mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-09 05:55:01 +08:00
[platform] Move get_cu_count to utils (#27005)
Signed-off-by: wangxiyuan <wangxiyuan1007@gmail.com>
This commit is contained in:
parent
d75ad04818
commit
2dacd57394
@ -8,6 +8,7 @@ import torch
|
||||
import vllm._custom_ops as ops
|
||||
from tests.kernels.quant_utils import ref_dynamic_per_tensor_fp8_quant
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.utils.platform_utils import get_cu_count
|
||||
|
||||
DTYPES = [torch.bfloat16, torch.float16]
|
||||
# Specific (N, K, M) combinations for targeted testing
|
||||
@ -85,7 +86,7 @@ def test_rocm_llmm1_kernel(n, k, m, dtype, rows_per_block, seed):
|
||||
@pytest.mark.skipif(not current_platform.is_rocm(), reason="only test for rocm")
|
||||
def test_rocm_wvsplitk_kernel(n, k, m, dtype, seed):
|
||||
torch.manual_seed(seed)
|
||||
cu_count = current_platform.get_cu_count()
|
||||
cu_count = get_cu_count()
|
||||
|
||||
A = torch.rand(n, k, dtype=dtype, device="cuda") - 0.5
|
||||
B = torch.rand(m, k, dtype=dtype, device="cuda") - 0.5
|
||||
@ -102,7 +103,7 @@ def test_rocm_wvsplitk_kernel(n, k, m, dtype, seed):
|
||||
@pytest.mark.skipif(not current_platform.is_rocm(), reason="only test for rocm")
|
||||
def test_rocm_wvsplitk_bias1D_kernel(n, k, m, dtype, seed):
|
||||
torch.manual_seed(seed)
|
||||
cu_count = current_platform.get_cu_count()
|
||||
cu_count = get_cu_count()
|
||||
|
||||
xavier = math.sqrt(2 / k) # normalize to avoid large output-bias deltas
|
||||
A = (torch.rand(n, k, dtype=dtype, device="cuda") - 0.5) * xavier
|
||||
@ -121,7 +122,7 @@ def test_rocm_wvsplitk_bias1D_kernel(n, k, m, dtype, seed):
|
||||
@pytest.mark.skipif(not current_platform.is_rocm(), reason="only test for rocm")
|
||||
def test_rocm_wvsplitk_bias2D_kernel(n, k, m, dtype, seed):
|
||||
torch.manual_seed(seed)
|
||||
cu_count = current_platform.get_cu_count()
|
||||
cu_count = get_cu_count()
|
||||
|
||||
xavier = math.sqrt(2 / k) # normalize to avoid large output-bias deltas
|
||||
A = (torch.rand(n, k, dtype=dtype, device="cuda") - 0.5) * xavier
|
||||
@ -153,7 +154,14 @@ def test_rocm_wvsplitk_fp8_kernel(n, k, m, dtype, seed):
|
||||
ref_out = torch._scaled_mm(
|
||||
A, B.t(), out_dtype=dtype, scale_a=scale_a, scale_b=scale_b
|
||||
)
|
||||
out = ops.wvSplitKQ(B, A, dtype, scale_a, scale_b, current_platform.get_cu_count())
|
||||
out = ops.wvSplitKQ(
|
||||
B,
|
||||
A,
|
||||
dtype,
|
||||
scale_a,
|
||||
scale_b,
|
||||
get_cu_count(),
|
||||
)
|
||||
|
||||
assert torch.allclose(out, ref_out, rtol=0.01)
|
||||
|
||||
@ -180,7 +188,13 @@ def test_rocm_wvsplitk_fp8_bias1D_kernel(n, k, m, dtype, seed):
|
||||
A, B.t(), out_dtype=dtype, scale_a=scale_a, scale_b=scale_b, bias=BIAS
|
||||
)
|
||||
out = ops.wvSplitKQ(
|
||||
B, A, dtype, scale_a, scale_b, current_platform.get_cu_count(), BIAS
|
||||
B,
|
||||
A,
|
||||
dtype,
|
||||
scale_a,
|
||||
scale_b,
|
||||
get_cu_count(),
|
||||
BIAS,
|
||||
)
