 1, (
|
||||
"If tensor parallel world size does not divide num_heads, "
|
||||
"If tensor parallel world size does not divide num_groups, "
|
||||
"then num_groups must equal 1.")
|
||||
|
||||
assert (
|
||||
self.tp_size == 1 or quant_config is None
|
||||
), "Tensor parallel currently not supported for quantized models."
|
||||
assert (n_groups % self.tp_size == 0) or self.tp_size == 1 or \
|
||||
quant_config is None, (
|
||||
"Tensor parallel currently supported for quantized models only "
|
||||
"if tensor parallel world size divides num groups."
|
||||
)
|
||||
|
||||
self.ssm_state_size = ssm_state_size
|
||||
self.conv_kernel_size = conv_kernel_size
|
||||
@ -285,94 +288,84 @@ class MambaMixer2(MambaBase, CustomOp):
|
||||
n_groups, self.tp_size)
|
||||
self.n_groups = n_groups + groups
|
||||
|
||||
self.conv_dim = intermediate_size + 2 * self.n_groups * ssm_state_size
|
||||
self.conv1d = ColumnParallelLinear(
|
||||
input_size=conv_kernel_size,
|
||||
output_size=self.conv_dim,
|
||||
bias=use_conv_bias,
|
||||
quant_config=None,
|
||||
prefix=f"{prefix}.conv1d",
|
||||
)
|
||||
# unsqueeze to fit conv1d weights shape into the linear weights shape.
|
||||
# Can't do this in `weight_loader` since it already exists in
|
||||
# `ColumnParallelLinear` and `set_weight_attrs`
|
||||
# doesn't allow to override it
|
||||
self.conv1d.weight.data = self.conv1d.weight.data.unsqueeze(1)
|
||||
self.groups_ssm_state_size = self.n_groups * self.ssm_state_size
|
||||
self.conv_dim = intermediate_size + 2 * self.groups_ssm_state_size
|
||||
|
||||
self.in_proj = ColumnParallelLinear(
|
||||
input_size=hidden_size,
|
||||
output_size=intermediate_size + self.conv_dim + self.num_heads,
|
||||
bias=use_bias,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.in_proj",
|
||||
)
|
||||
if n_groups % self.tp_size == 0:
|
||||
self.conv1d = MergedColumnParallelLinear(
|
||||
input_size=conv_kernel_size,
|
||||
output_sizes=[
|
||||
intermediate_size,
|
||||
self.groups_ssm_state_size,
|
||||
self.groups_ssm_state_size,
|
||||
],
|
||||
bias=use_conv_bias,
|
||||
quant_config=None,
|
||||
prefix=f"{prefix}.conv1d",
|
||||
)
|
||||
|
||||
# - because in_proj is a concatenation of 3 weights, we
|
||||
# need to interleave them before sharding
|
||||
# - use the custom weight loader mamba_v2_sharded_weight_loader
|
||||
# for conv1d.bias, covn1d.weight and in_proj.weight
|
||||
# - need to set these settings, to assign the groups to the head shards
|
||||
group_shard_settings = (
|
||||
self.n_groups * self.ssm_state_size, # expected model size
|
||||
(self.n_groups - n_groups) *
|
||||
self.ssm_state_size, # extra dims assigned
|
||||
n_groups == 1, # if there was only one group
|
||||
)
|
||||
intermediate_settings = (intermediate_size, 0, False)
|
||||
head_settings = (self.num_heads, 0, False)
|
||||
self.in_proj = MergedColumnParallelLinear(
|
||||
input_size=hidden_size,
|
||||
output_sizes=[
|
||||
intermediate_size,
|
||||
intermediate_size,
|
||||
self.groups_ssm_state_size,
|
||||
self.groups_ssm_state_size,
|
||||
self.num_heads,
|
||||
],
|
||||
bias=use_bias,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.in_proj",
|
||||
)
|
||||
else:
