mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-09 21:45:44 +08:00
[Neuron] Add Multi-Modal model support for Neuron (#18921)
Signed-off-by: Satyajith Chilappagari <satchill@amazon.com> Co-authored-by: Ashraf Mahgoub <ashymahg@amazon.com> Co-authored-by: Rohith Nallamaddi <nalrohit@amazon.com> Co-authored-by: FeliciaLuo <luof@amazon.com> Co-authored-by: Elaine Zhao <elaineyz@amazon.com>
This commit is contained in:
parent
b8b904795d
commit
2a50ef5760
105
examples/offline_inference/neuron_multimodal.py
Normal file
105
examples/offline_inference/neuron_multimodal.py
Normal file
@ -0,0 +1,105 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
import requests
|
||||
import torch
|
||||
from neuronx_distributed_inference.models.mllama.utils import add_instruct
|
||||
from PIL import Image
|
||||
|
||||
from vllm import LLM, SamplingParams, TextPrompt
|
||||
|
||||
|
||||
def get_image(image_url):
|
||||
image = Image.open(requests.get(image_url, stream=True).raw)
|
||||
return image
|
||||
|
||||
|
||||
# Model Inputs
|
||||
PROMPTS = [
|
||||
"What is in this image? Tell me a story",
|
||||
"What is the recipe of mayonnaise in two sentences?",
|
||||
"Describe this image",
|
||||
"What is the capital of Italy famous for?",
|
||||
]
|
||||
IMAGES = [
|
||||
get_image(
|
||||
"https://images.pexels.com/photos/1108099/pexels-photo-1108099.jpeg?auto=compress&cs=tinysrgb&dpr=1&w=500"
|
||||
),
|
||||
None,
|
||||
get_image(
|
||||
"https://images.pexels.com/photos/1108099/pexels-photo-1108099.jpeg?auto=compress&cs=tinysrgb&dpr=1&w=500"
|
||||
),
|
||||
None,
|
||||
]
|
||||
SAMPLING_PARAMS = [
|
||||
dict(top_k=1, temperature=1.0, top_p=1.0, max_tokens=16)
|
||||
for _ in range(len(PROMPTS))
|
||||
]
|
||||
|
||||
|
||||
def get_VLLM_mllama_model_inputs(prompt, single_image, sampling_params):
|
||||
# Prepare all inputs for mllama generation, including:
|
||||
# 1. put text prompt into instruct chat template
|
||||
# 2. compose single text and single image prompt into Vllm's prompt class
|
||||
# 3. prepare sampling parameters
|
||||
input_image = single_image
|
||||
has_image = torch.tensor([1])
|
||||
if isinstance(single_image, torch.Tensor) and single_image.numel() == 0:
|
||||
has_image = torch.tensor([0])
|
||||
|
||||
instruct_prompt = add_instruct(prompt, has_image)
|
||||
inputs = TextPrompt(prompt=instruct_prompt)
|
||||
|
||||
if input_image is not None:
|
||||
inputs["multi_modal_data"] = {"image": input_image}
|
||||
|
||||
sampling_params = SamplingParams(**sampling_params)
|
||||
return inputs, sampling_params
|
||||
|
||||
|
||||
def print_outputs(outputs):
|
||||
# Print the outputs.
|
||||
for output in outputs:
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
assert (
|
||||
len(PROMPTS) == len(IMAGES) == len(SAMPLING_PARAMS)
|
||||
), f"""Text, image prompts and sampling parameters should have the
|
||||
same batch size; but got {len(PROMPTS)}, {len(IMAGES)},
|
||||
and {len(SAMPLING_PARAMS)}"""
