mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-22 01:15:44 +08:00
[Core] Refactor _prepare_model_input_tensors - take 2 (#6164)
This commit is contained in:
parent
a9a2e74d21
commit
2fa4623d9e
@ -3,7 +3,7 @@ from typing import List, Tuple, Type
|
||||
|
||||
import torch
|
||||
|
||||
from vllm.attention import AttentionMetadata
|
||||
from vllm.attention import AttentionMetadata, AttentionMetadataBuilder
|
||||
from vllm.attention.backends.abstract import AttentionBackend
|
||||
from vllm.model_executor import SamplingMetadata
|
||||
from vllm.model_executor.pooling_metadata import PoolingMetadata
|
||||
@ -26,6 +26,10 @@ class MockAttentionBackend(AttentionBackend):
|
||||
def get_metadata_cls() -> Type["AttentionMetadata"]:
|
||||
return AttentionMetadata
|
||||
|
||||
@staticmethod
|
||||
def get_builder_cls() -> Type["AttentionMetadataBuilder"]:
|
||||
raise AttentionMetadataBuilder
|
||||
|
||||
@staticmethod
|
||||
def get_kv_cache_shape(
|
||||
num_blocks: int,
|
||||
|
||||
@ -1,5 +1,6 @@
|
||||
from vllm.attention.backends.abstract import (AttentionBackend,
|
||||
AttentionMetadata)
|
||||
AttentionMetadata,
|
||||
AttentionMetadataBuilder)
|
||||
from vllm.attention.layer import Attention
|
||||
from vllm.attention.selector import get_attn_backend
|
||||
|
||||
@ -7,6 +8,7 @@ __all__ = [
|
||||
"Attention",
|
||||
"AttentionBackend",
|
||||
"AttentionMetadata",
|
||||
"AttentionMetadataBuilder",
|
||||
"Attention",
|
||||
"get_attn_backend",
|
||||
]
|
||||
|
||||
@ -1,11 +1,15 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from dataclasses import dataclass, fields
|
||||
from enum import Enum, auto
|
||||
from typing import (Any, Dict, Generic, List, Optional, Set, Tuple, Type,
|
||||
TypeVar)
|
||||
from typing import (TYPE_CHECKING, Any, Dict, Generic, List, Optional, Set,
|
||||
Tuple, Type, TypeVar)
|
||||
|
||||
import torch
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from vllm.sequence import SequenceGroupMetadata
|
||||
from vllm.worker.model_runner_base import ModelRunnerInputBuilderBase
|
||||
|
||||
|
||||
class AttentionType(Enum):
|
||||
DECODER = auto() # Decoder attention between previous layer Q/K/V
|
||||
@ -35,6 +39,16 @@ class AttentionBackend(ABC):
|
||||
def make_metadata(cls, *args, **kwargs) -> "AttentionMetadata":
|
||||
return cls.get_metadata_cls()(*args, **kwargs)
|
||||
|
||||
@staticmethod
|
||||
@abstractmethod
|
||||
def get_builder_cls() -> Type["AttentionMetadataBuilder"]:
|
||||
raise NotImplementedError
|
||||
|
||||
@classmethod
|
||||
def make_metadata_builder(cls, *args,
|
||||
**kwargs) -> "AttentionMetadataBuilder":
|
||||
return cls.get_builder_cls()(*args, **kwargs)
|
||||
|
||||
@staticmethod
|
||||
@abstractmethod
|
||||
def get_kv_cache_shape(
|
||||
@ -110,6 +124,33 @@ class AttentionMetadata:
|
||||
T = TypeVar("T", bound=AttentionMetadata)
|
||||
|
||||
|
||||
class AttentionMetadataBuilder(ABC, Generic[T]):
|
||||
"""Abstract class for attention metadata builders."""
|
||||
|
||||
@abstractmethod
|
||||
def __init__(self, input_builder) -> None:
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def add_seq_group(self, seq_group_metadata: "SequenceGroupMetadata",
|
||||
token_lens: List[int], seq_lens: List[int],
|
||||
curr_seq_lens: List[int], query_lens: List[int],
|
||||
context_lens: List[int],
|
||||
curr_sliding_window_blocks: List[int],
|
||||
prefix_cache_hit: bool, chunked_prefill_enabled: bool):
|
||||
"""Add a sequence group to the metadata and update
|
||||
corresponding fields (in Python objects).
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def build(self, runner: "ModelRunnerInputBuilderBase", seq_lens: List[int],
|
||||
query_lens: List[int], cuda_graph_pad_size: int,
|
||||
batch_size: int) -> T:
|
||||
"""Build attention metadata with on-device tensors."""
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class AttentionImpl(ABC, Generic[T]):
|
||||
|
||||
@abstractmethod
|
||||
|
||||
@ -5,6 +5,7 @@ import torch
|
||||
|
||||
from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
|
||||
AttentionMetadata, AttentionType)
|
||||
from vllm.attention.backends.utils import CommonMetadataBuilder
|
||||
from vllm.attention.ops.blocksparse_attention.interface import (
|
||||
LocalStridedBlockSparseAttn, get_head_sliding_step)
|
||||
from vllm.attention.ops.paged_attn import PagedAttention
|
||||
@ -93,6 +94,10 @@ class BlocksparseFlashAttentionBackend(AttentionBackend):
|
||||
def get_metadata_cls() -> Type["AttentionMetadata"]:
|
||||
return BlocksparseFlashAttentionMetadata
|
||||
|
||||
@staticmethod
|
||||
def get_builder_cls() -> Type["BlocksparseFlashAttentionMetadataBuilder"]:
|
||||
return BlocksparseFlashAttentionMetadataBuilder
|
||||
|
||||
@staticmethod
|
||||
def get_kv_cache_shape(
|
||||
num_blocks: int,
|
||||
@ -244,6 +249,12 @@ class BlocksparseFlashAttentionMetadata(AttentionMetadata):
|
||||
return self._cached_decode_metadata
|
||||
|
||||
|
||||
class BlocksparseFlashAttentionMetadataBuilder(
|
||||
CommonMetadataBuilder[BlocksparseFlashAttentionMetadata]):
|
||||
|
||||
_metadata_cls = BlocksparseFlashAttentionMetadata
|
||||
|
||||
|
||||
class BlocksparseFlashAttentionImpl(AttentionImpl):
|
||||
"""
|
||||
If the input tensors contain prompt tokens, the layout is as follows:
|
||||
|
||||
@ -1,13 +1,24 @@
|
||||
"""Attention layer with FlashAttention."""
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Dict, List, Optional, Tuple, Type
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Type
|
||||
|
||||
import torch
|
||||
from vllm_flash_attn import flash_attn_varlen_func, flash_attn_with_kvcache
|
||||
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
|
||||
AttentionMetadata, AttentionType)
|
||||
AttentionMetadata,
|
||||
AttentionMetadataBuilder,
|
||||
AttentionType)
|
||||
from vllm.attention.backends.utils import (PAD_SLOT_ID, compute_slot_mapping,
|
||||
compute_slot_mapping_start_idx,
|
||||
is_block_tables_empty)
|
||||
from vllm.sequence import SequenceGroupMetadata
|
||||
from vllm.utils import make_tensor_with_pad
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from vllm.worker.model_runner import (GPUModelRunnerBase,
|
||||
ModelInputForGPUBuilder)
|
||||
|
||||
|
||||
class FlashAttentionBackend(AttentionBackend):
|
||||
@ -28,6 +39,10 @@ class FlashAttentionBackend(AttentionBackend):
|
||||
def get_metadata_cls() -> Type["AttentionMetadata"]:
|
||||
return FlashAttentionMetadata
|
||||
|
||||
@staticmethod
|
||||
def get_builder_cls() -> Type["FlashAttentionMetadataBuilder"]:
|
||||
return FlashAttentionMetadataBuilder
|
||||
|
||||
@staticmethod
|
||||
def get_kv_cache_shape(
|
||||
num_blocks: int,
|
||||
@ -184,6 +199,170 @@ class FlashAttentionMetadata(AttentionMetadata):
|
||||
return self._cached_decode_metadata
|
||||
|
||||
|
||||
class FlashAttentionMetadataBuilder(
|
||||
AttentionMetadataBuilder[FlashAttentionMetadata]):
|
||||
|
||||
def __init__(self, input_builder: "ModelInputForGPUBuilder"):
|
||||
self.slot_mapping: List[int] = []
|
||||
self.prefill_seq_lens: List[int] = []
|
||||
self.context_lens: List[int] = []
|
||||
self.block_tables: List[List[int]] = []
|
||||
self.curr_seq_lens: List[int] = []
|
||||
self.num_prefills = 0
|
||||
self.num_prefill_tokens = 0
|
||||
self.num_decode_tokens = 0
|
||||
|
||||
self.sliding_window = input_builder.sliding_window
|
||||
self.block_size = input_builder.block_size
|
||||
self.use_v2_block_manager = (
|
||||
input_builder.scheduler_config.use_v2_block_manager)
|
||||
|
||||
def add_seq_group(self, seq_group_metadata: SequenceGroupMetadata,
|
||||
token_lens: List[int], seq_lens: List[int],
|
||||
curr_seq_lens: List[int], query_lens: List[int],
|
||||
context_lens: List[int],
|
||||
curr_sliding_window_blocks: List[int],
|
||||
prefix_cache_hit: bool, chunked_prefill_enabled: bool):
|
||||
"""Add a sequence group to the metadata. Specifically update/append
|
||||
1. context length.
|
||||
2. block table.
|
||||
3. slot mapping.