|
||||
# This is the n_groups == 1 case,
|
||||
# where we need to duplicate groups if TP>1.
|
||||
|
||||
# - the weight already has a "weight_loader" attribute
|
||||
# which set_weight_attrs will raise if we do not
|
||||
# delete before trying to override it
|
||||
# - ditto for the other two weights below
|
||||
delattr(self.conv1d.bias, "weight_loader")
|
||||
set_weight_attrs(
|
||||
self.conv1d.bias,
|
||||
{
|
||||
"weight_loader":
|
||||
mamba_v2_sharded_weight_loader(
|
||||
[
|
||||
intermediate_settings,
|
||||
group_shard_settings,
|
||||
group_shard_settings,
|
||||
],
|
||||
self.tp_size,
|
||||
tp_rank,
|
||||
)
|
||||
},
|
||||
)
|
||||
self.conv1d = ColumnParallelLinear(
|
||||
input_size=conv_kernel_size,
|
||||
output_size=self.conv_dim,
|
||||
bias=use_conv_bias,
|
||||
quant_config=None,
|
||||
prefix=f"{prefix}.conv1d",
|
||||
)
|
||||
|
||||
delattr(self.conv1d.weight, "weight_loader")
|
||||
set_weight_attrs(
|
||||
self.conv1d.weight,
|
||||
{
|
||||
"weight_loader":
|
||||
mamba_v2_sharded_weight_loader(
|
||||
[
|
||||
intermediate_settings,
|
||||
group_shard_settings,
|
||||
group_shard_settings,
|
||||
],
|
||||
self.tp_size,
|
||||
tp_rank,
|
||||
)
|
||||
},
|
||||
)
|
||||
self.in_proj = ColumnParallelLinear(
|
||||
input_size=hidden_size,
|
||||
output_size=intermediate_size + self.conv_dim + self.num_heads,
|
||||
bias=use_bias,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.in_proj",
|
||||
)
|
||||
|
||||
if quant_config is None:
|
||||
# - quant layers do not have a weight loader
|
||||
delattr(self.in_proj.weight, "weight_loader")
|
||||
# - because in_proj is a concatenation of 3 weights, we
|
||||
# need to interleave them before sharding
|
||||
# - use the custom weight loader mamba_v2_sharded_weight_loader
|
||||
# for conv1d.bias, covn1d.weight and in_proj.weight
|
||||
# - need to set these settings, to assign the groups
|
||||
# to the head shards
|
||||
group_shard_settings = (
|
||||
self.groups_ssm_state_size, # expected model size
|
||||
(self.n_groups - n_groups) *
|
||||
self.ssm_state_size, # extra dims assigned
|
||||
n_groups == 1, # if there was only one group
|
||||
)
|
||||
intermediate_settings = (intermediate_size, 0, False)
|
||||
head_settings = (self.num_heads, 0, False)
|
||||
|
||||
# - the weight already has a "weight_loader" attribute
|
||||
# which set_weight_attrs will raise if we do not
|
||||
# delete before trying to override it
|
||||
# - ditto for the other two weights below
|
||||
delattr(self.conv1d.bias, "weight_loader")
|
||||
set_weight_attrs(
|
||||
self.in_proj.weight,
|
||||
self.conv1d.bias,
|
||||
{
|
||||
"weight_loader":
|
||||
mamba_v2_sharded_weight_loader(
|
||||
[
|
||||
intermediate_settings, # for gate
|
||||
intermediate_settings,
|
||||
group_shard_settings,
|
||||
group_shard_settings,
|
||||
head_settings, # for dt
|
||||
],
|
||||
self.tp_size,
|
||||
tp_rank,
|
||||
@ -380,6 +373,50 @@ class MambaMixer2(MambaBase, CustomOp):
|
||||
},
|
||||
)
|
||||
|
||||
delattr(self.conv1d.weight, "weight_loader")
|
||||
set_weight_attrs(
|
||||
self.conv1d.weight,
|
||||
{
|
||||
"weight_loader":
|
||||
mamba_v2_sharded_weight_loader(
|
||||
[
|
||||
intermediate_settings,
|
||||
group_shard_settings,
|
||||
group_shard_settings,
|
||||
],
|
||||
self.tp_size,
|
||||
tp_rank,
|
||||
)
|
||||
},
|
||||
)
|
||||
|
||||
if quant_config is None:
|
||||
# - quant layers do not have a weight loader
|
||||
delattr(self.in_proj.weight, "weight_loader")
|
||||
set_weight_attrs(
|
||||
self.in_proj.weight,
|
||||
{
|
||||
"weight_loader":
|
||||
mamba_v2_sharded_weight_loader(
|
||||
[
|
||||
intermediate_settings, # for gate
|
||||
intermediate_settings,
|
||||
group_shard_settings,
|
||||
group_shard_settings,
|
||||
head_settings, # for dt
|
||||
],
|
||||
self.tp_size,
|
||||
tp_rank,
|
||||
)
|
||||
},
|
||||
)
|
||||
|
||||
# unsqueeze to fit conv1d weights shape into the linear weights shape.
|
||||
# Can't do this in `weight_loader` since it already exists in
|
||||
# `ColumnParallelLinear` and `MergedColumnParallelLinear`,
|
||||
# and `set_weight_attrs` doesn't allow to override it
|
||||
self.conv1d.weight.data = self.conv1d.weight.data.unsqueeze(1)
|
||||
|
||||
# - these are TPed by heads to reduce the size of the
|
||||
# temporal shape
|
||||
self.A = nn.Parameter(
|
||||
@ -498,8 +535,6 @@ class MambaMixer2(MambaBase, CustomOp):
|
||||
chunk_indices_p = mamba2_metadata.chunk_indices
|
||||
chunk_offsets_p = mamba2_metadata.chunk_offsets
|
||||
|
||||
groups_time_state_size = self.n_groups * self.ssm_state_size
|
||||
|
||||
# 1. Gated MLP's linear projection
|
||||
projected_states, _ = self.in_proj(hidden_states)
|
||||
|
||||
@ -524,8 +559,8 @@ class MambaMixer2(MambaBase, CustomOp):
|
||||
hidden_states_B_C,
|
||||
[
|
||||
self.intermediate_size // self.tp_size,
|
||||
groups_time_state_size // self.tp_size,
|
||||
groups_time_state_size // self.tp_size,
|
||||
self.groups_ssm_state_size // self.tp_size,
|
||||
self.groups_ssm_state_size // self.tp_size,
|
||||
],
|
||||
dim=-1,
|
||||
)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user