mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 02:15:01 +08:00
[Model] Support dp on ViT on GLM-4.5V (#23168)
Signed-off-by: David Chen <530634352@qq.com>
This commit is contained in:
parent
fad73be1a5
commit
2f0bab3f26
@ -174,6 +174,7 @@ Regardless, you need to set `mm_encoder_tp_mode="data"` in engine arguments to u
|
||||
|
||||
Known supported models:
|
||||
|
||||
- GLM-4.5V GLM-4.1V (<gh-pr:23168>)
|
||||
- Kimi-VL (<gh-pr:23817>)
|
||||
- Llama4 (<gh-pr:18368>)
|
||||
- MiniCPM-V-2.5 or above (<gh-pr:23327>, <gh-pr:23948>)
|
||||
|
||||
@ -45,15 +45,20 @@ from transformers.models.glm4v.video_processing_glm4v import (
|
||||
from transformers.video_utils import VideoMetadata
|
||||
|
||||
from vllm.config import VllmConfig
|
||||
from vllm.distributed import parallel_state
|
||||
from vllm.distributed import (get_tensor_model_parallel_world_size,
|
||||
parallel_state)
|
||||
from vllm.distributed import utils as dist_utils
|
||||
from vllm.logger import init_logger
|
||||
from vllm.model_executor import SamplingMetadata
|
||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||
# yapf: disable
|
||||
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
||||
MergedColumnParallelLinear,
|
||||
MergedReplicatedLinear,
|
||||
QKVParallelLinear,
|
||||
ReplicatedLinear,
|
||||
RowParallelLinear)
|
||||
# yapf: enable
|
||||
from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.model_executor.models.module_mapping import MultiModelKeys
|
||||
@ -66,6 +71,7 @@ from vllm.multimodal.processing import (BaseMultiModalProcessor,
|
||||
BaseProcessingInfo, PromptReplacement,
|
||||
PromptUpdate, PromptUpdateDetails)
|
||||
from vllm.multimodal.profiling import BaseDummyInputsBuilder
|
||||
from vllm.multimodal.utils import run_dp_sharded_mrope_vision_model
|
||||
from vllm.platforms import _Backend
|
||||
from vllm.sequence import IntermediateTensors
|
||||
from vllm.transformers_utils.config import uses_mrope
|
||||
@ -153,7 +159,7 @@ class Glm4vVideoEmbeddingInputs(TensorSchema):
|
||||
|
||||
Glm4vVideoInputs = Union[Glm4vVideoPixelInputs, Glm4vVideoEmbeddingInputs]
|
||||
|
||||
# === Vision Encoder === #
|
||||
# ==== Vision Encoder ==== #
|
||||
|
||||
|
||||
class Glm4vVisionMLP(nn.Module):
|
||||
@ -165,15 +171,19 @@ class Glm4vVisionMLP(nn.Module):
|
||||
bias: bool = False,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: str = "",
|
||||
use_data_parallel: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
self.gate_up_proj = MergedColumnParallelLinear(
|
||||
input_size=in_features,
|
||||
cls_gate_up = (MergedReplicatedLinear
|
||||
if use_data_parallel else MergedColumnParallelLinear)
|
||||
self.gate_up_proj = cls_gate_up(input_size=in_features,
|
||||
output_sizes=[hidden_features] * 2,
|
||||
bias=bias,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.gate_up_proj")
|
||||
self.down_proj = RowParallelLinear(hidden_features,
|
||||
cls_down = (ReplicatedLinear
|
||||
if use_data_parallel else RowParallelLinear)
|
||||
self.down_proj = cls_down(hidden_features,
|
||||
in_features,
|
||||
bias=bias,
|
||||
quant_config=quant_config,
|
||||
@ -218,16 +228,36 @@ class Glm4vVisionAttention(nn.Module):
|
||||
projection_size: int,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: str = "",
|
||||
use_data_parallel: bool = False,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
