mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-09 23:54:56 +08:00
[Misc] add Haystack integration (#18601)
Signed-off-by: reidliu41 <reid201711@gmail.com> Co-authored-by: reidliu41 <reid201711@gmail.com>
This commit is contained in:
parent
d4c2919760
commit
2cd1fa4556
60
docs/deployment/frameworks/haystack.md
Normal file
60
docs/deployment/frameworks/haystack.md
Normal file
@ -0,0 +1,60 @@
|
||||
---
|
||||
title: Haystack
|
||||
---
|
||||
[](){ #deployment-haystack }
|
||||
|
||||
# Haystack
|
||||
|
||||
[Haystack](https://github.com/deepset-ai/haystack) is an end-to-end LLM framework that allows you to build applications powered by LLMs, Transformer models, vector search and more. Whether you want to perform retrieval-augmented generation (RAG), document search, question answering or answer generation, Haystack can orchestrate state-of-the-art embedding models and LLMs into pipelines to build end-to-end NLP applications and solve your use case.
|
||||
|
||||
It allows you to deploy a large language model (LLM) server with vLLM as the backend, which exposes OpenAI-compatible endpoints.
|
||||
|
||||
## Prerequisites
|
||||
|
||||
- Setup vLLM and Haystack environment
|
||||
|
||||
```console
|
||||
pip install vllm haystack-ai
|
||||
```
|
||||
|
||||
## Deploy
|
||||
|
||||
- Start the vLLM server with the supported chat completion model, e.g.
|
||||
|
||||
```console
|
||||
vllm serve mistralai/Mistral-7B-Instruct-v0.1
|
||||
```
|
||||
|
||||
- Use the `OpenAIGenerator` and `OpenAIChatGenerator` components in Haystack to query the vLLM server.
|
||||
|
||||
```python
|
||||
from haystack.components.generators.chat import OpenAIChatGenerator
|
||||
from haystack.dataclasses import ChatMessage
|
||||
from haystack.utils import Secret
|
||||
|
||||
generator = OpenAIChatGenerator(
|
||||
# for compatibility with the OpenAI API, a placeholder api_key is needed
|
||||
api_key=Secret.from_token("VLLM-PLACEHOLDER-API-KEY"),
|
||||
model="mistralai/Mistral-7B-Instruct-v0.1",
|
||||
api_base_url="http://{your-vLLM-host-ip}:{your-vLLM-host-port}/v1",
|
||||
generation_kwargs = {"max_tokens": 512}
|
||||
)
|
||||
|
||||
response = generator.run(
|
||||
messages=[ChatMessage.from_user("Hi. Can you help me plan my next trip to Italy?")]
|
||||
)
|
||||
|
||||
print("-"*30)
|
||||
print(response)
|
||||
print("-"*30)
|
||||
```
|
||||
|
||||
Output e.g.:
|
||||
|
||||
```console
|
||||
------------------------------
|
||||
{'replies': [ChatMessage(_role=<ChatRole.ASSISTANT: 'assistant'>, _content=[TextContent(text=' Of course! Where in Italy would you like to go and what type of trip are you looking to plan?')], _name=None, _meta={'model': 'mistralai/Mistral-7B-Instruct-v0.1', 'index': 0, 'finish_reason': 'stop', 'usage': {'completion_tokens': 23, 'prompt_tokens': 21, 'total_tokens': 44, 'completion_tokens_details': None, 'prompt_tokens_details': None}})]}
|
||||
------------------------------
|
||||
```
|
||||
|
||||
For details, see the tutorial [Using vLLM in Haystack](https://github.com/deepset-ai/haystack-integrations/blob/main/integrations/vllm.md).
|
||||
Loading…
x
Reference in New Issue
Block a user