|
||||
|
||||
# Create an LLM.
|
||||
llm = LLM(
|
||||
model="meta-llama/Llama-3.2-11B-Vision-Instruct",
|
||||
max_num_seqs=1,
|
||||
max_model_len=4096,
|
||||
block_size=4096,
|
||||
device="neuron",
|
||||
tensor_parallel_size=32,
|
||||
override_neuron_config={
|
||||
"sequence_parallel_enabled": False,
|
||||
"skip_warmup": True,
|
||||
"save_sharded_checkpoint": True,
|
||||
"on_device_sampling_config": {
|
||||
"global_topk": 1,
|
||||
"dynamic": False,
|
||||
"deterministic": False,
|
||||
},
|
||||
},
|
||||
)
|
||||
|
||||
batched_inputs = []
|
||||
batched_sample_params = []
|
||||
for pmpt, img, params in zip(PROMPTS, IMAGES, SAMPLING_PARAMS):
|
||||
inputs, sampling_params = get_VLLM_mllama_model_inputs(pmpt, img, params)
|
||||
# test batch-size = 1
|
||||
outputs = llm.generate(inputs, sampling_params)
|
||||
print_outputs(outputs)
|
||||
batched_inputs.append(inputs)
|
||||
batched_sample_params.append(sampling_params)
|
||||
|
||||
# test batch-size = 4
|
||||
outputs = llm.generate(batched_inputs, batched_sample_params)
|
||||
print_outputs(outputs)
|
||||
@ -1360,6 +1360,16 @@ class ModelConfig:
|
||||
@property
|
||||
def is_encoder_decoder(self) -> bool:
|
||||
"""Extract the HF encoder/decoder model flag."""
|
||||
"""
|
||||
For Mllama, VLLM overrides HF's is_encoder_decoder flag and sets it to
|
||||
True to enable cross-attention
|
||||
Neuron needs all multimodal data to be in the decoder and does not
|
||||
need to explicitly enable cross-attention
|
||||
"""
|
||||
if (current_platform.is_neuron()
|
||||
and self.hf_config.model_type == "mllama"):
|
||||
return False
|
||||
|
||||
return is_encoder_decoder(self.hf_config)
|
||||
|
||||
@property
|
||||
|
||||
@ -204,6 +204,11 @@ class NeuronMllamaForCausalLM(nn.Module):
|
||||
config: PretrainedConfig,
|
||||
on_device_sampling_disabled: bool = False) -> None:
|
||||
super().__init__()
|
||||
# has_image is the only multimodal input that is used in
|
||||
# token-generation
|
||||
# This is a cache (on CPU) that saves has_image data per sequence id
|
||||
# The number of entries in this cache is <= Batch-Size
|
||||
self.has_image_cache: dict[int, torch.Tensor] = {}
|
||||
self.config = config
|
||||
self.logits_processor = LogitsProcessor(
|
||||
config.get_text_config().vocab_size, logits_as_input=True)
|
||||
@ -215,11 +220,57 @@ class NeuronMllamaForCausalLM(nn.Module):
|
||||
|
||||
# Lazy initialized
|
||||
self.model: nn.Module
|
||||
self.is_reorder_needed: bool = True
|
||||
|
||||
def read_from_has_image_cache(self, seq_ids: torch.Tensor):
|
||||
has_image_list = []
|
||||
for index in range(len(seq_ids)):
|
||||
seq_id = seq_ids[index].item()
|
||||
if seq_id in self.has_image_cache:
|
||||
has_image_list.append(self.has_image_cache[seq_id])
|
||||
else:
|
||||
has_image_list.append(torch.tensor([0]))
|
||||
return torch.tensor(has_image_list)
|
||||
|
||||
def write_to_has_image_cache(self, seq_ids: torch.Tensor,
|
||||
has_image: torch.Tensor):
|
||||
for index in range(len(seq_ids)):
|
||||
seq_id = seq_ids[index].item()
|
||||
if index < len(has_image):
|
||||
self.has_image_cache[seq_id] = has_image[index]
|
||||
else:
|
||||
self.has_image_cache[seq_id] = torch.zeros(1)
|
||||
|
||||
def forward(self, input_ids: torch.Tensor, positions: torch.Tensor,
|
||||
seq_ids: torch.Tensor, pixel_values: torch.Tensor,
|
||||
aspect_ratios: torch.Tensor, num_chunks: torch.Tensor,
|
||||
has_image: torch.Tensor, sampling_params) -> torch.Tensor:
|
||||
|
||||
# We update the has_image cache during prefill
|
||||
# and read the has_image cache during decode
|