# Per attention head and per partition values.
|
||||
self.tp_size = parallel_state.get_tensor_model_parallel_world_size()
|
||||
self.tp_size = (1 if use_data_parallel else
|
||||
get_tensor_model_parallel_world_size())
|
||||
self.tp_rank = parallel_state.get_tensor_model_parallel_rank()
|
||||
self.hidden_size_per_attention_head = dist_utils.divide(
|
||||
projection_size, num_heads)
|
||||
self.num_attention_heads_per_partition = dist_utils.divide(
|
||||
num_heads, self.tp_size)
|
||||
|
||||
if use_data_parallel:
|
||||
self.qkv = ReplicatedLinear(
|
||||
input_size=embed_dim,
|
||||
output_size=3 * projection_size,
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
# Change qkv prefix to align with GLM-4.5V-FP8 quantization cfg
|
||||
prefix=f"{prefix}.qkv_proj"
|
||||
if quant_config else f"{prefix}.qkv",
|
||||
)
|
||||
self.proj = ReplicatedLinear(
|
||||
input_size=projection_size,
|
||||
output_size=embed_dim,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.proj",
|
||||
bias=False,
|
||||
)
|
||||
else:
|
||||
self.qkv = QKVParallelLinear(
|
||||
hidden_size=embed_dim,
|
||||
head_size=self.hidden_size_per_attention_head,
|
||||
@ -235,8 +265,9 @@ class Glm4vVisionAttention(nn.Module):
|
||||
total_num_kv_heads=num_heads,
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
# Change qkv prefix to align with GLM-4.5V-FP8 quantization config
|
||||
prefix=f"{prefix}.qkv_proj" if quant_config else f"{prefix}.qkv",
|
||||
# Change qkv prefix to align with GLM-4.5V-FP8 quantization cfg
|
||||
prefix=f"{prefix}.qkv_proj"
|
||||
if quant_config else f"{prefix}.qkv",
|
||||
)
|
||||
self.proj = RowParallelLinear(
|
||||
input_size=projection_size,
|
||||
@ -375,6 +406,7 @@ class Glm4vVisionBlock(nn.Module):
|
||||
norm_layer: Optional[Callable[[int], nn.Module]] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: str = "",
|
||||
use_data_parallel: bool = False,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
if norm_layer is None:
|
||||
@ -387,6 +419,7 @@ class Glm4vVisionBlock(nn.Module):
|
||||
projection_size=dim,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.attn",
|
||||
use_data_parallel=use_data_parallel,
|
||||
)
|
||||
self.mlp = Glm4vVisionMLP(
|
||||
dim,
|
||||
@ -394,6 +427,7 @@ class Glm4vVisionBlock(nn.Module):
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.mlp",
|
||||
use_data_parallel=use_data_parallel,
|
||||
)
|
||||
|
||||
def forward(
|
||||
@ -456,24 +490,40 @@ class Glm4vPatchMerger(nn.Module):
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
bias: bool = False,
|
||||
prefix: str = "",
|
||||
use_data_parallel: bool = False,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.hidden_size = d_model
|
||||
self.proj = ColumnParallelLinear(self.hidden_size,
|
||||
if use_data_parallel:
|
||||
self.proj = ReplicatedLinear(
|
||||
input_size=self.hidden_size,
|
||||
output_size=self.hidden_size,
|
||||
bias=bias,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.proj",
|
||||
)
|
||||
else:
|
||||
self.proj = ColumnParallelLinear(
|
||||
self.hidden_size,
|
||||
self.hidden_size,
|
||||
bias=bias,
|
||||
gather_output=True,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.proj")