|
||||
"""
|
||||
is_prompt = seq_group_metadata.is_prompt
|
||||
block_tables = seq_group_metadata.block_tables
|
||||
|
||||
for (seq_id, token_len, seq_len, curr_seq_len, query_len, context_len,
|
||||
curr_sliding_window_block) in zip(
|
||||
seq_group_metadata.seq_data.keys(), token_lens, seq_lens,
|
||||
curr_seq_lens, query_lens, context_lens,
|
||||
curr_sliding_window_blocks):
|
||||
self.context_lens.append(context_len)
|
||||
|
||||
if is_prompt:
|
||||
self.num_prefills += 1
|
||||
self.num_prefill_tokens += token_len
|
||||
self.prefill_seq_lens.append(seq_len)
|
||||
else:
|
||||
assert query_len == 1, (
|
||||
"seq_len: {}, context_len: {}, query_len: {}".format(
|
||||
seq_len, context_len, query_len))
|
||||
self.num_decode_tokens += query_len
|
||||
self.curr_seq_lens.append(curr_seq_len)
|
||||
|
||||
# Compute block table.
|
||||
# TODO(sang): Combine chunked prefill and prefix caching by
|
||||
# only allowing multiple of block_size chunk size.
|
||||
# NOTE: This only works for oooooooxxx style attention.
|
||||
block_table = []
|
||||
if prefix_cache_hit:
|
||||
# NOTE(woosuk): For flash-attn, the block table should
|
||||
# include the entries for the incoming prefill tokens.
|
||||
block_table = block_tables[seq_id]
|
||||
elif ((chunked_prefill_enabled or not is_prompt)
|
||||
and block_tables is not None):
|
||||
block_table = block_tables[seq_id][-curr_sliding_window_block:]
|
||||
self.block_tables.append(block_table)
|
||||
|
||||
# Compute slot mapping.
|
||||
is_profile_run = is_block_tables_empty(block_tables)
|
||||
start_idx = compute_slot_mapping_start_idx(
|
||||
is_prompt, query_len, context_len, self.sliding_window,
|
||||
self.use_v2_block_manager)
|
||||
compute_slot_mapping(is_profile_run, self.slot_mapping, seq_id,
|
||||
seq_len, context_len, start_idx,
|
||||
self.block_size,
|
||||
seq_group_metadata.block_tables)
|
||||
|
||||
def build(self, runner: "GPUModelRunnerBase", seq_lens, query_lens,
|
||||
cuda_graph_pad_size: int, batch_size: int):
|
||||
"""Build attention metadata with on-device tensors."""
|
||||
device = runner.device
|
||||
use_captured_graph = cuda_graph_pad_size != -1
|
||||
|
||||
logits_soft_cap = getattr(runner.model_config.hf_config,
|
||||
"attn_logit_softcapping", None)
|
||||
if logits_soft_cap is not None:
|
||||
raise ValueError(
|
||||
"Please use Flashinfer backend for models with logits_soft_cap"
|
||||
" (i.e., Gemma-2). Otherwise, the output might be wrong."
|
||||
" Set Flashinfer backend by "
|
||||
"export VLLM_ATTENTION_BACKEND=FLASHINFER.")
|
||||
|
||||
max_query_len = max(query_lens)
|
||||
max_prefill_seq_len = max(self.prefill_seq_lens, default=0)
|
||||
max_decode_seq_len = max(self.curr_seq_lens, default=0)
|
||||
num_decode_tokens = self.num_decode_tokens
|
||||
|
||||
if use_captured_graph:
|
||||
self.slot_mapping.extend([PAD_SLOT_ID] * cuda_graph_pad_size)
|
||||
self.block_tables.extend([] * cuda_graph_pad_size)
|
||||
num_decode_tokens = batch_size + cuda_graph_pad_size
|
||||
|
||||
# The shape of graph_block_tables is
|
||||
# [max batch size, max context len // block size].
|
||||
input_block_tables = runner.graph_block_tables[:batch_size]
|
||||
for i, block_table in enumerate(self.block_tables):
|
||||
if block_table:
|
||||
input_block_tables[i, :len(block_table)] = block_table
|
||||
block_tables = torch.tensor(input_block_tables, device=device)
|
||||
else:
|
||||
max_block_table_len = max(
|
||||
len(block_table) for block_table in self.block_tables)
|
||||
block_tables = make_tensor_with_pad(
|
||||
self.block_tables,
|
||||
max_len=max_block_table_len,
|
||||
pad=0,
|
||||
dtype=torch.int,
|
||||
device=device,
|
||||
)
|
||||
assert max_query_len > 0, ("query_lens: {}".format(query_lens))
|
||||
|
||||
context_lens_tensor = torch.tensor(self.context_lens,
|
||||
dtype=torch.int,
|
||||
device=device)
|
||||
seq_lens_tensor = torch.tensor(seq_lens,
|
||||
dtype=torch.int,
|
||||
device=device)
|
||||
query_lens_tensor = torch.tensor(query_lens,
|
||||
dtype=torch.long,
|
||||
device=device)
|
||||
query_start_loc = torch.zeros(query_lens_tensor.shape[0] + 1,
|
||||
dtype=torch.int32,
|
||||
device=device)
|
||||
seq_start_loc = torch.zeros(seq_lens_tensor.shape[0] + 1,
|
||||
dtype=torch.int32,
|
||||
device=device)
|
||||
torch.cumsum(seq_lens_tensor,
|
||||
dim=0,
|
||||
dtype=seq_start_loc.dtype,
|
||||
out=seq_start_loc[1:])
|
||||
torch.cumsum(query_lens_tensor,
|
||||
dim=0,
|
||||
dtype=query_start_loc.dtype,
|
||||
out=query_start_loc[1:])
|
||||
|
||||
slot_mapping_tensor = torch.tensor(self.slot_mapping,
|
||||
dtype=torch.long,
|
||||
device=device)
|
||||
|
||||
return FlashAttentionMetadata(
|
||||
num_prefills=self.num_prefills,
|
||||
slot_mapping=slot_mapping_tensor,
|
||||
num_prefill_tokens=self.num_prefill_tokens,
|
||||
num_decode_tokens=num_decode_tokens,
|
||||
seq_lens=seq_lens,
|
||||
seq_lens_tensor=seq_lens_tensor,
|
||||
max_query_len=max_query_len,
|
||||
max_prefill_seq_len=max_prefill_seq_len,
|
||||
max_decode_seq_len=max_decode_seq_len,
|
||||
query_start_loc=query_start_loc,
|
||||
seq_start_loc=seq_start_loc,
|
||||
context_lens_tensor=context_lens_tensor,
|
||||
block_tables=block_tables,
|
||||
use_cuda_graph=use_captured_graph,
|
||||
)
|
||||
|
||||
|
||||
class FlashAttentionImpl(AttentionImpl):
|
||||
"""
|
||||
If the input tensors contain prompt tokens, the layout is as follows:
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Dict, List, Optional, Set, Tuple, Type
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Set, Tuple, Type
|
||||
|
||||
try:
|
||||
from flashinfer import BatchDecodeWithPagedKVCacheWrapper
|
||||
@ -14,7 +14,18 @@ import torch
|
||||
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
|
||||
AttentionMetadata, AttentionType)
|
||||
AttentionMetadata,
|
||||
AttentionMetadataBuilder,
|
||||
AttentionType)
|
||||
from vllm.attention.backends.utils import (PAD_SLOT_ID, compute_slot_mapping,
|
||||
compute_slot_mapping_start_idx,
|
||||
is_block_tables_empty)
|
||||
from vllm.sequence import SequenceGroupMetadata
|
||||
from vllm.utils import get_kv_cache_torch_dtype, make_tensor_with_pad
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from vllm.worker.model_runner import (GPUModelRunnerBase,
|
||||
ModelInputForGPUBuilder)
|
||||
|
||||
|
||||
class FlashInferBackend(AttentionBackend):
|
||||
@ -31,6 +42,10 @@ class FlashInferBackend(AttentionBackend):
|
||||
def get_metadata_cls() -> Type["AttentionMetadata"]:
|
||||
return FlashInferMetadata
|
||||
|
||||
@staticmethod
|
||||
def get_builder_cls() -> Type["FlashInferMetadataBuilder"]:
|
||||
return FlashInferMetadataBuilder
|
||||
|
||||
@staticmethod
|
||||
def get_kv_cache_shape(
|
||||
num_blocks: int,
|
||||
@ -188,6 +203,225 @@ class FlashInferMetadata(AttentionMetadata):
|
||||
return self
|
||||
|
||||
|
||||
class FlashInferMetadataBuilder(AttentionMetadataBuilder[FlashInferMetadata]):
|
||||
|
||||
def __init__(self, input_builder: "ModelInputForGPUBuilder"):
|
||||
self.slot_mapping: List[int] = []
|
||||
self.prefill_seq_lens: List[int] = []
|
||||
self.context_lens: List[int] = []
|
||||
self.block_tables: List[List[int]] = []
|
||||
self.curr_seq_lens: List[int] = []
|
||||
self.num_prefills = 0
|
||||
self.num_prefill_tokens = 0
|
||||
self.num_decode_tokens = 0
|
||||
|
||||
self.sliding_window = input_builder.sliding_window
|
||||
self.block_size = input_builder.block_size
|
||||
self.use_v2_block_manager = (
|
||||
input_builder.scheduler_config.use_v2_block_manager)
|
||||
|
||||
# Please follow https://docs.flashinfer.ai/tutorials/kv_layout.html#page-layout
|
||||
# for the precise definition of the following fields.
|
||||
# An example:
|
||||
# request 1, page indices [0, 5, 8]
|
||||
# request 2, page indices [1, 6, 7]
|
||||
# request 3, page indices [3, 4]
|
||||
# paged_kv_indices is a concatenation of page indices of all requests:
|
||||
# [0, 5, 8, 1, 6, 7, 3, 4]
|
||||
# paged_kv_indptr is used to index into paged_kv_indices:
|
||||
# [0, 3, 6, 8]
|
||||
self.paged_kv_indices: List[int] = []
|
||||
# 0 at the beginning of paged_kv_indptr indicates the start of the
|
||||
# first request’s page indices in the paged_kv_indices list.
|
||||
self.paged_kv_indptr: List[int] = [0]
|
||||
# paged_kv_last_page_len is the length of the last page of each request
|
||||
self.paged_kv_last_page_len: List[int] = []
|
||||
|
||||
def add_seq_group(self, seq_group_metadata: SequenceGroupMetadata,
|
||||
token_lens: List[int], seq_lens: List[int],
|
||||
curr_seq_lens: List[int], query_lens: List[int],
|
||||
context_lens: List[int],
|
||||
curr_sliding_window_blocks: List[int],
|
||||
prefix_cache_hit: bool, chunked_prefill_enabled: bool):
|
||||
"""Add a sequence group to the metadata. Specifically update/append
|
||||
1. context length.
|
||||
2. block table.
|
||||
3. slot mapping.
