mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-09 02:34:56 +08:00
[mypy] Fix wrong type annotations related to tuple (#25660)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
This commit is contained in:
parent
1e9a77e037
commit
2f17117606
@ -79,9 +79,9 @@ def make_rand_lora_weight_tensor(
|
||||
|
||||
|
||||
def make_rand_tensors(
|
||||
a_shape: tuple[int],
|
||||
b_shape: tuple[int],
|
||||
c_shape: tuple[int],
|
||||
a_shape: tuple[int, ...],
|
||||
b_shape: tuple[int, ...],
|
||||
c_shape: tuple[int, ...],
|
||||
a_dtype: torch.dtype,
|
||||
b_dtype: torch.dtype,
|
||||
c_dtype: torch.dtype,
|
||||
@ -243,7 +243,7 @@ class OpType(Enum):
|
||||
lora_rank: int,
|
||||
num_loras: int,
|
||||
num_slices: int,
|
||||
) -> tuple[tuple[int], tuple[int], tuple[int]]:
|
||||
) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...]]:
|
||||
"""
|
||||
Given num_slices, return the shapes of the A, B, and C matrices
|
||||
in A x B = C, for the op_type
|
||||
|
||||
@ -50,8 +50,11 @@ def test_is_type(type_hint, type, expected):
|
||||
|
||||
@pytest.mark.parametrize(("type_hints", "type", "expected"), [
|
||||
({float, int}, int, True),
|
||||
({int, tuple}, int, True),
|
||||
({int, tuple[int]}, int, True),
|
||||
({int, tuple[int, ...]}, int, True),
|
||||
({int, tuple[int]}, float, False),
|
||||
({int, tuple[int, ...]}, float, False),
|
||||
({str, Literal["x", "y"]}, Literal, True),
|
||||
])
|
||||
def test_contains_type(type_hints, type, expected):
|
||||
|
||||
@ -60,7 +60,7 @@ TENSORS_SHAPES_FN = [
|
||||
@torch.inference_mode()
|
||||
def test_rotary_embedding(
|
||||
is_neox_style: bool,
|
||||
tensor_shape_fn: Callable[[int, int, int, int], tuple[int]],
|
||||
tensor_shape_fn: Callable[[int, int, int, int], tuple[int, ...]],
|
||||
batch_size: int,
|
||||
seq_len: int,
|
||||
num_heads: int,
|
||||
|
||||
@ -165,7 +165,7 @@ def onednn_gemm_test_helper(primitive_cache_size: int,
|
||||
def test_onednn_int8_scaled_gemm(
|
||||
n: int,
|
||||
k: int,
|
||||
m_list: tuple[int],
|
||||
m_list: tuple[int, ...],
|
||||
per_tensor_a_scale: bool,
|
||||
per_tensor_b_scale: bool,
|
||||
use_bias: bool,
|
||||
@ -196,7 +196,7 @@ def test_onednn_int8_scaled_gemm(
|
||||
def test_onednn_gemm(
|
||||
n: int,
|
||||
k: int,
|
||||
m_list: tuple[int],
|
||||
m_list: tuple[int, ...],
|
||||
use_bias: bool,
|
||||
use_stride: bool,
|
||||
dtype: torch.dtype,
|
||||
|
||||
@ -101,7 +101,7 @@ class VLMTestInfo(NamedTuple):
|
||||
# Function for converting ImageAssets to image embeddings;
|
||||
# We need to define this explicitly for embedding tests
|
||||
convert_assets_to_embeddings: Optional[Callable[[ImageTestAssets],
|
||||
torch.Tensor]] = None
|
||||
list[torch.Tensor]]] = None
|
||||
|
||||
# Exposed options for vLLM runner; we change these in a several tests,
|
||||
# but the defaults are derived from VllmRunner & the engine defaults
|
||||
@ -137,12 +137,12 @@ class VLMTestInfo(NamedTuple):
|
||||
# Default expandable params per test; these defaults can be overridden in
|
||||
# instances of this object; the complete set of test cases for the model
|
||||
# is all combinations of .models + all fields below
|
||||
max_tokens: Union[int, tuple[int]] = 128
|
||||
num_logprobs: Union[int, tuple[int]] = 5
|
||||
dtype: Union[str, Union[list[str], tuple[str, ...]]] = "auto"
|
||||
distributed_executor_backend: Optional[Union[str, Iterable[str]]] = None
|
||||
max_tokens: int = 128
|
||||
num_logprobs: int = 5
|
||||
dtype: str = "auto"
|
||||
distributed_executor_backend: Optional[str] = None
|
||||
# Only expanded in video tests
|
||||
num_video_frames: Union[int, tuple[int]] = 16
|
||||
num_video_frames: int = 16
|
||||
|
||||
# Fixed image sizes / image size factors; most tests use image_size_factors
|
||||
# The values provided for these two fields will be stacked and expanded
|
||||
|
||||
@ -72,8 +72,10 @@ def _create_allowed_token_ids(
|
||||
|
||||
|
||||
def _create_bad_words_token_ids(
|
||||
batch_size: int, vocab_size: int,
|
||||
bad_words_lengths: list[tuple[int]]) -> dict[int, list[list[int]]]:
|
||||
batch_size: int,
|
||||
vocab_size: int,
|
||||
bad_words_lengths: tuple[int, ...],
|
||||
) -> dict[int, list[list[int]]]:
|
||||
bad_words_token_ids = {}
|
||||
for batch_idx in range(batch_size):
|
||||
token_ids_single_batch = []
|
||||
@ -402,7 +404,7 @@ def test_sampler_allowed_token_ids(device: str, batch_size: int,
|
||||
@pytest.mark.parametrize("batch_size", [1, 2, 32])
|
||||
@pytest.mark.parametrize("bad_words_lengths", [(1, ), (1, 3), (2, 2)])
|
||||
def test_sampler_bad_words(device: str, batch_size: int,
|
||||
bad_words_lengths: list[tuple[int]]):
|
||||
bad_words_lengths: tuple[int, ...]):
|
||||
"""
|
||||
Test to verify that when the bad words restriction is present, tokens
|
||||
are penalized based on their match with the bad words.
|
||||
|
||||
@ -30,7 +30,7 @@ eagle3_dir = "yuhuili/EAGLE3-LLaMA3.1-Instruct-8B"
|
||||
def _create_proposer(
|
||||
method: str,
|
||||
num_speculative_tokens: int,
|
||||
speculative_token_tree: Optional[list[tuple[int]]] = None,
|
||||
speculative_token_tree: Optional[list[tuple[int, ...]]] = None,
|
||||
) -> EagleProposer:
|
||||
model_config = ModelConfig(model=model_dir,
|
||||
runner="generate",
|
||||
|
||||
@ -178,7 +178,7 @@ class RayPPCommunicator(Communicator):
|
||||
|
||||
def recv(
|
||||
self,
|
||||
shape: tuple[int],
|
||||
shape: tuple[int, ...],
|
||||
dtype: "torch.dtype",
|
||||
peer_rank: int,
|
||||
allocator: TorchTensorAllocator,
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
from collections.abc import Sequence
|
||||
from typing import Callable, Union
|
||||
|
||||
import torch
|
||||
@ -55,7 +55,7 @@ class NoBadWordsLogitsProcessor:
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
past_tokens_ids: Union[list[int], tuple[int]],
|
||||
past_tokens_ids: Sequence[int],
|
||||
logits: torch.FloatTensor,
|
||||
) -> torch.Tensor:
|
||||
if self.word_bias is None:
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user