From 2fc24e94f964368491a994641fb2921ed74cb4d4 Mon Sep 17 00:00:00 2001 From: Woosuk Kwon Date: Wed, 17 Sep 2025 19:40:44 -0700 Subject: [PATCH] [V0 Deprecation] Remove V0 Tracing & Metrics tests (#25115) Signed-off-by: Woosuk Kwon --- .buildkite/test-pipeline.yaml | 4 +- tests/metrics/test_metrics.py | 268 ---------------------- tests/tracing/__init__.py | 0 tests/tracing/test_tracing.py | 237 ------------------- tests/{metrics => v1/tracing}/__init__.py | 0 5 files changed, 1 insertion(+), 508 deletions(-) delete mode 100644 tests/metrics/test_metrics.py delete mode 100644 tests/tracing/__init__.py delete mode 100644 tests/tracing/test_tracing.py rename tests/{metrics => v1/tracing}/__init__.py (100%) diff --git a/.buildkite/test-pipeline.yaml b/.buildkite/test-pipeline.yaml index 08c10180fc224..0bce02b90a7cd 100644 --- a/.buildkite/test-pipeline.yaml +++ b/.buildkite/test-pipeline.yaml @@ -217,16 +217,14 @@ steps: num_gpus: 2 source_file_dependencies: - vllm/ - - tests/metrics - tests/v1/tracing commands: - - pytest -v -s metrics - "pip install \ 'opentelemetry-sdk>=1.26.0' \ 'opentelemetry-api>=1.26.0' \ 'opentelemetry-exporter-otlp>=1.26.0' \ 'opentelemetry-semantic-conventions-ai>=0.4.1'" - - pytest -v -s tracing + - pytest -v -s v1/tracing ##### fast check tests ##### ##### 1 GPU test ##### diff --git a/tests/metrics/test_metrics.py b/tests/metrics/test_metrics.py deleted file mode 100644 index dbd9c518e0200..0000000000000 --- a/tests/metrics/test_metrics.py +++ /dev/null @@ -1,268 +0,0 @@ -# SPDX-License-Identifier: Apache-2.0 -# SPDX-FileCopyrightText: Copyright contributors to the vLLM project - -import pytest -import ray -from prometheus_client import REGISTRY - -import vllm.envs as envs -from vllm import EngineArgs, LLMEngine -from vllm.engine.arg_utils import AsyncEngineArgs -from vllm.engine.async_llm_engine import AsyncLLMEngine -from vllm.engine.metrics import RayPrometheusStatLogger -from vllm.sampling_params import SamplingParams -from vllm.test_utils import MODEL_WEIGHTS_S3_BUCKET - - -@pytest.fixture(scope="function", autouse=True) -def use_v0_only(monkeypatch): - """ - This module tests V0 internals, so set VLLM_USE_V1=0. - """ - monkeypatch.setenv('VLLM_USE_V1', '0') - - -MODELS = [ - "distilbert/distilgpt2", -] - - -@pytest.mark.parametrize("model", MODELS) -@pytest.mark.parametrize("dtype", ["float"]) -@pytest.mark.parametrize("max_tokens", [128]) -def test_metric_counter_prompt_tokens( - vllm_runner, - example_prompts, - model: str, - dtype: str, - max_tokens: int, -) -> None: - with vllm_runner(model, - dtype=dtype, - disable_log_stats=False, - gpu_memory_utilization=0.4) as vllm_model: - tokenizer = vllm_model.llm.get_tokenizer() - prompt_token_counts = [ - len(tokenizer.encode(p)) for p in example_prompts - ] - # This test needs at least 2 prompts in a batch of different lengths to - # verify their token count is correct despite padding. - assert len(example_prompts) > 1, "at least 2 prompts are required" - assert prompt_token_counts[0] != prompt_token_counts[1], ( - "prompts of different lengths are required") - vllm_prompt_token_count = sum(prompt_token_counts) - - _ = vllm_model.generate_greedy(example_prompts, max_tokens) - stat_logger = vllm_model.llm.llm_engine.stat_loggers['prometheus'] - metric_count = stat_logger.metrics.counter_prompt_tokens.labels( - **stat_logger.labels)._value.get() - - assert vllm_prompt_token_count == metric_count, ( - f"prompt token count: {vllm_prompt_token_count!r}\n" - f"metric: {metric_count!r}") - - -@pytest.mark.parametrize("model", MODELS) -@pytest.mark.parametrize("dtype", ["float"]) -@pytest.mark.parametrize("max_tokens", [128]) -def test_metric_counter_generation_tokens( - vllm_runner, - example_prompts, - model: str, - dtype: str, - max_tokens: int, -) -> None: - with vllm_runner(model, - dtype=dtype, - disable_log_stats=False, - gpu_memory_utilization=0.4) as vllm_model: - vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens) - tokenizer = vllm_model.llm.get_tokenizer() - stat_logger = vllm_model.llm.llm_engine.stat_loggers['prometheus'] - metric_count = stat_logger.metrics.counter_generation_tokens.labels( - **stat_logger.labels)._value.get() - vllm_generation_count = 0 - for i in range(len(example_prompts)): - vllm_output_ids, vllm_output_str = vllm_outputs[i] - prompt_ids = tokenizer.encode(example_prompts[i]) - # vllm_output_ids