|
||||
"""
|
||||
is_prompt = seq_group_metadata.is_prompt
|
||||
block_tables = seq_group_metadata.block_tables
|
||||
computed_block_nums = seq_group_metadata.computed_block_nums
|
||||
|
||||
for (seq_id, token_len, seq_len, curr_seq_len, query_len, context_len,
|
||||
curr_sliding_window_block) in zip(
|
||||
seq_group_metadata.seq_data.keys(), token_lens, seq_lens,
|
||||
curr_seq_lens, query_lens, context_lens,
|
||||
curr_sliding_window_blocks):
|
||||
self.context_lens.append(context_len)
|
||||
if is_prompt:
|
||||
self.num_prefills += 1
|
||||
self.num_prefill_tokens += token_len
|
||||
self.prefill_seq_lens.append(seq_len)
|
||||
else:
|
||||
assert query_len == 1, (
|
||||
"seq_len: {}, context_len: {}, query_len: {}".format(
|
||||
seq_len, context_len, query_len))
|
||||
self.num_decode_tokens += query_len
|
||||
self.curr_seq_lens.append(curr_seq_len)
|
||||
|
||||
# Compute block table.
|
||||
# TODO(sang): Combine chunked prefill and prefix caching by
|
||||
# only allowing multiple of block_size chunk size.
|
||||
# NOTE: This only works for oooooooxxx style attention.
|
||||
block_table = []
|
||||
if prefix_cache_hit:
|
||||
block_table = computed_block_nums
|
||||
elif ((chunked_prefill_enabled or not is_prompt)
|
||||
and block_tables is not None):
|
||||
block_table = block_tables[seq_id][-curr_sliding_window_block:]
|
||||
self.block_tables.append(block_table)
|
||||
|
||||
is_profile_run = is_block_tables_empty(block_tables)
|
||||
|
||||
# Compute slot mapping.
|
||||
start_idx = compute_slot_mapping_start_idx(
|
||||
is_prompt, query_len, context_len, self.sliding_window,
|
||||
self.use_v2_block_manager)
|
||||
compute_slot_mapping(is_profile_run, self.slot_mapping, seq_id,
|
||||
seq_len, context_len, start_idx,
|
||||
self.block_size,
|
||||
seq_group_metadata.block_tables)
|
||||
|
||||
# It is not necessary to add paged_kv_indices, paged_kv_indptr,
|
||||
# and paged_kv_last_page_len for profile run because we will
|
||||
# create dummy inputs.
|
||||
if is_profile_run:
|
||||
return
|
||||
|
||||
# Get the number of valid blocks based on sequence length.
|
||||
# If seq_len = 16, block_size = 16,
|
||||
# block_table_bound is 1 with 1 valid block.
|
||||
# If seq_len = 15, block_size = 16,
|
||||
# block_table_bound is 0 + 1 with 1 valid block.
|
||||
block_table_bound = seq_len // self.block_size + 1 \
|
||||
if seq_len % self.block_size != 0 \
|
||||
else seq_len // self.block_size
|
||||
block_table = block_tables[seq_id]
|
||||
self.paged_kv_indices.extend(block_table[:block_table_bound])
|
||||
self.paged_kv_indptr.append(self.paged_kv_indptr[-1] +
|
||||
block_table_bound)
|
||||
|
||||
last_page_len = seq_len % self.block_size
|
||||
if last_page_len == 0:
|
||||
last_page_len = self.block_size
|
||||
self.paged_kv_last_page_len.append(last_page_len)
|
||||
|
||||
def build(self, runner: "GPUModelRunnerBase", seq_lens, query_lens,
|
||||
cuda_graph_pad_size: int, batch_size: int):
|
||||
device = runner.device
|
||||
use_captured_graph = cuda_graph_pad_size != -1
|
||||
|
||||
max_query_len = max(query_lens)
|
||||
max_prefill_seq_len = max(self.prefill_seq_lens, default=0)
|
||||
num_decode_tokens = self.num_decode_tokens
|
||||
|
||||
if use_captured_graph:
|
||||
self.slot_mapping.extend([PAD_SLOT_ID] * cuda_graph_pad_size)
|
||||
self.block_tables.extend([] * cuda_graph_pad_size)
|
||||
num_decode_tokens = batch_size + cuda_graph_pad_size
|
||||
|
||||
# The shape of graph_block_tables is
|
||||
# [max batch size, max context len // block size].
|
||||
input_block_tables = runner.graph_block_tables[:batch_size]
|
||||
for i, block_table in enumerate(self.block_tables):
|
||||
if block_table:
|
||||
input_block_tables[i, :len(block_table)] = block_table
|
||||
block_tables = torch.tensor(input_block_tables, device=device)
|
||||
|
||||
last_paged_kv_indptr = self.paged_kv_indptr[-1]
|
||||
self.paged_kv_indptr.extend([last_paged_kv_indptr] *
|
||||
cuda_graph_pad_size)
|
||||
self.paged_kv_last_page_len.extend([0] * cuda_graph_pad_size)
|
||||
else:
|
||||
max_block_table_len = max(
|
||||
len(block_table) for block_table in self.block_tables)
|
||||
block_tables = make_tensor_with_pad(
|
||||
self.block_tables,
|
||||
max_len=max_block_table_len,
|
||||
pad=0,
|
||||
dtype=torch.int,
|
||||
device=device,
|
||||
)
|
||||
assert max_query_len > 0, ("query_lens: {}".format(query_lens))
|
||||
|
||||
seq_lens_tensor = torch.tensor(seq_lens,
|
||||
dtype=torch.int,
|
||||
device=device)
|
||||
query_lens_tensor = torch.tensor(query_lens,
|
||||
dtype=torch.long,
|
||||
device=device)
|
||||
query_start_loc = torch.zeros(query_lens_tensor.shape[0] + 1,
|
||||
dtype=torch.int32,
|
||||
device=device)
|
||||
seq_start_loc = torch.zeros(seq_lens_tensor.shape[0] + 1,
|
||||
dtype=torch.int32,
|
||||
device=device)
|
||||
torch.cumsum(seq_lens_tensor,
|
||||
dim=0,
|
||||
dtype=seq_start_loc.dtype,
|
||||
out=seq_start_loc[1:])
|
||||
torch.cumsum(query_lens_tensor,
|
||||
dim=0,
|
||||
dtype=query_start_loc.dtype,
|
||||
out=query_start_loc[1:])
|
||||
|
||||
slot_mapping_tensor = torch.tensor(self.slot_mapping,
|
||||
dtype=torch.long,
|
||||
device=device)
|
||||
|
||||
logits_soft_cap = getattr(runner.model_config.hf_config,
|
||||
"attn_logit_softcapping", None)
|
||||
|
||||
if len(self.paged_kv_indptr) > 0:
|
||||
paged_kv_indices_tensor = torch.tensor(self.paged_kv_indices,
|
||||
device="cpu",
|
||||
dtype=torch.int)
|
||||
paged_kv_indptr_tensor = torch.tensor(self.paged_kv_indptr,
|
||||
device="cpu",
|
||||
dtype=torch.int)
|
||||
paged_kv_last_page_len_tensor = torch.tensor(
|
||||
self.paged_kv_last_page_len, device="cpu", dtype=torch.int)
|
||||
else:
|
||||
paged_kv_indices_tensor = None
|
||||
paged_kv_indptr_tensor = None
|
||||
paged_kv_last_page_len_tensor = None
|
||||
|
||||
kv_cache_dtype = get_kv_cache_torch_dtype(runner.kv_cache_dtype,
|
||||
runner.model_config.dtype)
|
||||
return FlashInferMetadata(
|
||||
num_prefills=self.num_prefills,
|
||||
slot_mapping=slot_mapping_tensor,
|
||||
num_prefill_tokens=self.num_prefill_tokens,
|
||||
num_decode_tokens=num_decode_tokens,
|
||||
max_prefill_seq_len=max_prefill_seq_len,
|
||||
block_tables=block_tables,
|
||||
paged_kv_indptr=paged_kv_indptr_tensor,
|
||||
paged_kv_indices=paged_kv_indices_tensor,
|
||||
paged_kv_last_page_len=paged_kv_last_page_len_tensor,
|
||||
num_qo_heads=runner.model_config.get_num_attention_heads(
|
||||
runner.parallel_config),
|
||||
num_kv_heads=runner.model_config.get_num_kv_heads(
|
||||
runner.parallel_config),
|
||||
head_dim=runner.model_config.get_head_size(),
|
||||
page_size=self.block_size,
|
||||
seq_start_loc=seq_start_loc,
|
||||
query_start_loc=query_start_loc,
|
||||
device=device,
|
||||
data_type=kv_cache_dtype,
|
||||
use_cuda_graph=use_captured_graph,
|
||||
logits_soft_cap=logits_soft_cap)
|
||||
|
||||
|
||||
class FlashInferImpl(AttentionImpl):
|
||||
|
||||
def __init__(
|
||||
|
||||
@ -7,6 +7,7 @@ import torch
|
||||
import vllm.envs as envs
|
||||
from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
|
||||
AttentionMetadata, AttentionType)
|
||||
from vllm.attention.backends.utils import CommonMetadataBuilder
|
||||
from vllm.attention.ops.paged_attn import (PagedAttention,
|
||||
PagedAttentionMetadata)
|
||||
from vllm.logger import init_logger
|
||||
@ -28,6 +29,10 @@ class ROCmFlashAttentionBackend(AttentionBackend):
|
||||
def get_metadata_cls() -> Type["AttentionMetadata"]:
|
||||
return ROCmFlashAttentionMetadata
|
||||
|
||||
@staticmethod
|
||||
def get_builder_cls() -> Type["ROCmFlashAttentionMetadataBuilder"]:
|
||||
return ROCmFlashAttentionMetadataBuilder
|
||||
|
||||
@staticmethod
|
||||
def get_kv_cache_shape(
|
||||
num_blocks: int,
|
||||
@ -166,6 +171,12 @@ class ROCmFlashAttentionMetadata(AttentionMetadata, PagedAttentionMetadata):
|
||||
return self._cached_decode_metadata
|
||||
|
||||
|
||||
class ROCmFlashAttentionMetadataBuilder(
|
||||
CommonMetadataBuilder[ROCmFlashAttentionMetadata]):
|
||||
|
||||
_metadata_cls = ROCmFlashAttentionMetadata
|
||||
|
||||
|
||||
def _make_alibi_bias(alibi_slopes: torch.Tensor,
|
||||
dtype: torch.dtype,
|
||||
seq_lens: Optional[List[int]],
|
||||
|
||||
@ -1,7 +1,239 @@
|
||||
"""Attention backend utils"""
|
||||
from typing import TYPE_CHECKING, Dict, List, Type, TypeVar, Union
|
||||
|
||||
import torch
|
||||
|
||||
from vllm.attention import AttentionMetadata, AttentionMetadataBuilder
|
||||
from vllm.sequence import SequenceGroupMetadata
|
||||
from vllm.utils import make_tensor_with_pad
|
||||
|
||||
# Error string(s) for encoder/decoder
|
||||
# unsupported attention scenarios
|
||||
|
||||
STR_NOT_IMPL_ENC_DEC_ROCM_HIP = ("ROCm/HIP is not currently supported "
|
||||
"with encoder/decoder models.")
|
||||
|
||||
PAD_SLOT_ID = -1
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from vllm.worker.model_runner import (GPUModelRunnerBase,
|
||||
ModelInputForGPUBuilder)
|
||||
|
||||
|
||||
def is_block_tables_empty(block_tables: Union[None, Dict]):
|
||||
"""
|
||||
Check if block_tables is None or a dictionary with all None values.