|
||||
prefix=f"{prefix}.proj",
|
||||
)
|
||||
self.post_projection_norm = nn.LayerNorm(self.hidden_size)
|
||||
self.gate_up_proj = MergedColumnParallelLinear(
|
||||
cls_gate_up = (MergedReplicatedLinear
|
||||
if use_data_parallel else MergedColumnParallelLinear)
|
||||
self.gate_up_proj = cls_gate_up(
|
||||
input_size=self.hidden_size,
|
||||
output_sizes=[context_dim] * 2,
|
||||
bias=bias,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.gate_up_proj",
|
||||
)
|
||||
self.down_proj = RowParallelLinear(
|
||||
cls_down = (ReplicatedLinear
|
||||
if use_data_parallel else RowParallelLinear)
|
||||
self.down_proj = cls_down(
|
||||
context_dim,
|
||||
self.hidden_size,
|
||||
bias=bias,
|
||||
@ -548,6 +598,25 @@ class Glm4vVisionEmbeddings(nn.Module):
|
||||
dtype=torch.float32))
|
||||
|
||||
# Calculate target dimensions for each patch
|
||||
# Add bounds checking for data parallel mode
|
||||
if len(lengths) > image_shapes.shape[0]:
|
||||
# In data parallel mode, some GPUs might not have all
|
||||
# image shapes
|
||||
# Use available image shapes, cycling if necessary
|
||||
target_h_list = []
|
||||
target_w_list = []
|
||||
for i in range(len(lengths)):
|
||||
# Cycle through available shapes
|
||||
shape_idx = i % image_shapes.shape[0]
|
||||
target_h_list.append(image_shapes[shape_idx,
|
||||
1].repeat(lengths[i]))
|
||||
target_w_list.append(image_shapes[shape_idx,
|
||||
2].repeat(lengths[i]))
|
||||
target_h = torch.cat(target_h_list).to(device=device,
|
||||
dtype=torch.float32)
|
||||
target_w = torch.cat(target_w_list).to(device=device,
|
||||
dtype=torch.float32)
|
||||
else:
|
||||
target_h = torch.cat([
|
||||
image_shapes[i, 1].repeat(lengths[i])
|
||||
for i in range(len(lengths))
|
||||
@ -629,6 +698,7 @@ class Glm4vVisionTransformer(nn.Module):
|
||||
norm_eps: float = 1e-6,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: str = "",
|
||||
use_data_parallel: bool = False,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
@ -638,6 +708,7 @@ class Glm4vVisionTransformer(nn.Module):
|
||||
depth = vision_config.depth
|
||||
self.hidden_size = vision_config.hidden_size
|
||||
self.num_heads = vision_config.num_heads
|
||||
self.use_data_parallel = use_data_parallel
|
||||
|
||||
self.patch_size = vision_config.patch_size
|
||||
self.spatial_merge_size = vision_config.spatial_merge_size
|
||||
@ -661,6 +732,7 @@ class Glm4vVisionTransformer(nn.Module):
|
||||
norm_layer=norm_layer,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.blocks.{layer_idx}",
|
||||
use_data_parallel=self.use_data_parallel,
|
||||
) for layer_idx in range(depth)
|
||||
])
|
||||
self.merger = Glm4vPatchMerger(
|
||||
@ -669,6 +741,7 @@ class Glm4vVisionTransformer(nn.Module):
|
||||
quant_config=quant_config,
|
||||
bias=False,
|
||||
prefix=f"{prefix}.merger",
|
||||
use_data_parallel=self.use_data_parallel,
|
||||
)
|
||||
self.embeddings = Glm4vVisionEmbeddings(vision_config)
|
||||
|
||||
@ -731,8 +804,11 @@ class Glm4vVisionTransformer(nn.Module):
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
grid_thw: torch.Tensor,
|
||||
grid_thw: list[list[int]],
|
||||
) -> torch.Tensor:
|
||||