|
||||
|
||||
assert torch.allclose(out, ref_out, rtol=0.01)
|
||||
|
||||
@ -13,6 +13,7 @@ from vllm.model_executor.layers.quantization.input_quant_fp8 import QuantFP8
|
||||
from vllm.model_executor.layers.quantization.utils.quant_utils import GroupShape
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.utils.flashinfer import flashinfer_scaled_fp8_mm, has_flashinfer
|
||||
from vllm.utils.platform_utils import get_cu_count
|
||||
from vllm.utils.torch_utils import direct_register_custom_op
|
||||
|
||||
# Input scaling factors are no longer optional in _scaled_mm starting
|
||||
@ -200,7 +201,7 @@ def rocm_per_tensor_w8a8_scaled_mm_impl(
|
||||
out_dtype,
|
||||
scale_a,
|
||||
scale_b,
|
||||
current_platform.get_cu_count(),
|
||||
get_cu_count(),
|
||||
bias,
|
||||
)
|
||||
else:
|
||||
|
||||
@ -11,6 +11,7 @@ from vllm import envs
|
||||
from vllm._aiter_ops import rocm_aiter_ops
|
||||
from vllm.logger import init_logger
|
||||
from vllm.platforms import CpuArchEnum, current_platform
|
||||
from vllm.utils.platform_utils import get_cu_count
|
||||
from vllm.utils.torch_utils import direct_register_custom_op
|
||||
|
||||
logger = init_logger(__name__)
|
||||
@ -151,7 +152,7 @@ def rocm_unquantized_gemm_impl(
|
||||
|
||||
x_view = x.reshape(-1, x.size(-1))
|
||||
if m > 8 and 0 < n <= 4:
|
||||
cu_count = current_platform.get_cu_count()
|
||||
cu_count = get_cu_count()
|
||||
out = ops.wvSplitK(weight, x_view, cu_count, bias)
|
||||
return out.reshape(*x.shape[:-1], weight.shape[0])
|
||||
elif m % 4 == 0 and n == 1 and k <= 8192 and bias is None:
|
||||
|
||||
@ -545,13 +545,6 @@ class Platform:
|
||||
cls._global_graph_pool = self.graph_pool_handle()
|
||||
return cls._global_graph_pool
|
||||
|
||||
@classmethod
|
||||
def get_cu_count(cls, device_id: int = 0) -> int:
|
||||
"""
|
||||
Returns the total number of compute units (CU) on single GPU.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
@classmethod
|
||||
def get_static_graph_wrapper_cls(cls) -> str:
|
||||
"""
|
||||
|
||||
@ -423,10 +423,6 @@ class RocmPlatform(Platform):
|
||||
def opaque_attention_op(cls) -> bool:
|
||||
return True
|
||||
|
||||
@classmethod
|
||||
def get_cu_count(cls, device_id: int = 0) -> int:
|
||||
return torch.cuda.get_device_properties(device_id).multi_processor_count
|
||||
|
||||
@classmethod
|
||||
def is_navi(cls) -> bool:
|
||||
return "gfx1" in torch.cuda.get_device_properties(0).gcnArchName
|
||||
|
||||
@ -24,6 +24,11 @@ def xpu_is_initialized() -> bool:
|
||||
return torch.xpu.is_initialized()
|
||||
|
||||
|
||||
def get_cu_count(cls, device_id: int = 0) -> int:
|
||||
"""Returns the total number of compute units (CU) on single GPU."""
|
||||
return torch.cuda.get_device_properties(device_id).multi_processor_count
|
||||
|
||||
|
||||
def cuda_get_device_properties(
|
||||
device, names: Sequence[str], init_cuda=False
|
||||
) -> tuple[Any, ...]:
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user