|
||||
"""
|
||||
if block_tables is None:
|
||||
return True
|
||||
if isinstance(block_tables, dict) and all(
|
||||
value is None for value in block_tables.values()):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def compute_slot_mapping_start_idx(is_prompt: bool, query_len: int,
|
||||
context_len: int, sliding_window: int,
|
||||
use_v2_block_manager: bool):
|
||||
"""
|
||||
Compute the start index of slot mapping.
|
||||
"""
|
||||
start_idx = 0
|
||||
if is_prompt and sliding_window is not None:
|
||||
assert use_v2_block_manager or context_len == 0, (
|
||||
"Prefix caching is currently not supported with "
|
||||
"sliding window attention in V1 block manager")
|
||||
# When prefill, we use it to not write slots to kv cache
|
||||
# to save memory.
|
||||
start_idx = max(0, query_len - sliding_window)
|
||||
return start_idx
|
||||
|
||||
|
||||
def compute_slot_mapping(is_profile_run: bool, slot_mapping: List[int],
|
||||
seq_id: int, seq_len: int, context_len: int,
|
||||
start_idx: int, block_size: int,
|
||||
block_tables: Dict[int, List[int]]):
|
||||
"""
|
||||
Compute slot mapping.
|
||||
"""
|
||||
if is_profile_run:
|
||||
# During memory profiling, the block tables are not
|
||||
# initialized yet. In this case, we just use a dummy
|
||||
# slot mapping.
|
||||
# In embeddings, the block tables are {seq_id: None}.
|
||||
slot_mapping.extend([PAD_SLOT_ID] * seq_len)
|
||||
return
|
||||
|
||||
# Mask the [0, start_idx) tokens of the prompt with
|
||||
# PAD_SLOT_ID, where start_idx is max(0, seq_len -
|
||||
# sliding_window). For example, if the prompt len is 10,
|
||||
# sliding window is 8, and block size is 4, the first two
|
||||
# tokens are masked and the slot mapping will be
|
||||
# [-1, -1, 2, 3, 4, 5, 6, 7, 0, 1].
|
||||
block_table = block_tables[seq_id]
|
||||
slot_mapping.extend([PAD_SLOT_ID] * max(0, start_idx - context_len))
|
||||
for i in range(max(start_idx, context_len), seq_len):
|
||||
block_number = block_table[i // block_size]
|
||||
block_offset = i % block_size
|
||||
slot = block_number * block_size + block_offset
|
||||
slot_mapping.append(slot)
|
||||
|
||||
|
||||
TAttentionMetadata = TypeVar("TAttentionMetadata", bound='AttentionMetadata')
|
||||
|
||||
|
||||
class CommonMetadataBuilder(AttentionMetadataBuilder[TAttentionMetadata]):
|
||||
|
||||
_metadata_cls: Type[TAttentionMetadata]
|
||||
|
||||
def __init__(self, input_builder: "ModelInputForGPUBuilder"):
|
||||
self.slot_mapping: List[int] = []
|
||||
self.prefill_seq_lens: List[int] = []
|
||||
self.context_lens: List[int] = []
|
||||
self.block_tables: List[List[int]] = []
|
||||
self.curr_seq_lens: List[int] = []
|
||||
self.num_prefills = 0
|
||||
self.num_prefill_tokens = 0
|
||||
self.num_decode_tokens = 0
|
||||
|
||||
self.sliding_window = input_builder.sliding_window
|
||||
self.block_size = input_builder.block_size
|
||||
self.use_v2_block_manager = (
|
||||
input_builder.scheduler_config.use_v2_block_manager)
|
||||
|
||||
def add_seq_group(self, seq_group_metadata: SequenceGroupMetadata,
|
||||
token_lens: List[int], seq_lens: List[int],
|
||||
curr_seq_lens: List[int], query_lens: List[int],
|
||||
context_lens: List[int],
|
||||
curr_sliding_window_blocks: List[int], prefix_cache_hit,
|
||||
chunked_prefill_enabled):
|
||||
is_prompt = seq_group_metadata.is_prompt
|
||||
block_tables = seq_group_metadata.block_tables
|
||||
computed_block_nums = seq_group_metadata.computed_block_nums
|
||||
|
||||
for (seq_id, token_len, seq_len, curr_seq_len, query_len, context_len,
|
||||
curr_sliding_window_block) in zip(
|
||||
seq_group_metadata.seq_data.keys(), token_lens, seq_lens,
|
||||
curr_seq_lens, query_lens, context_lens,
|
||||
curr_sliding_window_blocks):
|
||||
self.context_lens.append(context_len)
|
||||
if is_prompt:
|
||||
self.num_prefills += 1
|
||||
self.num_prefill_tokens += token_len
|
||||
self.prefill_seq_lens.append(seq_len)
|
||||
else:
|
||||
assert query_len == 1, (
|
||||
"seq_len: {}, context_len: {}, query_len: {}".format(
|
||||
seq_len, context_len, query_len))
|
||||
self.num_decode_tokens += query_len
|
||||
self.curr_seq_lens.append(curr_seq_len)
|
||||
|
||||
# Compute block table.
|
||||
# TODO(sang): Combine chunked prefill and prefix caching by
|
||||
# only allowing multiple of block_size chunk size.
|
||||
# NOTE: This only works for oooooooxxx style attention.
|
||||
block_table = []
|
||||
if prefix_cache_hit:
|
||||
block_table = computed_block_nums
|
||||
elif ((chunked_prefill_enabled or not is_prompt)
|
||||
and block_tables is not None):
|
||||
block_table = block_tables[seq_id][-curr_sliding_window_block:]
|
||||
self.block_tables.append(block_table)
|
||||
|
||||
# Compute slot mapping.
|
||||
is_profile_run = is_block_tables_empty(block_tables)
|
||||
start_idx = compute_slot_mapping_start_idx(
|
||||
is_prompt, query_len, context_len, self.sliding_window,
|
||||
self.use_v2_block_manager)
|
||||
compute_slot_mapping(is_profile_run, self.slot_mapping, seq_id,
|
||||
seq_len, context_len, start_idx,
|
||||
self.block_size,
|
||||
seq_group_metadata.block_tables)
|
||||
|
||||
def build(self, runner: "GPUModelRunnerBase", seq_lens: List[int],
|
||||
query_lens: List[int], cuda_graph_pad_size: int,
|
||||
batch_size: int):
|
||||
device = runner.device
|
||||
use_captured_graph = cuda_graph_pad_size != -1
|
||||
|
||||
logits_soft_cap = getattr(runner.model_config.hf_config,
|
||||
"attn_logit_softcapping", None)
|
||||
if logits_soft_cap is not None:
|
||||
raise ValueError(
|
||||
"Please use Flashinfer backend for models with logits_soft_cap "
|
||||
"(i.e., Gemma-2). Otherwise, the output might be wrong. "
|
||||
"Set Flashinfer backend by "
|
||||
"export VLLM_ATTENTION_BACKEND=FLASHINFER.")
|
||||
|
||||
max_query_len = max(query_lens)
|
||||
max_prefill_seq_len = max(self.prefill_seq_lens, default=0)
|
||||
max_decode_seq_len = max(self.curr_seq_lens, default=0)
|
||||
num_decode_tokens = self.num_decode_tokens
|
||||
|
||||
if use_captured_graph:
|
||||
self.slot_mapping.extend([PAD_SLOT_ID] * cuda_graph_pad_size)
|
||||
self.block_tables.extend([] * cuda_graph_pad_size)
|
||||
num_decode_tokens = batch_size + cuda_graph_pad_size
|
||||
|
||||
# The shape of graph_block_tables is
|
||||
# [max batch size, max context len // block size].
|
||||
input_block_tables = runner.graph_block_tables[:batch_size]
|
||||
for i, block_table in enumerate(self.block_tables):
|
||||
if block_table:
|
||||
input_block_tables[i, :len(block_table)] = block_table
|
||||
block_tables = torch.tensor(input_block_tables, device=device)
|
||||
else:
|
||||
max_block_table_len = max(
|
||||
len(block_table) for block_table in self.block_tables)
|
||||
block_tables = make_tensor_with_pad(
|
||||
self.block_tables,
|
||||
max_len=max_block_table_len,
|
||||
pad=0,
|
||||
dtype=torch.int,
|
||||
device=device,
|
||||
)
|
||||
assert max_query_len > 0, "query_lens: {}".format(query_lens)
|
||||
|
||||
context_lens_tensor = torch.tensor(self.context_lens,
|
||||
dtype=torch.int,
|
||||
device=device)
|
||||
seq_lens_tensor = torch.tensor(seq_lens,
|
||||
dtype=torch.int,
|
||||
device=device)
|
||||
query_lens_tensor = torch.tensor(query_lens,
|
||||
dtype=torch.long,
|
||||
device=device)
|
||||
query_start_loc = torch.zeros(query_lens_tensor.shape[0] + 1,
|
||||
dtype=torch.int32,
|
||||
device=device)
|
||||
seq_start_loc = torch.zeros(seq_lens_tensor.shape[0] + 1,
|
||||
dtype=torch.int32,
|
||||
device=device)
|
||||
torch.cumsum(seq_lens_tensor,
|
||||
dim=0,
|
||||
dtype=seq_start_loc.dtype,
|
||||
out=seq_start_loc[1:])
|
||||
torch.cumsum(query_lens_tensor,
|
||||
dim=0,
|
||||
dtype=query_start_loc.dtype,
|
||||
out=query_start_loc[1:])
|
||||
|
||||
slot_mapping_tensor = torch.tensor(self.slot_mapping,
|
||||
dtype=torch.long,
|
||||
device=device)
|
||||
|
||||
return self._metadata_cls( # type: ignore
|
||||
num_prefills=self.num_prefills,
|
||||
slot_mapping=slot_mapping_tensor,
|
||||
num_prefill_tokens=self.num_prefill_tokens,
|
||||
num_decode_tokens=num_decode_tokens,
|
||||
seq_lens=seq_lens,
|
||||
seq_lens_tensor=seq_lens_tensor,
|
||||
max_query_len=max_query_len,
|
||||
max_prefill_seq_len=max_prefill_seq_len,
|
||||
max_decode_seq_len=max_decode_seq_len,
|
||||
query_start_loc=query_start_loc,
|
||||
seq_start_loc=seq_start_loc,
|
||||
context_lens_tensor=context_lens_tensor,
|
||||
block_tables=block_tables,
|
||||
use_cuda_graph=use_captured_graph,
|
||||
)
|
||||
|
||||
@ -11,6 +11,7 @@ from xformers.ops.fmha.attn_bias import (AttentionBias,
|
||||
|
||||
from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
|
||||
AttentionMetadata, AttentionType)
|
||||
from vllm.attention.backends.utils import CommonMetadataBuilder
|
||||
from vllm.attention.ops.paged_attn import (PagedAttention,
|
||||
PagedAttentionMetadata)
|
||||
from vllm.logger import init_logger
|
||||
@ -32,6 +33,10 @@ class XFormersBackend(AttentionBackend):
|
||||
def get_metadata_cls() -> Type["AttentionMetadata"]:
|
||||
return XFormersMetadata
|
||||
|
||||
@staticmethod
|
||||
def get_builder_cls() -> Type["XFormersMetadataBuilder"]:
|
||||
return XFormersMetadataBuilder
|
||||
|
||||
@staticmethod
|
||||
def get_kv_cache_shape(
|
||||
num_blocks: int,
|
||||
@ -362,6 +367,11 @@ def _get_seq_len_block_table_args(
|
||||
raise AttributeError(f"Invalid attention type {str(attn_type)}")
|
||||
|
||||
|
||||
class XFormersMetadataBuilder(CommonMetadataBuilder[XFormersMetadata]):
|
||||
|
||||
_metadata_cls = XFormersMetadata
|
||||
|
||||
|
||||
class XFormersImpl(AttentionImpl[XFormersMetadata]):
|
||||
"""
|
||||
If the input tensors contain prompt tokens, the layout is as follows:
|
||||
|
||||
@ -7,6 +7,7 @@ import torch
|
||||
import vllm.envs as envs
|
||||
from vllm.attention.backends.abstract import AttentionBackend
|
||||
from vllm.logger import init_logger
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.utils import is_cpu, is_hip, is_openvino, is_tpu, is_xpu
|
||||
|
||||
logger = init_logger(__name__)
|
||||
@ -136,7 +137,7 @@ def which_attn_to_use(
|
||||
selected_backend = (_Backend.ROCM_FLASH if selected_backend
|
||||
== _Backend.FLASH_ATTN else selected_backend)
|
||||
if selected_backend == _Backend.ROCM_FLASH:
|
||||
if torch.cuda.get_device_capability()[0] != 9:
|
||||
if current_platform.get_device_capability()[0] != 9:
