From 28d15ab56bd9d3fd17010bc4abaeec06988f7887 Mon Sep 17 00:00:00 2001 From: sarathc-cerebras Date: Thu, 18 Dec 2025 21:16:58 +0530 Subject: [PATCH] adds jais 2 support (#30188) Signed-off-by: sarathc-cerebras Co-authored-by: Cyrus Leung --- docs/models/supported_models.md | 1 + tests/models/registry.py | 3 + vllm/model_executor/models/jais2.py | 529 +++++++++++++++++++++++++ vllm/model_executor/models/registry.py | 1 + 4 files changed, 534 insertions(+) create mode 100644 vllm/model_executor/models/jais2.py diff --git a/docs/models/supported_models.md b/docs/models/supported_models.md index 9ba0f4ca9096e..3ffbf63f9a18b 100644 --- a/docs/models/supported_models.md +++ b/docs/models/supported_models.md @@ -406,6 +406,7 @@ th { | `InternLM2ForCausalLM` | InternLM2 | `internlm/internlm2-7b`, `internlm/internlm2-chat-7b`, etc. | ✅︎ | ✅︎ | | `InternLM3ForCausalLM` | InternLM3 | `internlm/internlm3-8b-instruct`, etc. | ✅︎ | ✅︎ | | `JAISLMHeadModel` | Jais | `inceptionai/jais-13b`, `inceptionai/jais-13b-chat`, `inceptionai/jais-30b-v3`, `inceptionai/jais-30b-chat-v3`, etc. | | ✅︎ | +| `Jais2ForCausalLM` | Jais2 | `inceptionai/Jais-2-8B-Chat`, `inceptionai/Jais-2-70B-Chat`, etc. | | ✅︎ | | `JambaForCausalLM` | Jamba | `ai21labs/AI21-Jamba-1.5-Large`, `ai21labs/AI21-Jamba-1.5-Mini`, `ai21labs/Jamba-v0.1`, etc. | ✅︎ | ✅︎ | | `KimiLinearForCausalLM` | Kimi-Linear-48B-A3B-Base, Kimi-Linear-48B-A3B-Instruct | `moonshotai/Kimi-Linear-48B-A3B-Base`, `moonshotai/Kimi-Linear-48B-A3B-Instruct` | | ✅︎ | | `Lfm2ForCausalLM` | LFM2 | `LiquidAI/LFM2-1.2B`, `LiquidAI/LFM2-700M`, `LiquidAI/LFM2-350M`, etc. | ✅︎ | ✅︎ | diff --git a/tests/models/registry.py b/tests/models/registry.py index c5d72b5d581b9..fa70e94abd865 100644 --- a/tests/models/registry.py +++ b/tests/models/registry.py @@ -295,6 +295,9 @@ _TEXT_GENERATION_EXAMPLE_MODELS = { "internlm/internlm3-8b-instruct", trust_remote_code=True ), "JAISLMHeadModel": _HfExamplesInfo("inceptionai/jais-13b-chat"), + "Jais2ForCausalLM": _HfExamplesInfo( + "inceptionai/Jais-2-8B-Chat", min_transformers_version="4.58" + ), "JambaForCausalLM": _HfExamplesInfo( "ai21labs/AI21-Jamba-1.5-Mini", extras={ diff --git a/vllm/model_executor/models/jais2.py b/vllm/model_executor/models/jais2.py new file mode 100644 index 0000000000000..01e75338a8ced --- /dev/null +++ b/vllm/model_executor/models/jais2.py @@ -0,0 +1,529 @@ +# SPDX-License-Identifier: Apache-2.0 +# SPDX-FileCopyrightText: Copyright contributors to the vLLM project + +# Adapted from +# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py +# Copyright 2023 The vLLM team. +# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. +# +# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX +# and OPT implementations in this library. It has been modified from its +# original forms to accommodate minor architectural differences compared +# to GPT-NeoX and OPT used by the Meta AI team that trained the model. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +"""Inference-only Jais2 model compatible with HuggingFace weights.""" + +from collections.abc import Iterable + +import torch +from torch import nn +from transformers import Jais2Config + +from vllm.attention.layer import Attention +from vllm.compilation.decorators import support_torch_compile +from vllm.config import CacheConfig, VllmConfig +from vllm.distributed import ( + get_pp_group, + get_tensor_model_parallel_world_size, +) +from vllm.model_executor.layers.activation import ReLUSquaredActivation +from vllm.model_executor.layers.linear import ( + ColumnParallelLinear, + QKVParallelLinear, + RowParallelLinear, +) +from vllm.model_executor.layers.logits_processor import LogitsProcessor +from