||||
if input_ids.shape[-1] > 1: # prefill
|
||||
self.write_to_has_image_cache(seq_ids, has_image)
|
||||
else:
|
||||
has_image = self.read_from_has_image_cache(seq_ids)
|
||||
bs = input_ids.shape[0]
|
||||
num_chunks = torch.zeros((bs, 1))
|
||||
aspect_ratios = torch.zeros((bs, 1, 2))
|
||||
|
||||
input_block_ids = seq_ids
|
||||
origin_input_block_ids = seq_ids
|
||||
if self.is_reorder_needed:
|
||||
# sort block ids sequentially for perf/neuron support reasons
|
||||
input_block_ids, sorted_indices = torch.sort(input_block_ids)
|
||||
input_ids = torch.index_select(input_ids, 0, sorted_indices)
|
||||
positions = torch.index_select(positions, 0, sorted_indices)
|
||||
sampling_params = torch.index_select(sampling_params, 0,
|
||||
sorted_indices)
|
||||
pixel_values = torch.index_select(pixel_values, 0, sorted_indices)
|
||||
aspect_ratios = torch.index_select(aspect_ratios, 0,
|
||||
sorted_indices)
|
||||
num_chunks = torch.index_select(num_chunks, 0, sorted_indices)
|
||||
has_image = torch.index_select(has_image, 0, sorted_indices)
|
||||
|
||||
self.vision_mask = create_vision_mask(input_ids, self.vision_token_id)
|
||||
output = self.model(
|
||||
input_ids.to(torch.int32),
|
||||
@ -235,8 +286,14 @@ class NeuronMllamaForCausalLM(nn.Module):
|
||||
has_image=has_image.to(torch.int32),
|
||||
)
|
||||
if self.config.neuron_config.on_device_sampling_config:
|
||||
return output.hidden_states
|
||||
return output.logits[:, -1, :]
|
||||
output = output.hidden_states
|
||||
else:
|
||||
output = output.logits[:, -1, :]
|
||||
|
||||
if self.is_reorder_needed and origin_input_block_ids.shape[0] != 1:
|
||||
restored_indices = torch.argsort(sorted_indices)
|
||||
output = torch.index_select(output, 0, restored_indices)
|
||||
return output
|
||||
|
||||
def compute_logits(self, hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata) -> torch.Tensor:
|
||||
@ -299,7 +356,7 @@ class NeuronMllamaForCausalLM(nn.Module):
|
||||
self.model = neuronx_model_cls(compiled_model_path)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
|
||||
self.vision_token_id = tokenizer(
|
||||
"<|image|>", add_special_tokens=False).input_ids
|
||||
"<|image|>", add_special_tokens=False).input_ids[0]
|
||||
self.model.load(compiled_model_path)
|
||||
return
|
||||
except (FileNotFoundError, ValueError):
|
||||
@ -326,7 +383,7 @@ class NeuronMllamaForCausalLM(nn.Module):
|
||||
|
||||
# Read "<|image|>" token_id from the tokenizer
|
||||
self.vision_token_id = tokenizer("<|image|>",
|
||||
add_special_tokens=False).input_ids
|
||||
add_special_tokens=False).input_ids[0]
|
||||
logger.info("\nLoading model from compiled checkpoint...")
|
||||
self.model.load(compiled_model_path)
|
||||
|
||||
|
||||
@ -169,6 +169,7 @@ class NeuronModelRunner(ModelRunnerBase[ModelInputForNeuron]):
|
||||
|
||||
mm_kwargs = seq_group_metadata.multi_modal_data
|
||||
if mm_kwargs:
|
||||
mm_kwargs = self.process_multi_modal_data_neuron(mm_kwargs)
|
||||
multi_modal_kwargs_list.append(mm_kwargs)
|
||||
|
||||
max_seq_len = max(seq_lens)
|
||||
@ -274,6 +275,14 @@ class NeuronModelRunner(ModelRunnerBase[ModelInputForNeuron]):
|
||||
sampling_params.top_p = top_p
|
||||
sampling_params.temperature = temperature
|
||||
|
||||
# we need multi_modal_data for later tokens as well
|
||||
multi_modal_kwargs_list: List[MultiModalKwargs] = []
|
||||
for seq_group_metadata in seq_group_metadata_list:
|
||||
mm_data = seq_group_metadata.multi_modal_data
|
||||
if mm_data:
|
||||
multi_modal_kwargs_list.append(mm_data)
|
||||
multi_modal_kwargs = MultiModalKwargs.batch(multi_modal_kwargs_list)