|
||||
# not Instinct series GPUs.
|
||||
logger.info("flash_attn is not supported on NAVI GPUs.")
|
||||
else:
|
||||
@ -145,7 +146,7 @@ def which_attn_to_use(
|
||||
|
||||
# FlashAttn in NVIDIA GPUs.
|
||||
if selected_backend == _Backend.FLASH_ATTN:
|
||||
if torch.cuda.get_device_capability()[0] < 8:
|
||||
if current_platform.get_device_capability()[0] < 8:
|
||||
# Volta and Turing NVIDIA GPUs.
|
||||
logger.info(
|
||||
"Cannot use FlashAttention-2 backend for Volta and Turing "
|
||||
|
||||
@ -2,6 +2,7 @@ import dataclasses
|
||||
import gc
|
||||
import time
|
||||
import warnings
|
||||
import weakref
|
||||
from collections import defaultdict
|
||||
from typing import (TYPE_CHECKING, Any, Dict, List, Mapping, Optional, Set,
|
||||
Tuple, Type, TypeVar, Union)
|
||||
@ -48,9 +49,9 @@ from vllm.sampling_params import SamplingParams
|
||||
from vllm.sequence import (IntermediateTensors, SamplerOutput,
|
||||
SequenceGroupMetadata)
|
||||
from vllm.utils import (CudaMemoryProfiler, get_kv_cache_torch_dtype, is_hip,
|
||||
is_pin_memory_available, make_tensor_with_pad)
|
||||
is_pin_memory_available)
|
||||
from vllm.worker.model_runner_base import (
|
||||
ModelRunnerBase, ModelRunnerInputBase,
|
||||
ModelRunnerBase, ModelRunnerInputBase, ModelRunnerInputBuilderBase,
|
||||
_add_attn_metadata_broadcastable_dict,
|
||||
_add_sampling_metadata_broadcastable_dict,
|
||||
_init_attn_metadata_from_tensor_dict,
|
||||
@ -165,6 +166,298 @@ class ModelInputForGPUWithSamplingMetadata(ModelInputForGPU):
|
||||
return cls(**tensor_dict)
|
||||
|
||||
|
||||
class ModelInputForGPUBuilder(ModelRunnerInputBuilderBase[ModelInputForGPU]):
|
||||
"""TBA"""
|
||||
|
||||
def __init__(self,
|
||||
runner: "GPUModelRunnerBase",
|
||||
finished_requests_ids: Optional[List[str]] = None):
|
||||
super().__init__()
|
||||
self.runner = runner
|
||||
self.model_input_cls = self.runner._model_input_cls
|
||||
self.attn_backend = self.runner.attn_backend
|
||||
self.scheduler_config = self.runner.scheduler_config
|
||||
self.sliding_window = self.runner.sliding_window
|
||||
self.block_size = self.runner.block_size
|
||||
self.enable_lora = self.runner.lora_config is not None
|
||||
self.enable_prompt_adapter = (self.runner.prompt_adapter_config
|
||||
is not None)
|
||||
self.multi_modal_input_mapper = self.runner.multi_modal_input_mapper
|
||||
self.finished_requests_ids = finished_requests_ids
|
||||
self.decode_only = True
|
||||
|
||||
# Common inputs.
|
||||
self.input_tokens: List[int] = []
|
||||
self.input_positions: List[int] = []
|
||||
self.seq_lens: List[int] = []
|
||||
self.query_lens: List[int] = []
|
||||
self.max_decode_seq_len: int = 0
|
||||
self.request_ids_to_seq_ids: Dict[str, List[int]] = defaultdict(list)
|
||||
|
||||
# LoRA inputs.
|
||||
self.lora_index_mapping: List[int] = []
|
||||
self.lora_prompt_mapping: List[int] = []
|
||||
self.lora_requests: Set[LoRARequest] = set()
|
||||
|
||||
# Prompt adapter inputs.
|
||||
self.prompt_adapter_index_mapping: List[int] = []
|
||||
self.prompt_adapter_prompt_mapping: List[int] = []
|
||||
self.prompt_adapter_requests: Set[PromptAdapterRequest] = set()
|
||||
|
||||
# Multi-modal inputs.
|
||||
self.multi_modal_inputs_list: List[MultiModalInputs] = []
|
||||
|
||||
# Attention metadata inputs.
|
||||
self.attn_metadata_builder = self.attn_backend.make_metadata_builder(
|
||||
self)
|
||||
|
||||
# Engine/Model configurations.
|
||||
self.chunked_prefill_enabled = (
|
||||
self.scheduler_config is not None
|
||||
and self.scheduler_config.chunked_prefill_enabled)
|
||||
if self.sliding_window is not None:
|
||||
self.sliding_window_blocks = (
|
||||
self.sliding_window + self.block_size - 1) // self.block_size
|
||||
self.block_aligned_sliding_window = \
|
||||
self.sliding_window_blocks * self.block_size
|
||||
|
||||
def _compute_len_for_sliding_window(self, seq_len: int):
|
||||
curr_sliding_window_blocks = 0
|
||||
sliding_seq_len = seq_len
|
||||
|
||||
# TODO(sang): This is a hack to make sliding window work with
|
||||
# paged attn. We can remove it if we make paged attn kernel
|
||||
# to properly handle slinding window attn.
|
||||
if self.sliding_window is not None:
|
||||
curr_sliding_window_blocks = self.sliding_window_blocks
|
||||
if self.scheduler_config.use_v2_block_manager:
|
||||
# number of elements in last block
|
||||
suff_len = seq_len % self.block_size
|
||||
sliding_seq_len = min(
|
||||
seq_len, self.block_aligned_sliding_window + suff_len)
|
||||
if suff_len > 0:
|
||||
curr_sliding_window_blocks += 1
|
||||
else:
|
||||
sliding_seq_len = min(seq_len, self.sliding_window)
|
||||
return curr_sliding_window_blocks, sliding_seq_len
|
||||
|
||||
def add_seq_group(self, seq_group_metadata: SequenceGroupMetadata):
|
||||
seq_ids = list(seq_group_metadata.seq_data.keys())
|
||||
n_seqs = len(seq_ids)
|
||||
is_prompt = seq_group_metadata.is_prompt
|
||||
token_chunk_size = seq_group_metadata.token_chunk_size
|
||||
|
||||
if is_prompt:
|
||||
assert n_seqs == 1
|
||||
self.decode_only = False
|
||||
|
||||
# Mapping from request IDs to sequence IDs. Used for Jamba models
|
||||
# that manages the cache by itself.
|
||||
self.request_ids_to_seq_ids[seq_group_metadata.request_id] = []
|
||||
# The number of input tokens in each sequence.
|
||||
token_lens: List[int] = []
|
||||
# The number of tokens that are already computed.
|
||||
context_lens: List[int] = []
|
||||
# The current sliding window block for each sequence.
|
||||
curr_sliding_window_blocks: List[int] = []
|
||||
# The original sequence length (before applying sliding window)
|
||||
# for each sequence.
|
||||
orig_seq_lens: List[int] = []
|
||||
# The sequence length (may be capped to the sliding window).
|
||||
curr_seq_lens: List[int] = []
|
||||
for seq_id in seq_ids:
|
||||
seq_data = seq_group_metadata.seq_data[seq_id]
|
||||
self.request_ids_to_seq_ids[seq_group_metadata.request_id].append(
|
||||
seq_id)
|
||||
computed_block_nums = seq_group_metadata.computed_block_nums
|
||||
|
||||
# Check if hit prefix cache (i.e., some blocks are already computed)
|
||||
# Note that prefix caching does not support sliding window.
|
||||
prefix_cache_hit = (computed_block_nums is not None
|
||||
and len(computed_block_nums) > 0
|
||||
and self.sliding_window is None and is_prompt)
|
||||
if self.chunked_prefill_enabled and prefix_cache_hit:
|
||||
raise RuntimeError(
|
||||
"chunked prefill cannot be used with prefix caching now.")