# Convert grid_thw to tensor (always expecting list format now)
|
||||
grid_thw = torch.tensor(grid_thw, device=x.device, dtype=torch.long)
|
||||
|
||||
# patchify
|
||||
x = x.to(device=self.device, dtype=self.dtype)
|
||||
x = self.patch_embed(x)
|
||||
@ -1250,6 +1326,8 @@ class Glm4vForConditionalGeneration(nn.Module, SupportsMultiModal,
|
||||
"model.visual.": "visual.",
|
||||
})
|
||||
|
||||
supports_encoder_tp_data = True
|
||||
|
||||
@classmethod
|
||||
def get_placeholder_str(cls, modality: str, i: int) -> Optional[str]:
|
||||
if modality.startswith("image"):
|
||||
@ -1267,12 +1345,14 @@ class Glm4vForConditionalGeneration(nn.Module, SupportsMultiModal,
|
||||
|
||||
self.config = config
|
||||
self.multimodal_config = multimodal_config
|
||||
self.use_data_parallel = multimodal_config.mm_encoder_tp_mode == "data"
|
||||
|
||||
self.visual = Glm4vVisionTransformer(
|
||||
config.vision_config,
|
||||
norm_eps=getattr(config, "rms_norm_eps", 1e-5),
|
||||
quant_config=quant_config,
|
||||
prefix=maybe_prefix(prefix, "visual"),
|
||||
use_data_parallel=self.use_data_parallel,
|
||||
)
|
||||
|
||||
if config.model_type == "glm4v":
|
||||
@ -1382,8 +1462,14 @@ class Glm4vForConditionalGeneration(nn.Module, SupportsMultiModal,
|
||||
image_embeds = image_input["image_embeds"].type(self.visual.dtype)
|
||||
else:
|
||||
pixel_values = image_input["pixel_values"].type(self.visual.dtype)
|
||||
image_embeds = self.visual(pixel_values, grid_thw=grid_thw)
|
||||
|
||||
if self.use_data_parallel:
|
||||
return run_dp_sharded_mrope_vision_model(self.visual,
|
||||
pixel_values,
|
||||
grid_thw.tolist(),
|
||||
rope_type="rope_3d")
|
||||
else:
|
||||
image_embeds = self.visual(pixel_values,
|
||||
grid_thw=grid_thw.tolist())
|
||||
merge_size = self.visual.spatial_merge_size
|
||||
sizes = grid_thw.prod(-1) // merge_size // merge_size
|
||||
return image_embeds.split(sizes.tolist())
|
||||
@ -1393,23 +1479,22 @@ class Glm4vForConditionalGeneration(nn.Module, SupportsMultiModal,
|
||||
grid_thw = video_input["video_grid_thw"]
|
||||
assert grid_thw.ndim == 2
|
||||
|
||||
device = self.visual.device
|
||||
flat_grid_thw = torch.cat([
|
||||
torch.tensor([[1, h, w]] * t, device=device)
|
||||
for t, h, w in grid_thw
|
||||
])
|
||||
if video_input["type"] == "video_embeds":
|
||||
video_embeds = video_input["video_embeds"].type(self.visual.dtype)
|
||||
else:
|
||||
pixel_values_videos = video_input["pixel_values_videos"].type(
|
||||
self.visual.dtype)
|
||||
if self.use_data_parallel:
|
||||
return run_dp_sharded_mrope_vision_model(self.visual,
|
||||
pixel_values_videos,
|
||||
grid_thw.tolist(),
|
||||
rope_type="rope_3d")
|
||||
else:
|
||||
video_embeds = self.visual(pixel_values_videos,
|
||||
grid_thw=flat_grid_thw)
|
||||
|
||||
grid_thw=grid_thw.tolist())
|
||||
# Split concatenated embeddings for each video item.
|
||||
merge_size = self.visual.spatial_merge_size
|
||||
sizes = grid_thw.prod(-1) // merge_size // merge_size
|
||||
|
||||
return video_embeds.split(sizes.tolist())
|
||||
|
||||
def _parse_and_validate_multimodal_inputs(self, **kwargs: object) -> dict:
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user