|
||||
|
||||
sampling_metadata = SamplingMetadata.prepare(
|
||||
seq_group_metadata_list,
|
||||
seq_lens,
|
||||
@ -422,6 +431,10 @@ class NeuronModelRunner(ModelRunnerBase[ModelInputForNeuron]):
|
||||
def vocab_size(self) -> int:
|
||||
return self.model_config.get_vocab_size()
|
||||
|
||||
def process_multi_modal_data_neuron(self, mm_data):
|
||||
# this is a no-op for NeuronModelRunner
|
||||
return mm_data
|
||||
|
||||
def remove_all_loras(self):
|
||||
raise NotImplementedError(
|
||||
"LoRAs are not supported for Transformers NeuronX framework")
|
||||
|
||||
@ -3,6 +3,8 @@
|
||||
from typing import List, Optional, Set
|
||||
|
||||
import torch
|
||||
from neuronx_distributed_inference.models.mllama.aspect_ratio_utils import (
|
||||
get_all_supported_aspect_ratios)
|
||||
from neuronx_distributed_inference.modules.generation.sampling import (
|
||||
prepare_sampling_params)
|
||||
from neuronx_distributed_inference.modules.lora_serving import (
|
||||
@ -17,7 +19,7 @@ from vllm.model_executor import SamplingMetadata
|
||||
from vllm.model_executor.layers.sampler import SamplerOutput
|
||||
from vllm.model_executor.model_loader.neuronx_distributed import (
|
||||
_get_model_architecture, get_neuron_model)
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.multimodal import MultiModalKwargs
|
||||
from vllm.sequence import IntermediateTensors, SequenceGroupMetadata
|
||||
from vllm.worker.neuron_model_runner import (ModelInputForNeuron,
|
||||
NeuronModelRunner)
|
||||
@ -121,42 +123,28 @@ class NeuronxDistributedModelRunner(NeuronModelRunner):
|
||||
sampling_params = self.get_nxd_sampling_params(
|
||||
model_input.sampling_metadata)
|
||||
|
||||
if model_input.multi_modal_kwargs.get('image') is not None:
|
||||
pixel_values = []
|
||||
aspect_ratios = []
|
||||
num_chunks = []
|
||||
has_image = []
|
||||
for multi_modal_input in model_input.multi_modal_kwargs.get(
|
||||
'image'):
|
||||
image_tensors = self.get_multi_modal_data_neuron(
|
||||
multi_modal_input.squeeze(0))
|
||||
pixel_values.append(image_tensors[0])
|
||||
aspect_ratios.append(image_tensors[1])
|
||||
num_chunks.append(image_tensors[2])
|
||||
has_image.append(image_tensors[3])
|
||||
|
||||
pixel_values = torch.cat(pixel_values, dim=0)
|
||||
aspect_ratios = torch.cat(aspect_ratios, dim=0)
|
||||
num_chunks = torch.cat(num_chunks, dim=0)
|
||||
has_image = torch.cat(has_image, dim=0)
|
||||
|
||||
if model_input.multi_modal_kwargs.get('pixel_values') is not None:
|
||||
hidden_states = self.model(
|
||||
input_ids=model_input.input_tokens,
|
||||
positions=model_input.input_positions,
|
||||
seq_ids=model_input.input_block_ids,
|
||||
pixel_values=pixel_values,
|
||||
aspect_ratios=aspect_ratios,
|
||||
pixel_values=model_input.multi_modal_kwargs.get(
|
||||
'pixel_values'),
|
||||
aspect_ratios=model_input.multi_modal_kwargs.get(
|
||||
'aspect_ratios'),
|
||||
sampling_params=sampling_params,
|
||||
num_chunks=num_chunks,
|
||||
has_image=has_image,
|
||||
num_chunks=model_input.multi_modal_kwargs.get('num_chunks'),
|
||||
has_image=model_input.multi_modal_kwargs.get(
|
||||
'has_image').squeeze(1),
|
||||
)
|
||||
else:
|
||||
empty_pixel_values = torch.zeros([1, 1, 4, 3, 560, 560],
|
||||
bs = model_input.input_tokens.shape[0] if (model_input.input_tokens
|
||||
is not None) else 1
|
||||
empty_pixel_values = torch.zeros([bs, 1, 4, 3, 560, 560],
|
||||
dtype=torch.bfloat16)
|
||||
empty_aspect_ratios = torch.ones([1, 1, 2], dtype=torch.int64)
|
||||
num_chunks = torch.tensor([[1]
|
||||