|
||||
|
||||
# Compute context length (the number of tokens that are
|
||||
# already computed) and sequence length (total number of tokens).
|
||||
seq_len = seq_data.get_len()
|
||||
if is_prompt:
|
||||
context_len = seq_data.get_num_computed_tokens()
|
||||
else:
|
||||
# get_num_computed_tokens is incorrect for spec decoding.
|
||||
# So, we should have a special logic here.
|
||||
# TODO(sang): Fix it.
|
||||
context_len = seq_len - 1
|
||||
seq_len = min(seq_len, context_len + token_chunk_size)
|
||||
|
||||
# Compute tokens.
|
||||
if is_prompt:
|
||||
tokens = seq_data.get_token_ids()[context_len:seq_len]
|
||||
else:
|
||||
# Optimization. get_token_ids requires the entire copy of
|
||||
# tokens.
|
||||
tokens = [seq_data.get_last_token_id()]
|
||||
if prefix_cache_hit:
|
||||
assert computed_block_nums is not None
|
||||
context_len = len(computed_block_nums) * self.block_size
|
||||
tokens = tokens[context_len:]
|
||||
|
||||
# These are seq_len/context_len capped to the sliding window.
|
||||
# They are passed to decode kernel.
|
||||
# We still need original seq_len/context_len to compute slot
|
||||
# mapping (and input position) below.
|
||||
if is_prompt:
|
||||
curr_sliding_window_block = 0
|
||||
sliding_seq_len = seq_len
|
||||
query_len = seq_len - context_len
|
||||
else:
|
||||
curr_sliding_window_block, sliding_seq_len = (
|
||||
self._compute_len_for_sliding_window(seq_len))
|
||||
query_len = 1
|
||||
|
||||
self.seq_lens.append(sliding_seq_len)
|
||||
if not is_prompt:
|
||||
self.max_decode_seq_len = max(self.max_decode_seq_len,
|
||||
sliding_seq_len)
|
||||
self.query_lens.append(query_len)
|
||||
self.input_tokens.extend(tokens)
|
||||
self.input_positions.extend(list(range(context_len, seq_len)))
|
||||
|
||||
# Intermediate data of the current sequence group for
|
||||
# the attention metadata.
|
||||
token_lens.append(len(tokens))
|
||||
context_lens.append(context_len)
|
||||
curr_seq_lens.append(sliding_seq_len)
|
||||
curr_sliding_window_blocks.append(curr_sliding_window_block)
|
||||
orig_seq_lens.append(seq_len)
|
||||
|
||||
# Update attention metadata. Note that input builder attributes
|
||||
# (self.xxx) include all added sequences, so we need to slice
|
||||
# the last n_seqs sequences.
|
||||
self.attn_metadata_builder.add_seq_group(
|
||||
seq_group_metadata, token_lens, orig_seq_lens, curr_seq_lens,
|
||||
self.query_lens[-n_seqs:], context_lens,
|
||||
curr_sliding_window_blocks, prefix_cache_hit,
|
||||
self.chunked_prefill_enabled)
|
||||
|
||||
# LoRA data.
|
||||
if self.enable_lora:
|
||||
lora_id = seq_group_metadata.lora_int_id
|
||||
for query_len in self.query_lens[-n_seqs:]:
|
||||
if lora_id > 0:
|
||||
self.lora_requests.add(seq_group_metadata.lora_request)
|
||||
self.lora_index_mapping += [lora_id] * query_len
|
||||
self.lora_prompt_mapping.extend(
|
||||
[lora_id] *
|
||||
(query_len if seq_group_metadata.sampling_params
|
||||
and seq_group_metadata.sampling_params.prompt_logprobs
|
||||
is not None else 1))
|
||||
|
||||
# Prompt adapter data. Note that when is_prompt=True,
|
||||
# we expect only one sequence in the group.
|
||||
if self.enable_prompt_adapter:
|
||||
prompt_adapter_id = seq_group_metadata.prompt_adapter_id
|
||||
if prompt_adapter_id > 0 and is_prompt:
|
||||
query_len = self.query_lens[-1]
|
||||
self.prompt_adapter_requests.add(
|
||||
seq_group_metadata.prompt_adapter_request)
|
||||
|
||||
num_tokens = seq_group_metadata.\
|
||||
prompt_adapter_num_virtual_tokens
|
||||
pm = [prompt_adapter_id
|
||||
] * num_tokens + [0] * (query_len - num_tokens)
|
||||
self.prompt_adapter_index_mapping += pm
|
||||
self.prompt_adapter_prompt_mapping.extend(
|
||||
[prompt_adapter_id] *
|
||||
(query_len if seq_group_metadata.sampling_params
|
||||
and seq_group_metadata.sampling_params.prompt_logprobs
|
||||
else 1))
|
||||
|
||||
# Multi-modal data.
|
||||
mm_data = seq_group_metadata.multi_modal_data
|
||||
if mm_data:
|
||||
mm_kwargs = self.multi_modal_input_mapper(mm_data)
|
||||
self.multi_modal_inputs_list.append(mm_kwargs)
|
||||
|
||||
def build(self) -> ModelInputForGPU:
|
||||
if not self.input_tokens:
|
||||
return self.model_input_cls()
|
||||
|
||||
batch_size = len(self.input_tokens)
|
||||
use_captured_graph = (
|
||||
self.decode_only and not self.runner.model_config.enforce_eager
|
||||
and batch_size <= _BATCH_SIZES_TO_CAPTURE[-1]
|
||||
and self.max_decode_seq_len <= self.runner.max_seq_len_to_capture)
|
||||
|
||||
# If cuda graph can be used, pad tensors accordingly.
|
||||
# See `capture_model` API for more details.
|
||||
# vLLM uses cuda graph only for decoding requests.
|
||||
cuda_graph_pad_size = -1
|
||||
if use_captured_graph:
|
||||
graph_batch_size = _get_graph_batch_size(batch_size)
|
||||
assert graph_batch_size >= batch_size
|
||||
cuda_graph_pad_size = graph_batch_size - batch_size
|
||||
batch_size = graph_batch_size
|
||||
|
||||
# Tokens and positions.
|
||||
self.input_tokens.extend([0] * cuda_graph_pad_size)
|
||||
self.input_positions.extend([0] * cuda_graph_pad_size)
|
||||
input_tokens_tensor = torch.tensor(self.input_tokens,
|
||||
dtype=torch.long,
|
||||
device=self.runner.device)
|
||||
input_positions_tensor = torch.tensor(self.input_positions,
|
||||
dtype=torch.long,
|
||||
device=self.runner.device)
|
||||
|
||||
# Sequence and query lengths.
|
||||
self.seq_lens.extend([1] * cuda_graph_pad_size)
|
||||
|
||||
# Attention metadata.
|
||||
attn_metadata = self.attn_metadata_builder.build(
|
||||
self.runner, self.seq_lens, self.query_lens, cuda_graph_pad_size,
|
||||
batch_size)
|
||||
|
||||
# LoRA data.
|
||||
if self.enable_lora:
|
||||
self.lora_index_mapping.extend([0] * cuda_graph_pad_size)
|
||||
lora_mapping = LoRAMapping(
|
||||
self.lora_index_mapping,
|
||||
self.lora_prompt_mapping,
|
||||
)
|
||||
else:
|
||||
lora_mapping = None
|
||||
|
||||
# Prompt adapter data.
|
||||
if self.enable_prompt_adapter:
|
||||
self.prompt_adapter_index_mapping.extend([0] * cuda_graph_pad_size)
|
||||
prompt_adapter_mapping = PromptAdapterMapping(
|
||||
self.prompt_adapter_index_mapping,
|
||||
self.prompt_adapter_prompt_mapping,
|
||||
)
|
||||
else:
|
||||
prompt_adapter_mapping = None
|
||||
|
||||
# Multi-modal data.
|
||||
multi_modal_kwargs = MultiModalInputs.batch(
|
||||
self.multi_modal_inputs_list, device=self.runner.device)
|
||||
|
||||
return self.model_input_cls(
|
||||
input_tokens=input_tokens_tensor,
|
||||
input_positions=input_positions_tensor,
|
||||
attn_metadata=attn_metadata,
|
||||
seq_lens=self.seq_lens,
|
||||
query_lens=self.query_lens,
|
||||
lora_mapping=lora_mapping,
|
||||
lora_requests=self.lora_requests,
|
||||
multi_modal_kwargs=multi_modal_kwargs,
|
||||
request_ids_to_seq_ids=self.request_ids_to_seq_ids,
|
||||
finished_requests_ids=self.finished_requests_ids,
|
||||
prompt_adapter_mapping=prompt_adapter_mapping,
|
||||
prompt_adapter_requests=self.prompt_adapter_requests)
|
||||
|
||||
|
||||
class GPUModelRunnerBase(ModelRunnerBase[TModelInputForGPU]):
|
||||
"""
|
||||
Helper class for shared methods between GPU model runners.
|
||||
@ -368,464 +661,11 @@ class GPUModelRunnerBase(ModelRunnerBase[TModelInputForGPU]):
|
||||
|
||||
If cuda graph is required, this API automatically pads inputs.
|
||||
"""
|
||||
input_tokens: List[int] = []
|
||||
input_positions: List[int] = []
|
||||
slot_mapping: List[int] = []
|
||||
lora_index_mapping: List[int] = []
|
||||
lora_prompt_mapping: List[int] = []
|
||||
lora_requests: Set[LoRARequest] = set()
|
||||
prompt_adapter_index_mapping: List[int] = []
|
||||
prompt_adapter_prompt_mapping: List[int] = []
|
||||
prompt_adapter_requests: Set[PromptAdapterRequest] = set()
|
||||
|
||||
seq_lens: List[int] = []
|
||||
prefill_seq_lens: List[int] = []
|
||||
decode_seq_lens: List[int] = []
|
||||
context_lens: List[int] = []
|
||||
query_lens: List[int] = []
|
||||
block_tables: List[List[int]] = []
|
||||
multi_modal_inputs_list: List[MultiModalInputs] = []
|
||||
request_ids_to_seq_ids: Dict[str, List[int]] = defaultdict(list)
|
||||
decode_only = True
|
||||
num_prefills = 0
|
||||
num_prefill_tokens = 0
|
||||
num_decode_tokens = 0
|
||||
|
||||
# The following fields are only for flashinfer
|
||||
# Please follow https://docs.flashinfer.ai/tutorials/kv_layout.html#page-layout
|
||||
# for the precise definition of the following fields.
|
||||
# An example:
|
||||
# request 1, page indices [0, 5, 8]
|
||||
# request 2, page indices [1, 6, 7]
|
||||
# request 3, page indices [3, 4]
|
||||
# paged_kv_indices is a concatenation of page indices of all requests:
|
||||
# [0, 5, 8, 1, 6, 7, 3, 4]
|
||||
# paged_kv_indptr is used to index into paged_kv_indices:
|
||||
# [0, 3, 6, 8]
|
||||
paged_kv_indices: List[int] = []
|
||||
# 0 at the beginning of paged_kv_indptr indicates the start of the
|
||||
# first request’s page indices in the paged_kv_indices list.
|
||||
paged_kv_indptr: List[int] = [0]
|
||||
# paged_kv_last_page_len is the length of the last page of each request
|
||||
paged_kv_last_page_len: List[int] = []
|
||||
|
||||
if len(seq_group_metadata_list) == 0:
|
||||
return self._model_input_cls()
|
||||
|
||||
if self.sliding_window is not None:
|
||||
sliding_window_blocks = (self.sliding_window + self.block_size -
|
||||
1) // self.block_size
|
||||
block_aligned_sliding_window = \
|
||||
sliding_window_blocks * self.block_size
|
||||
|
||||
builder = ModelInputForGPUBuilder(weakref.proxy(self),
|
||||
finished_requests_ids)
|
||||
for seq_group_metadata in seq_group_metadata_list:
|
||||
seq_ids = list(seq_group_metadata.seq_data.keys())
|
||||
is_prompt = seq_group_metadata.is_prompt
|
||||
|
||||
for seq_id in seq_ids:
|
||||
computed_block_nums = seq_group_metadata.computed_block_nums
|
||||
if (self.scheduler_config is not None
|
||||
and self.scheduler_config.chunked_prefill_enabled
|
||||
and not (computed_block_nums is None
|
||||
or computed_block_nums == [])):
|
||||
raise RuntimeError(
|
||||
"chunked prefill cannot be used with prefix caching "
|
||||
"now.")