contains both prompt tokens and generation tokens. - # We're interested only in the count of the generation tokens. - vllm_generation_count += len(vllm_output_ids) - len(prompt_ids) - - assert vllm_generation_count == metric_count, ( - f"generation token count: {vllm_generation_count!r}\n" - f"metric: {metric_count!r}") - - -@pytest.mark.parametrize("model", MODELS) -@pytest.mark.parametrize("dtype", ["float"]) -@pytest.mark.parametrize( - "served_model_name", - [None, [], ["ModelName0"], ["ModelName0", "ModelName1", "ModelName2"]]) -def test_metric_set_tag_model_name(vllm_runner, model: str, dtype: str, - served_model_name: list[str]) -> None: - with vllm_runner(model, - dtype=dtype, - disable_log_stats=False, - gpu_memory_utilization=0.3, - served_model_name=served_model_name) as vllm_model: - stat_logger = vllm_model.llm.llm_engine.stat_loggers['prometheus'] - metrics_tag_content = stat_logger.labels["model_name"] - - if envs.VLLM_CI_USE_S3: - model = f"{MODEL_WEIGHTS_S3_BUCKET}/{model}" - if served_model_name is None or served_model_name == []: - assert metrics_tag_content == model, ( - f"Metrics tag model_name is wrong! expect: {model!r}\n" - f"actual: {metrics_tag_content!r}") - else: - assert metrics_tag_content == served_model_name[0], ( - f"Metrics tag model_name is wrong! expect: " - f"{served_model_name[0]!r}\n" - f"actual: {metrics_tag_content!r}") - - -@pytest.mark.parametrize("model", MODELS) -@pytest.mark.parametrize("dtype", ["half"]) -@pytest.mark.parametrize("max_tokens", [4]) -@pytest.mark.parametrize("disable_log_stats", [True, False]) -@pytest.mark.asyncio -async def test_async_engine_log_metrics_regression( - example_prompts, - model: str, - dtype: str, - max_tokens: int, - disable_log_stats: bool, -) -> None: - """ - Regression test ensuring async engine generates metrics - when disable_log_stats=False - (see: https://github.com/vllm-project/vllm/pull/4150#pullrequestreview-2008176678) - """ - engine_args = AsyncEngineArgs( - model=model, - dtype=dtype, - disable_log_stats=disable_log_stats, - ) - async_engine = AsyncLLMEngine.from_engine_args(engine_args) - for i, prompt in enumerate(example_prompts): - results = async_engine.generate( - prompt, - SamplingParams(max_tokens=max_tokens), - f"request-id-{i}", - ) - # Exhaust the async iterator to make the async engine work - async for _ in results: - pass - - assert_metrics(model, async_engine.engine, disable_log_stats, - len(example_prompts)) - - -@pytest.mark.parametrize("model", MODELS) -@pytest.mark.parametrize("dtype", ["half"]) -@pytest.mark.parametrize("max_tokens", [4]) -@pytest.mark.parametrize("disable_log_stats", [True, False]) -def test_engine_log_metrics_regression( - example_prompts, - model: str, - dtype: str, - max_tokens: int, - disable_log_stats: bool, -) -> None: - engine_args = EngineArgs( - model=model, - dtype=dtype, - disable_log_stats=disable_log_stats, - ) - engine = LLMEngine.from_engine_args(engine_args) - for i, prompt in enumerate(example_prompts): - engine.add_request( - f"request-id-{i}", - prompt, - SamplingParams(max_tokens=max_tokens), - ) - while engine.has_unfinished_requests(): - engine.step() - - if envs.VLLM_CI_USE_S3: - model = f"{MODEL_WEIGHTS_S3_BUCKET}/{model}" - assert_metrics(model, engine, disable_log_stats, len(example_prompts)) - - -def assert_metrics(model: str, engine: LLMEngine, disable_log_stats: bool, - num_requests: int) -> None: - if disable_log_stats: - with pytest.raises(AttributeError): - _ = engine.stat_loggers - else: - assert (engine.stat_loggers - is not None), "engine.stat_loggers should be set" - # Ensure the count bucket of request-level histogram metrics matches - # the number of requests as a simple sanity check to ensure metrics are - # generated - labels = {'model_name': model} - request_histogram_metrics = [ - "vllm:e2e_request_latency_seconds", - "vllm:request_prompt_tokens", - "vllm:request_generation_tokens", - "vllm:request_params_n", - "vllm:request_params_max_tokens", - ] - for metric_name in request_histogram_metrics: - metric_value = REGISTRY.get_sample_value(f"{metric_name}_count", - labels) - assert ( - metric_value == num_requests), "Metrics should be collected" - - -@pytest.mark.parametrize("model", MODELS) -@pytest.mark.parametrize("dtype", ["half"]) -@pytest.mark.parametrize("max_tokens", [16]) -def test_engine_log_metrics_ray( - example_prompts, - model: str, - dtype: str, - max_tokens: int, -) -> None: - # This test is quite weak - it only checks that we can use - # RayPrometheusStatLogger without exceptions. - # Checking whether the metrics are actually emitted is unfortunately - # non-trivial. - - # We have to run in a Ray task for Ray metrics to be emitted correctly - @ray.remote(num_gpus=1) - def _inner(): - - class _RayPrometheusStatLogger(RayPrometheusStatLogger): - - def __init__(self, *args, **kwargs): - self._i = 0 - super().