vllm.model_executor.layers.quantization import QuantizationConfig +from vllm.model_executor.layers.rotary_embedding import get_rope +from vllm.model_executor.layers.vocab_parallel_embedding import ( + DEFAULT_VOCAB_PADDING_SIZE, + ParallelLMHead, + VocabParallelEmbedding, +) +from vllm.model_executor.model_loader.weight_utils import ( + default_weight_loader, + maybe_remap_kv_scale_name, +) +from vllm.sequence import IntermediateTensors + +from .interfaces import SupportsLoRA, SupportsPP +from .utils import ( + AutoWeightsLoader, + PPMissingLayer, + extract_layer_index, + is_pp_missing_parameter, + make_empty_intermediate_tensors_factory, + make_layers, + maybe_prefix, +) + + +class Jais2MLP(nn.Module): + def __init__( + self, + hidden_size: int, + intermediate_size: int, + hidden_act: str, + quant_config: QuantizationConfig | None = None, + bias: bool = False, + prefix: str = "", + ) -> None: + super().__init__() + self.up_proj = ColumnParallelLinear( + input_size=hidden_size, + output_size=intermediate_size, + bias=bias, + quant_config=quant_config, + prefix=f"{prefix}.up_proj", + ) + self.down_proj = RowParallelLinear( + input_size=intermediate_size, + output_size=hidden_size, + bias=bias, + quant_config=quant_config, + prefix=f"{prefix}.down_proj", + ) + self.act_fn = ReLUSquaredActivation() + + def forward(self, x): + x, _ = self.up_proj(x) + x = self.act_fn(x) + x, _ = self.down_proj(x) + return x + + +class Jais2Attention(nn.Module): + def __init__( + self, + config: Jais2Config, + hidden_size: int, + num_heads: int, + num_kv_heads: int, + max_position_embeddings: int = 8192, + quant_config: QuantizationConfig | None = None, + bias: bool = False, + cache_config: CacheConfig | None = None, + prefix: str = "", + ) -> None: + super().__init__() + layer_idx = extract_layer_index(prefix) + self.hidden_size = hidden_size + tp_size = get_tensor_model_parallel_world_size() + self.total_num_heads = num_heads + assert self.total_num_heads % tp_size == 0 + self.num_heads = self.total_num_heads // tp_size + self.total_num_kv_heads = num_kv_heads + if self.total_num_kv_heads >= tp_size: + # Number of KV heads is greater than TP size, so we partition + # the KV heads across multiple tensor parallel GPUs. + assert self.total_num_kv_heads % tp_size == 0 + else: + # Number of KV heads is less than TP size, so we replicate + # the KV heads across multiple tensor parallel GPUs. + assert tp_size % self.total_num_kv_heads == 0 + self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) + # MistralConfig has an optional head_dim introduced by Mistral-Nemo + self.head_dim = getattr( + config, "head_dim", self.hidden_size // self.total_num_heads + ) + self.q_size = self.num_heads * self.head_dim + self.kv_size = self.num_kv_heads * self.head_dim + self.scaling = self.head_dim**-0.5 + self.max_position_embeddings = max_position_embeddings + + self.qkv_proj = QKVParallelLinear( + hidden_size=hidden_size, + head_size=self.head_dim, + total_num_heads=self.total_num_heads, + total_num_kv_heads=self.total_num_kv_heads, + bias=bias, + quant_config=quant_config, + prefix=f"{prefix}.qkv_proj", + ) + + self.o_proj = RowParallelLinear( + input_size=self.total_num_heads * self.head_dim, + output_size=hidden_size, + bias=bias, + quant_config=quant_config, + prefix=f"{prefix}.o_proj", + ) + + is_neox_style = True + if quant_config is not None and quant_config.get_name() == "gguf": + is_neox_style = False + + self.rotary_emb = get_rope( + self.head_dim, + rotary_dim=self.head_dim, + max_position=max_position_embeddings, + rope_parameters=getattr(config, "rope_parameters", None), + is_neox_style=is_neox_style, + ) + + if hasattr(config, "interleaved_sliding_window"): + interleaved_sliding_window = config.interleaved_sliding_window + if isinstance(interleaved_sliding_window, int): + sliding_window = interleaved_sliding_window + elif isinstance(interleaved_sliding_window, list): + sw_idx = layer_idx % len(interleaved_sliding_window) + sliding_window = interleaved_sliding_window[sw_idx] + else: + raise ValueError( + f"{type(interleaved_sliding_window)} is not supported." + ) + else: + sliding_window = None + + self.attn = Attention( + self.num_heads, + self.head_dim, + self.scaling, + num_kv_heads=self.num_kv_heads, + cache_config=cache_config, + quant_config=quant_config, + per_layer_sliding_window=sliding_window, + prefix=f"{prefix}.attn", + ) + + def forward( + self, + positions: torch.Tensor, + hidden_states: torch.Tensor, + ) -> torch.Tensor: + qkv, _ = self.qkv_proj(hidden_states) + q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) + q, k = self.rotary_emb(positions, q, k) + attn_output = self.attn(q, k, v) + output, _ = self.o_proj(attn_output) + return output + + +class Jais2DecoderLayer(nn.Module): + def __init__( + self, + vllm_config: VllmConfig, + config: Jais2Config, + prefix: str = "", + ) -> None: + super().__init__() + + config = config or vllm_config.model_config.hf_config + cache_config = vllm_config.cache_config + quant_config = self.get_quant_config(vllm_config) + + self.hidden_size = config.hidden_size + max_position_embeddings = getattr(config, "max_position_embeddings", 8192) + # Support abacusai/Smaug-72B-v0.1 with attention_bias + # Support internlm/internlm-7b with bias + attention_bias = getattr(config, "attention_bias", False) or getattr( + config, "bias", False + ) + self.self_attn = Jais2Attention( + config=config, + hidden_size=self.hidden_size, + num_heads=config.num_attention_heads, + num_kv_heads=getattr( + config, "num_key_value_heads", config.num_attention_heads + ), + max_position_embeddings=max_position_embeddings, + quant_config=quant_config, + bias=attention_bias, + cache_config=cache_config, + prefix=f"{prefix}.self_attn", + ) + self.mlp = Jais2MLP( + hidden_size=self.hidden_size, + intermediate_size=config.intermediate_size, + hidden_act=config.hidden_act, + quant_config=quant_config, + bias=getattr(config, "mlp_bias", False), + prefix=f"{prefix}.mlp", + ) + self.input_layernorm = nn.LayerNorm( + config.hidden_size, eps=config.layer_norm_eps + ) + self.post_attention_layernorm = nn.LayerNorm( + config.hidden_size, eps=config.layer_norm_eps + ) + + def forward( + self, + positions: torch.Tensor, + hidden_states: torch.Tensor, + residual: torch.Tensor | None, + ) -> tuple[torch.Tensor, torch.Tensor]: + # Self Attention + if residual is None: + residual = hidden_states + hidden_states = self.input_layernorm(hidden_states) + else: + hidden_states, residual = ( + self.input_layernorm(hidden_states + residual), + hidden_states + residual, + ) + hidden_states = self.self_attn( + positions=positions, + hidden_states=hidden_states, + ) + + # Fully Connected + hidden_states, residual = ( + self.post_attention_layernorm(hidden_states + residual), + hidden_states + residual, + ) + hidden_states = self.mlp(hidden_states) + return hidden_states, residual + + def get_quant_config(self, vllm_config: VllmConfig) -> QuantizationConfig | None: + """Get quantization config for this layer. Override in subclasses.""" + return vllm_config.quant_config + + +@support_torch_compile +class Jais2Model(nn.Module): + def __init__( + self, + vllm_config: VllmConfig, + prefix: str = "", + layer_type: type[nn.Module] = Jais2DecoderLayer, + ): + super().