mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2026-01-24 12:34:28 +08:00
[doc] add install tips (#17373)
Signed-off-by: reidliu41 <reid201711@gmail.com> Co-authored-by: reidliu41 <reid201711@gmail.com>
This commit is contained in:
parent
584f5fb4c6
commit
2ac74d098e
@ -44,6 +44,12 @@ To produce performant FP8 quantized models with vLLM, you'll need to install the
|
||||
pip install llmcompressor
|
||||
```
|
||||
|
||||
Additionally, install `vllm` and `lm-evaluation-harness` for evaluation:
|
||||
|
||||
```console
|
||||
pip install vllm lm-eval==0.4.4
|
||||
```
|
||||
|
||||
## Quantization Process
|
||||
|
||||
The quantization process involves three main steps:
|
||||
@ -86,7 +92,7 @@ recipe = QuantizationModifier(
|
||||
# Apply the quantization algorithm.
|
||||
oneshot(model=model, recipe=recipe)
|
||||
|
||||
# Save the model.
|
||||
# Save the model: Meta-Llama-3-8B-Instruct-FP8-Dynamic
|
||||
SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-Dynamic"
|
||||
model.save_pretrained(SAVE_DIR)
|
||||
tokenizer.save_pretrained(SAVE_DIR)
|
||||
@ -94,12 +100,6 @@ tokenizer.save_pretrained(SAVE_DIR)
|
||||
|
||||
### 3. Evaluating Accuracy
|
||||
|
||||
Install `vllm` and `lm-evaluation-harness`:
|
||||
|
||||
```console
|
||||
pip install vllm lm-eval==0.4.4
|
||||
```
|
||||
|
||||
Load and run the model in `vllm`:
|
||||
|
||||
```python
|
||||
|
||||
@ -18,6 +18,12 @@ To use INT4 quantization with vLLM, you'll need to install the [llm-compressor](
|
||||
pip install llmcompressor
|
||||
```
|
||||
|
||||
Additionally, install `vllm` and `lm-evaluation-harness` for evaluation:
|
||||
|
||||
```console
|
||||
pip install vllm lm-eval==0.4.4
|
||||
```
|
||||
|
||||
## Quantization Process
|
||||
|
||||
The quantization process involves four main steps:
|
||||
@ -87,7 +93,7 @@ oneshot(
|
||||
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
|
||||
)
|
||||
|
||||
# Save the compressed model
|
||||
# Save the compressed model: Meta-Llama-3-8B-Instruct-W4A16-G128
|
||||
SAVE_DIR = MODEL_ID.split("/")[1] + "-W4A16-G128"
|
||||
model.save_pretrained(SAVE_DIR, save_compressed=True)
|
||||
tokenizer.save_pretrained(SAVE_DIR)
|
||||
|
||||
@ -19,6 +19,12 @@ To use INT8 quantization with vLLM, you'll need to install the [llm-compressor](
|
||||
pip install llmcompressor
|
||||
```
|
||||
|
||||
Additionally, install `vllm` and `lm-evaluation-harness` for evaluation:
|
||||
|
||||
```console
|
||||
pip install vllm lm-eval==0.4.4
|
||||
```
|
||||
|
||||
## Quantization Process
|
||||
|
||||
The quantization process involves four main steps:
|
||||
@ -91,7 +97,7 @@ oneshot(
|
||||
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
|
||||
)
|
||||
|
||||
# Save the compressed model
|
||||
# Save the compressed model: Meta-Llama-3-8B-Instruct-W8A8-Dynamic-Per-Token
|
||||
SAVE_DIR = MODEL_ID.split("/")[1] + "-W8A8-Dynamic-Per-Token"
|
||||
model.save_pretrained(SAVE_DIR, save_compressed=True)
|
||||
tokenizer.save_pretrained(SAVE_DIR)
|
||||
|
||||
@ -126,7 +126,7 @@ oneshot(
|
||||
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
|
||||
)
|
||||
|
||||
# Save quantized model
|
||||
# Save quantized model: Llama-3.1-8B-Instruct-FP8-KV
|
||||
SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-KV"
|
||||
model.save_pretrained(SAVE_DIR, save_compressed=True)
|
||||
tokenizer.save_pretrained(SAVE_DIR)
|
||||
|
||||
@ -19,6 +19,12 @@ pip install amd-quark
|
||||
You can refer to [Quark installation guide](https://quark.docs.amd.com/latest/install.html)
|
||||
for more installation details.
|
||||
|
||||
Additionally, install `vllm` and `lm-evaluation-harness` for evaluation:
|
||||
|
||||
```console
|
||||
pip install vllm lm-eval==0.4.4
|
||||
```
|
||||
|
||||
## Quantization Process
|
||||
|
||||
After installing Quark, we will use an example to illustrate how to use Quark.
|
||||
@ -150,6 +156,7 @@ LLAMA_KV_CACHE_GROUP = ["*k_proj", "*v_proj"]
|
||||
export_config = ExporterConfig(json_export_config=JsonExporterConfig())
|
||||
export_config.json_export_config.kv_cache_group = LLAMA_KV_CACHE_GROUP
|
||||
|
||||
# Model: Llama-2-70b-chat-hf-w-fp8-a-fp8-kvcache-fp8-pertensor-autosmoothquant
|
||||
EXPORT_DIR = MODEL_ID.split("/")[1] + "-w-fp8-a-fp8-kvcache-fp8-pertensor-autosmoothquant"
|
||||
exporter = ModelExporter(config=export_config, export_dir=EXPORT_DIR)
|
||||
with torch.no_grad():
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user