|
||||
|
||||
seq_data = seq_group_metadata.seq_data[seq_id]
|
||||
if is_prompt:
|
||||
context_len = seq_data.get_num_computed_tokens()
|
||||
else:
|
||||
# get_num_computed_tokens is incorrect for spec decoding.
|
||||
# So, we should have a special logic here.
|
||||
# TODO(sang): Fix it.
|
||||
context_len = seq_data.get_len() - 1
|
||||
|
||||
seq_len = min(
|
||||
seq_data.get_len(),
|
||||
context_len + seq_group_metadata.token_chunk_size)
|
||||
if is_prompt:
|
||||
tokens = seq_data.get_token_ids()[context_len:seq_len]
|
||||
else:
|
||||
# Optimization. get_token_ids requires the entire copy of
|
||||
# tokens.
|
||||
tokens = [seq_data.get_last_token_id()]
|
||||
|
||||
# Prefix cache was hit.
|
||||
# Prefix is not supported with sliding_window
|
||||
prefix_cache_hit = (computed_block_nums is not None
|
||||
and len(computed_block_nums) > 0
|
||||
and self.sliding_window is None
|
||||
and is_prompt)
|
||||
|
||||
# These are seq_len/context_len capped to the sliding window.
|
||||
# They are passed to decode kernel.
|
||||
# We still need original seq_len/context_len to compute slot
|
||||
# mapping (and input position) below.
|
||||
curr_sliding_window_blocks = None
|
||||
sliding_seq_len = seq_len
|
||||
sliding_context_len = context_len
|
||||
|
||||
# TODO(sang): This is a hack to make sliding window work with
|
||||
# paged attn. We can remove it if we make paged attn kernel
|
||||
# to properly handle slinding window attn.
|
||||
if (self.sliding_window is not None and not is_prompt):
|
||||
curr_sliding_window_blocks = sliding_window_blocks
|
||||
if self.scheduler_config.use_v2_block_manager:
|
||||
# number of elements in last block
|
||||
suff_len = seq_len % self.block_size
|
||||
sliding_seq_len = min(
|
||||
seq_len, block_aligned_sliding_window + suff_len)
|
||||
if suff_len > 0:
|
||||
curr_sliding_window_blocks += 1
|
||||
else:
|
||||
sliding_seq_len = min(seq_len, self.sliding_window)
|
||||
sliding_context_len = sliding_seq_len - 1
|
||||
|
||||
# TODO(sang): Combine chunked prefill and prefix caching by
|
||||
# only allowing multiple of block_size chunk size.
|
||||
# NOTE: This only works for oooooooxxx style attention.
|
||||
if prefix_cache_hit:
|
||||
assert computed_block_nums is not None
|
||||
context_len = len(computed_block_nums) * self.block_size
|
||||
tokens = tokens[context_len:]
|
||||
|
||||
# need to think what to set it to when we have both sliding
|
||||
# window and prefix caching...
|
||||
assert self.sliding_window is None, \
|
||||
"Prefix caching is not supported with sliding window"
|
||||
sliding_context_len = context_len
|
||||
|
||||
if self.attn_backend.get_name() == "flash-attn":
|
||||
# NOTE(woosuk): For flash-attn, the block table should
|
||||
# include the entries for the incoming prefill tokens.
|
||||
# TODO(woosuk): This is a temporary fix. We should
|
||||
# provide a unified interface for different backends.
|
||||
block_table = seq_group_metadata.block_tables[seq_id]
|
||||
else:
|
||||
block_table = computed_block_nums
|
||||
elif (self.scheduler_config.chunked_prefill_enabled
|
||||
or not is_prompt):
|
||||
if seq_group_metadata.block_tables is not None:
|
||||
# chunked prefill or decode
|
||||
block_table = seq_group_metadata.block_tables[seq_id]
|
||||
if curr_sliding_window_blocks is not None:
|
||||
block_table = block_table[
|
||||
-curr_sliding_window_blocks:]
|
||||
else:
|
||||
# Only happens when memory profiling runs.
|
||||
block_table = []
|
||||
else:
|
||||
# Prefill without chunked prefill or memory profiling.
|
||||
block_table = []
|
||||
block_tables.append(block_table)
|
||||
|
||||
seq_lens.append(sliding_seq_len)
|
||||
context_lens.append(sliding_context_len)
|
||||
query_len = sliding_seq_len - sliding_context_len
|
||||
query_lens.append(query_len)
|
||||
input_tokens.extend(tokens)
|
||||
input_positions.extend(list(range(context_len, seq_len)))
|
||||
lora_id = seq_group_metadata.lora_int_id
|
||||
prompt_adapter_id = seq_group_metadata.prompt_adapter_id
|
||||
|
||||
if is_prompt:
|
||||
assert len(seq_ids) == 1
|
||||
num_prefills += 1
|
||||
num_prefill_tokens += len(tokens)
|
||||
decode_only = False
|
||||
prefill_seq_lens.append(seq_len)
|
||||
else:
|
||||
assert query_len == 1, (
|
||||
"seq_len: {}, context_len: {}, query_len: {}".format(
|
||||
seq_len, context_len, query_len))
|
||||
num_decode_tokens += query_len
|
||||
decode_seq_lens.append(sliding_seq_len)
|
||||
|
||||
if lora_id > 0:
|
||||
lora_requests.add(seq_group_metadata.lora_request)
|
||||
|
||||
lora_index_mapping += [lora_id] * query_len
|
||||
lora_prompt_mapping.extend(
|
||||
[lora_id] *
|
||||
(query_len if seq_group_metadata.sampling_params
|
||||
and seq_group_metadata.sampling_params.prompt_logprobs
|
||||
is not None else 1))
|
||||
|
||||
mm_data = seq_group_metadata.multi_modal_data
|
||||
if mm_data:
|
||||
# Process multi-modal data
|
||||
mm_kwargs = self.multi_modal_input_mapper(mm_data)
|
||||
multi_modal_inputs_list.append(mm_kwargs)
|
||||
|
||||
if prompt_adapter_id > 0 and is_prompt:
|
||||
prompt_adapter_requests.add(
|
||||
seq_group_metadata.prompt_adapter_request)
|
||||
|
||||
num_tokens = seq_group_metadata.\
|
||||
prompt_adapter_num_virtual_tokens
|
||||
pm = [prompt_adapter_id
|
||||
] * num_tokens + [0] * (query_len - num_tokens)
|
||||
prompt_adapter_index_mapping += pm
|
||||
prompt_adapter_prompt_mapping.extend(
|
||||
[prompt_adapter_id] *
|
||||
(query_len if seq_group_metadata.sampling_params
|
||||
and seq_group_metadata.sampling_params.prompt_logprobs
|
||||
else 1))
|
||||
|
||||
is_profile_run = _is_block_tables_empty(
|
||||
seq_group_metadata.block_tables)
|
||||
if is_profile_run:
|
||||
# During memory profiling, the block tables are not
|
||||
# initialized yet. In this case, we just use a dummy
|
||||
# slot mapping.
|
||||
# In embeddings, the block tables are {seq_id: None}.
|
||||
slot_mapping.extend([_PAD_SLOT_ID] * seq_len)
|
||||
continue
|
||||
|
||||
# Compute the slot mapping.
|
||||
block_table = seq_group_metadata.block_tables[seq_id]
|
||||
|
||||
# Mask the [0, start_idx) tokens of the prompt with
|
||||
# _PAD_SLOT_ID, where start_idx is max(0, seq_len -
|
||||
# sliding_window). For example, if the prompt len is 10,
|
||||
# sliding window is 8, and block size is 4, the first two
|
||||
# tokens are masked and the slot mapping will be
|
||||
# [-1, -1, 2, 3, 4, 5, 6, 7, 0, 1].
|
||||
start_idx = 0
|
||||
if self.sliding_window is not None:
|
||||
if is_prompt:
|
||||
assert self.scheduler_config.use_v2_block_manager \
|
||||
or context_len == 0, (
|
||||
"Prefix caching is currently not supported with "
|
||||
"sliding window attention in V1 block manager")
|
||||
# It is an optimization. When it is decoding, it is always
|
||||
# 0. When prefill, we use it to not write slots to kv cache
|
||||
# to save memory.
|
||||
start_idx = max(0, query_len - self.sliding_window)
|
||||
|
||||
for i in range(context_len, seq_len):
|
||||
if i < start_idx:
|
||||
slot_mapping.append(_PAD_SLOT_ID)
|
||||
continue
|
||||
|
||||
block_number = block_table[i // self.block_size]
|
||||
block_offset = i % self.block_size
|
||||
slot = block_number * self.block_size + block_offset
|
||||
slot_mapping.append(slot)
|
||||
|
||||
# Prepare input tensors for flashinfer
|
||||
if self.attn_backend.get_name() == "flashinfer":
|
||||
seq_len = seq_data.get_len()