__init__() + + config = vllm_config.model_config.hf_config + quant_config = vllm_config.quant_config + lora_config = vllm_config.lora_config + + self.config = config + self.quant_config = quant_config + self.padding_idx = config.pad_token_id + lora_vocab = ( + (lora_config.lora_extra_vocab_size * (lora_config.max_loras or 1)) + if lora_config + else 0 + ) + self.vocab_size = config.vocab_size + lora_vocab + self.org_vocab_size = config.vocab_size + if get_pp_group().is_first_rank or ( + config.tie_word_embeddings and get_pp_group().is_last_rank + ): + self.embed_tokens = VocabParallelEmbedding( + self.vocab_size, + config.hidden_size, + org_num_embeddings=config.vocab_size, + quant_config=quant_config, + ) + else: + self.embed_tokens = PPMissingLayer() + self.start_layer, self.end_layer, self.layers = make_layers( + config.num_hidden_layers, + lambda prefix: layer_type( + config=config, + vllm_config=vllm_config, + prefix=prefix, + ), + prefix=f"{prefix}.layers", + ) + if get_pp_group().is_last_rank: + self.norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + else: + self.norm = PPMissingLayer() + + self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory( + ["hidden_states", "residual"], config.hidden_size + ) + + def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor: + return self.embed_tokens(input_ids) + + def forward( + self, + input_ids: torch.Tensor | None, + positions: torch.Tensor, + intermediate_tensors: IntermediateTensors | None, + inputs_embeds: torch.Tensor | None = None, + ) -> torch.Tensor | IntermediateTensors | tuple[torch.Tensor, list[torch.Tensor]]: + if get_pp_group().is_first_rank: + if inputs_embeds is not None: + hidden_states = inputs_embeds + else: + hidden_states = self.embed_input_ids(input_ids) + residual = None + else: + assert intermediate_tensors is not None + hidden_states = intermediate_tensors["hidden_states"] + residual = intermediate_tensors["residual"] + + for i in range(self.start_layer, self.end_layer): + layer = self.layers[i] + hidden_states, residual = layer(positions, hidden_states, residual) + + if not get_pp_group().is_last_rank: + return IntermediateTensors( + {"hidden_states": hidden_states, "residual": residual} + ) + + hidden_states, _ = self.norm(hidden_states + residual), residual + return hidden_states + + def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: + stacked_params_mapping = [ + # (param_name, shard_name, shard_id) + (".qkv_proj", ".q_proj", "q"), + (".qkv_proj", ".k_proj", "k"), + (".qkv_proj", ".v_proj", "v"), + ] + params_dict = dict(self.named_parameters()) + loaded_params: set[str] = set() + for name, loaded_weight in weights: + if "rotary_emb.inv_freq" in name: + continue + if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name: + # Models trained using ColossalAI may include these tensors in + # the checkpoint. Skip them. + continue + if self.quant_config is not None and ( + scale_name := self.quant_config.get_cache_scale(name) + ): + # Loading kv cache scales for compressed-tensors quantization + param = params_dict[scale_name] + weight_loader = getattr(param, "weight_loader", default_weight_loader) + loaded_weight = loaded_weight[0] + weight_loader(param, loaded_weight) + loaded_params.add(scale_name) + continue + if "scale" in name: + name = maybe_remap_kv_scale_name(name, params_dict) + if name is None: + continue + for param_name, weight_name, shard_id in stacked_params_mapping: + if weight_name not in name: + continue + name = name.replace(weight_name, param_name) + # Skip loading extra bias for GPTQ models. + if name.endswith(".bias") and name not in params_dict: + continue + + if is_pp_missing_parameter(name, self): + continue + + param = params_dict[name] + weight_loader = param.weight_loader + weight_loader(param, loaded_weight, shard_id) + break + else: + # Skip loading extra bias for GPTQ models. + if name.endswith(".bias") and name not in params_dict: + continue + # Remapping the name of FP8 kv-scale. + name = maybe_remap_kv_scale_name(name, params_dict) + if name is None: + continue + + if is_pp_missing_parameter(name, self): + continue + + param = params_dict[name] + weight_loader = getattr(param, "weight_loader", default_weight_loader) + weight_loader(param, loaded_weight) + loaded_params.add(name) + return loaded_params + + +class Jais2ForCausalLM(nn.Module, SupportsLoRA, SupportsPP): + packed_modules_mapping = { + "qkv_proj": ["q_proj", "k_proj", "v_proj"], + } + + embedding_modules = { + "embed_tokens": "input_embeddings", + "lm_head": "output_embeddings", + } + + def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): + super().__init__() + config = vllm_config.model_config.hf_config + quant_config = vllm_config.quant_config + lora_config = vllm_config.lora_config + self.config = config + self.lora_config = lora_config + + self.model = self._init_model( + vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model") + ) + + if get_pp_group().is_last_rank: + self.unpadded_vocab_size = config.vocab_size + if lora_config: + self.unpadded_vocab_size += lora_config.lora_extra_vocab_size + self.lm_head = ParallelLMHead( + self.unpadded_vocab_size, + config.hidden_size, + org_num_embeddings=config.vocab_size, + padding_size=( + DEFAULT_VOCAB_PADDING_SIZE + # We need bigger padding if using lora for kernel + # compatibility + if not lora_config + else lora_config.lora_vocab_padding_size + ), + quant_config=quant_config, + prefix=maybe_prefix(prefix, "lm_head"), + ) + if config.tie_word_embeddings: + self.lm_head = self.lm_head.tie_weights(self.model.embed_tokens) + + logit_scale = getattr(config, "logit_scale", 1.0) + self.logits_processor = LogitsProcessor( + self.unpadded_vocab_size, config.vocab_size, logit_scale + ) + else: + self.lm_head = PPMissingLayer() + + self.make_empty_intermediate_tensors = ( + self.model.make_empty_intermediate_tensors + ) + + def _init_model(self, vllm_config: VllmConfig, prefix: str = ""): + return Jais2Model(vllm_config=vllm_config, prefix=prefix) + + def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor: + return self.model.embed_input_ids(input_ids) + + def forward( + self, + input_ids: torch.Tensor, + positions: torch.Tensor, + intermediate_tensors: IntermediateTensors | None = None, + inputs_embeds: torch.Tensor | None = None, + ) -> torch.Tensor | IntermediateTensors: + model_output = self.model( + input_ids, positions, intermediate_tensors, inputs_embeds + ) + return model_output + + def compute_logits( + self, + hidden_states: torch.Tensor, + ) -> torch.Tensor | None: + logits = self.logits_processor(self.lm_head, hidden_states) + return logits + + def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: + loader = AutoWeightsLoader( + self, + skip_prefixes=(["lm_head."] if self.config.tie_word_embeddings else None), + ) + return loader.load_weights(weights) diff --git a/vllm/model_executor/models/registry.py b/vllm/model_executor/models/registry.py index 4575e91e13959..d332f51152484 100644 --- a/vllm/model_executor/models/registry.py +++ b/vllm/model_executor/models/registry.py @@ -127,6 +127,7 @@ _TEXT_GENERATION_MODELS = { "InternLM2VEForCausalLM": ("internlm2_ve", "InternLM2VEForCausalLM"), "InternLM3ForCausalLM": ("llama", "LlamaForCausalLM"), "JAISLMHeadModel": ("jais", "JAISLMHeadModel"), + "Jais2ForCausalLM": ("jais2", "Jais2ForCausalLM"), "JambaForCausalLM": ("jamba", "JambaForCausalLM"), "KimiLinearForCausalLM": ("kimi_linear", "KimiLinearForCausalLM"), # noqa: E501 "Lfm2ForCausalLM": ("lfm2", "Lfm2ForCausalLM"),