]) # dummy num_chunks, will not be used
|
||||
has_image = torch.tensor([0])
|
||||
empty_aspect_ratios = torch.ones([bs, 1, 2], dtype=torch.int64)
|
||||
num_chunks = torch.zeros((bs, 1), dtype=torch.int32)
|
||||
has_image = torch.zeros([bs], dtype=torch.int32)
|
||||
hidden_states = self.model(
|
||||
input_ids=model_input.input_tokens,
|
||||
positions=model_input.input_positions,
|
||||
@ -175,6 +163,27 @@ class NeuronxDistributedModelRunner(NeuronModelRunner):
|
||||
|
||||
return [output]
|
||||
|
||||
def process_multi_modal_data_neuron(self, mm_data):
|
||||
# Neuron uses aspect_ratios instead of aspect_ratio_ids
|
||||
all_supported_aspect_ratios = get_all_supported_aspect_ratios(
|
||||
self.model.config.vision_config.max_num_tiles)
|
||||
aspect_ratio_ids = mm_data.get("aspect_ratio_ids")
|
||||
mm_data["aspect_ratios"] = torch.tensor(
|
||||
all_supported_aspect_ratios[aspect_ratio_ids]).unsqueeze(0)
|
||||
|
||||
# Neuron's num_chunks is HF's num_tiles
|
||||
mm_data["num_chunks"] = mm_data.get("num_tiles")
|
||||
|
||||
# Input has an image if it has pixel_values
|
||||
bs = mm_data["num_chunks"].shape[0]
|
||||
pixel_values = mm_data.get("pixel_values")
|
||||
if pixel_values is not None and not torch.all(pixel_values == 0):
|
||||
mm_data["has_image"] = torch.ones(bs)
|
||||
|
||||
else:
|
||||
mm_data["has_image"] = torch.zeros(bs)
|
||||
return mm_data
|
||||
|
||||
def _get_lora_adapter_ids(self, seq_group_metadata_list):
|
||||
# set LoRA adapter IDs for multi-lora serving
|
||||
batch_size = len(seq_group_metadata_list)
|
||||
@ -200,7 +209,6 @@ class NeuronxDistributedModelRunner(NeuronModelRunner):
|
||||
virtual_engine: int = 0,
|
||||
finished_requests_ids: Optional[List[str]] = None
|
||||
) -> ModelInputForNeuron:
|
||||
multi_modal_kwargs = None
|
||||
# NOTE: We assume that all sequences in the group are all prompts or
|
||||
# all decodes.
|
||||
is_prompt = seq_group_metadata_list[0].is_prompt
|
||||
@ -223,6 +231,14 @@ class NeuronxDistributedModelRunner(NeuronModelRunner):
|
||||
sampling_params.top_p = top_p
|
||||
sampling_params.temperature = temperature
|
||||
|
||||
# we need multi_modal_data for later tokens as well
|
||||
multi_modal_kwargs_list: List[MultiModalKwargs] = []
|
||||
for seq_group_metadata in seq_group_metadata_list:
|
||||
mm_data = seq_group_metadata.multi_modal_data
|
||||
if mm_data:
|
||||
multi_modal_kwargs_list.append(mm_data)
|
||||
multi_modal_kwargs = MultiModalKwargs.batch(multi_modal_kwargs_list)
|
||||
|
||||
lora_adapter_ids = self._get_lora_adapter_ids(seq_group_metadata_list)
|
||||
|
||||
sampling_metadata = SamplingMetadata.prepare(
|
||||
@ -236,18 +252,6 @@ class NeuronxDistributedModelRunner(NeuronModelRunner):
|
||||
self.pin_memory,
|
||||
generators=self.get_generators(finished_requests_ids))
|
||||
|
||||
if current_platform.use_transformers_neuronx(
|
||||
) and not self._on_device_sampling_disabled:
|
||||
# Once the request IDs are changed in current iteration, we will
|
||||
# update the on-device sampling parameters.
|
||||
current_batch_request_ids = [
|
||||
seq_group_meta_data.request_id
|
||||
for seq_group_meta_data in seq_group_metadata_list
|
||||
]
|
||||
if current_batch_request_ids != self._previous_batch_request_ids:
|
||||
self._update_neuron_sampling_params(seq_group_metadata_list)
|
||||
self._previous_batch_request_ids = current_batch_request_ids
|
||||
|
||||
return ModelInputForNeuron(input_tokens=input_tokens,
|
||||
input_positions=input_positions,
|
||||
input_block_ids=input_block_ids,
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user