|
||||
# Get the number of valid blocks based on sequence length.
|
||||
# If seq_len = 16, block_size = 16,
|
||||
# block_table_bound is 1 with 1 valid block.
|
||||
# If seq_len = 15, block_size = 16,
|
||||
# block_table_bound is 0 + 1 with 1 valid block.
|
||||
block_table_bound = seq_len // self.block_size + 1 \
|
||||
if seq_len % self.block_size != 0 \
|
||||
else seq_len // self.block_size
|
||||
|
||||
paged_kv_indices.extend(block_table[:block_table_bound])
|
||||
paged_kv_indptr.append(paged_kv_indptr[-1] +
|
||||
block_table_bound)
|
||||
|
||||
last_page_len = seq_len % self.block_size
|
||||
if last_page_len == 0:
|
||||
last_page_len = self.block_size
|
||||
paged_kv_last_page_len.append(last_page_len)
|
||||
|
||||
batch_size = len(input_tokens)
|
||||
max_query_len = max(query_lens)
|
||||
max_prefill_seq_len = max(prefill_seq_lens, default=0)
|
||||
max_decode_seq_len = max(decode_seq_lens, default=0)
|
||||
|
||||
# If cuda graph can be used, pad tensors accordingly.
|
||||
# See `capture_model` API for more details.
|
||||
# vLLM uses cuda graph only for decoding requests.
|
||||
use_captured_graph = (
|
||||
decode_only and not self.model_config.enforce_eager
|
||||
and batch_size <= _BATCH_SIZES_TO_CAPTURE[-1]
|
||||
and max_decode_seq_len <= self.max_seq_len_to_capture)
|
||||
if use_captured_graph:
|
||||
graph_batch_size = _get_graph_batch_size(batch_size)
|
||||
assert graph_batch_size >= batch_size
|
||||
for _ in range(graph_batch_size - batch_size):
|
||||
input_tokens.append(0)
|
||||
input_positions.append(0)
|
||||
slot_mapping.append(_PAD_SLOT_ID)
|
||||
seq_lens.append(1)
|
||||
block_tables.append([])
|
||||
lora_index_mapping.append(0)
|
||||
prompt_adapter_index_mapping.append(0)
|
||||
if self.attn_backend.get_name() == "flashinfer":
|
||||
last_paged_kv_indptr = paged_kv_indptr[-1]
|
||||
paged_kv_indptr.append(last_paged_kv_indptr)
|
||||
paged_kv_last_page_len.append(0)
|
||||
batch_size = graph_batch_size
|
||||
num_decode_tokens = batch_size
|
||||
|
||||
if use_captured_graph:
|
||||
# The shape of graph_block_tables is
|
||||
# [max batch size, max context len // block size].
|
||||
input_block_tables = self.graph_block_tables[:batch_size]
|
||||
for i, block_table in enumerate(block_tables):
|
||||
if block_table:
|
||||
input_block_tables[i, :len(block_table)] = block_table
|
||||
block_tables = torch.tensor(input_block_tables, device=self.device)
|
||||
else:
|
||||
max_block_table_len = max(
|
||||
len(block_table) for block_table in block_tables)
|
||||
block_tables = make_tensor_with_pad(
|
||||
block_tables,
|
||||
max_len=max_block_table_len,
|
||||
pad=0,
|
||||
dtype=torch.int,
|
||||
device=self.device,
|
||||
)
|
||||
assert max_query_len > 0, ("query_lens: {}".format(query_lens))
|
||||
|
||||
context_lens_tensor = torch.tensor(context_lens,
|
||||
dtype=torch.int,
|
||||
device=self.device)
|
||||
|
||||
seq_lens_tensor = torch.tensor(seq_lens,
|
||||
dtype=torch.int,
|
||||
device=self.device)
|
||||
query_lens_tensor = torch.tensor(query_lens,
|
||||
dtype=torch.long,
|
||||
device=self.device)
|
||||
query_start_loc = torch.zeros(query_lens_tensor.shape[0] + 1,
|
||||
dtype=torch.int32,
|
||||
device=self.device)
|
||||
seq_start_loc = torch.zeros(seq_lens_tensor.shape[0] + 1,
|
||||
dtype=torch.int32,
|
||||
device=self.device)
|
||||
|
||||
torch.cumsum(seq_lens_tensor,
|
||||
dim=0,
|
||||
dtype=seq_start_loc.dtype,
|
||||
out=seq_start_loc[1:])
|
||||
torch.cumsum(query_lens_tensor,
|
||||
dim=0,
|
||||
dtype=query_start_loc.dtype,
|
||||
out=query_start_loc[1:])
|
||||
|
||||
input_tokens_tensor = torch.tensor(input_tokens,
|
||||
dtype=torch.long,
|
||||
device=self.device)
|
||||
input_positions_tensor = torch.tensor(input_positions,
|
||||
dtype=torch.long,
|
||||
device=self.device)
|
||||
slot_mapping_tensor = torch.tensor(slot_mapping,
|
||||
dtype=torch.long,
|
||||
device=self.device)
|
||||
|
||||
logits_soft_cap = getattr(self.model_config.hf_config,
|
||||
'attn_logit_softcapping', None)
|
||||
if logits_soft_cap is not None and self.attn_backend.get_name(
|
||||
) != "flashinfer":
|
||||
raise ValueError("Please use Flashinfer backend for models with"
|
||||
"logits_soft_cap (i.e., Gemma-2)."
|
||||
" Otherwise, the output might be wrong."
|
||||
" Set Flashinfer backend by "
|
||||
"export VLLM_ATTENTION_BACKEND=FLASHINFER.")
|
||||
|
||||
if self.attn_backend.get_name() == "flashinfer":
|
||||
if len(paged_kv_indptr) > 0:
|
||||
paged_kv_indices_tensor = torch.tensor(paged_kv_indices,
|
||||
device='cpu',
|
||||
dtype=torch.int)
|
||||
paged_kv_indptr_tensor = torch.tensor(paged_kv_indptr,
|
||||
device='cpu',
|
||||
dtype=torch.int)
|
||||
paged_kv_last_page_len_tensor = torch.tensor(
|
||||
paged_kv_last_page_len, device='cpu', dtype=torch.int)
|
||||
else:
|
||||
paged_kv_indices_tensor = None
|
||||
paged_kv_indptr_tensor = None
|
||||
paged_kv_last_page_len_tensor = None
|
||||
|
||||
kv_cache_dtype = get_kv_cache_torch_dtype(self.kv_cache_dtype,
|
||||
self.model_config.dtype)
|
||||
attn_metadata = self.attn_backend.make_metadata(
|
||||
num_prefills=num_prefills,
|
||||
slot_mapping=slot_mapping_tensor,
|
||||
num_prefill_tokens=num_prefill_tokens,
|
||||
num_decode_tokens=num_decode_tokens,
|
||||
max_prefill_seq_len=max_prefill_seq_len,
|
||||
block_tables=block_tables,
|
||||
paged_kv_indptr=paged_kv_indptr_tensor,
|
||||
paged_kv_indices=paged_kv_indices_tensor,
|
||||
paged_kv_last_page_len=paged_kv_last_page_len_tensor,
|
||||
num_qo_heads=self.model_config.get_num_attention_heads(
|
||||
self.parallel_config),
|
||||
num_kv_heads=self.model_config.get_num_kv_heads(
|
||||
self.parallel_config),
|
||||
head_dim=self.model_config.get_head_size(),
|
||||
page_size=self.block_size,
|
||||
seq_start_loc=seq_start_loc,
|
||||
query_start_loc=query_start_loc,
|
||||
device=self.device,
|
||||
data_type=kv_cache_dtype,
|
||||
use_cuda_graph=use_captured_graph,
|
||||
logits_soft_cap=logits_soft_cap)
|
||||
|
||||
else:
|
||||
attn_metadata = self.attn_backend.make_metadata(
|
||||
num_prefills=num_prefills,
|
||||
slot_mapping=slot_mapping_tensor,
|
||||
num_prefill_tokens=num_prefill_tokens,
|
||||
num_decode_tokens=num_decode_tokens,
|
||||
seq_lens=seq_lens,
|
||||
seq_lens_tensor=seq_lens_tensor,
|
||||
max_query_len=max_query_len,
|
||||
max_prefill_seq_len=max_prefill_seq_len,
|
||||
max_decode_seq_len=max_decode_seq_len,
|
||||
query_start_loc=query_start_loc,
|
||||
seq_start_loc=seq_start_loc,
|
||||
context_lens_tensor=context_lens_tensor,
|
||||
block_tables=block_tables,
|
||||
use_cuda_graph=use_captured_graph,
|
||||
)
|
||||
|
||||
if self.lora_config:
|
||||
lora_mapping = LoRAMapping(
|
||||
lora_index_mapping,
|
||||
lora_prompt_mapping,
|
||||
)
|
||||
else:
|
||||
lora_mapping = None
|
||||
|
||||
if self.prompt_adapter_config:
|
||||
prompt_adapter_mapping = PromptAdapterMapping(
|
||||
prompt_adapter_index_mapping,
|
||||
prompt_adapter_prompt_mapping,
|
||||
)
|
||||
else:
|
||||
prompt_adapter_mapping = None
|
||||
|
||||
multi_modal_kwargs = MultiModalInputs.batch(multi_modal_inputs_list,
|
||||
device=self.device)
|
||||
request_ids_to_seq_ids = {
|
||||
seq_group_metadata.request_id:
|
||||
list(seq_group_metadata.seq_data.keys())
|
||||
for seq_group_metadata in seq_group_metadata_list
|
||||
}
|
||||
return self._model_input_cls(
|
||||
input_tokens=input_tokens_tensor,
|
||||
input_positions=input_positions_tensor,
|
||||
attn_metadata=attn_metadata,
|
||||
seq_lens=seq_lens,
|
||||
query_lens=query_lens,
|
||||
lora_mapping=lora_mapping,
|
||||
lora_requests=lora_requests,
|
||||
multi_modal_kwargs=multi_modal_kwargs,
|
||||
request_ids_to_seq_ids=request_ids_to_seq_ids,
|
||||
finished_requests_ids=finished_requests_ids,
|
||||
prompt_adapter_mapping=prompt_adapter_mapping,
|
||||
prompt_adapter_requests=prompt_adapter_requests,
|
||||
)
|
||||
builder.add_seq_group(seq_group_metadata)
|
||||
return builder.build() # type: ignore
|
||||
|
||||
@torch.inference_mode()
|
||||
def profile_run(self) -> None:
|
||||
|
||||
@ -113,6 +113,21 @@ class ModelRunnerInputBase(ABC):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class ModelRunnerInputBuilderBase(ABC, Generic[T]):
|
||||
"""A builder to create ModelRunnerInputBase objects.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def add_seq_group(self, seq_group_metadata):
|
||||
"""TBA"""
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def build(self, *args, **kwargs) -> T:
|
||||
"""Build metadata with on-device tensors."""
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class ModelRunnerBase(ABC, Generic[T]):
|
||||
"""
|
||||
Model runner interface that abstracts a particular hardware and/or type of
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user