__init__(*args, **kwargs) - - def log(self, *args, **kwargs): - self._i += 1 - return super().log(*args, **kwargs) - - engine_args = EngineArgs( - model=model, - dtype=dtype, - disable_log_stats=False, - ) - engine = LLMEngine.from_engine_args(engine_args) - logger = _RayPrometheusStatLogger( - local_interval=0.5, - labels=dict(model_name=engine.model_config.served_model_name), - vllm_config=engine.vllm_config) - engine.add_logger("ray", logger) - for i, prompt in enumerate(example_prompts): - engine.add_request( - f"request-id-{i}", - prompt, - SamplingParams(max_tokens=max_tokens), - ) - while engine.has_unfinished_requests(): - engine.step() - assert logger._i > 0, ".log must be called at least once" - - ray.get(_inner.remote()) diff --git a/tests/tracing/__init__.py b/tests/tracing/__init__.py deleted file mode 100644 index e69de29bb2d1d..0000000000000 diff --git a/tests/tracing/test_tracing.py b/tests/tracing/test_tracing.py deleted file mode 100644 index 4dbae7c15de3a..0000000000000 --- a/tests/tracing/test_tracing.py +++ /dev/null @@ -1,237 +0,0 @@ -# SPDX-License-Identifier: Apache-2.0 -# SPDX-FileCopyrightText: Copyright contributors to the vLLM project -# ruff: noqa -# type: ignore -from __future__ import annotations - -import threading -from collections.abc import Iterable -from concurrent import futures -from typing import Callable, Generator, Literal - -import grpc -import pytest -from opentelemetry.proto.collector.trace.v1.trace_service_pb2 import ( - ExportTraceServiceResponse) -from opentelemetry.proto.collector.trace.v1.trace_service_pb2_grpc import ( - TraceServiceServicer, add_TraceServiceServicer_to_server) -from opentelemetry.proto.common.v1.common_pb2 import AnyValue, KeyValue -from opentelemetry.sdk.environment_variables import ( - OTEL_EXPORTER_OTLP_TRACES_INSECURE) - -from vllm import LLM, SamplingParams -from vllm.tracing import SpanAttributes - - -@pytest.fixture(scope="function", autouse=True) -def use_v0_only(monkeypatch: pytest.MonkeyPatch): - """ - Since this module is V0 only, set VLLM_USE_V1=0 for - all tests in the module. - """ - with monkeypatch.context() as m: - m.setenv('VLLM_USE_V1', '0') - yield - - -FAKE_TRACE_SERVER_ADDRESS = "localhost:4317" - -FieldName = Literal['bool_value', 'string_value', 'int_value', 'double_value', - 'array_value'] - - -def decode_value(value: AnyValue): - field_decoders: dict[FieldName, Callable] = { - "bool_value": (lambda v: v.bool_value), - "string_value": (lambda v: v.string_value), - "int_value": (lambda v: v.int_value), - "double_value": (lambda v: v.double_value), - "array_value": - (lambda v: [decode_value(item) for item in v.array_value.values]), - } - for field, decoder in field_decoders.items(): - if value.HasField(field): - return decoder(value) - raise ValueError(f"Couldn't decode value: {value}") - - -def decode_attributes(attributes: Iterable[KeyValue]): - return {kv.key: decode_value(kv.value) for kv in attributes} - - -class FakeTraceService(TraceServiceServicer): - - def __init__(self): - self.request = None - self.evt = threading.Event() - - def Export(self, request, context): - self.request = request - self.evt.set() - return ExportTraceServiceResponse() - - -@pytest.fixture -def trace_service() -> Generator[FakeTraceService, None, None]: - """Fixture to set up a fake gRPC trace service""" - server = grpc.server(futures.ThreadPoolExecutor(max_workers=1)) - service = FakeTraceService() - add_TraceServiceServicer_to_server(service, server) - server.add_insecure_port(FAKE_TRACE_SERVER_ADDRESS) - server.start() - - yield service - - server.stop(None) - - -def test_traces( - monkeypatch: pytest.MonkeyPatch, - trace_service: FakeTraceService, -): - with monkeypatch.context() as m: - m.setenv(OTEL_EXPORTER_OTLP_TRACES_INSECURE, "true") - - sampling_params = SamplingParams( - temperature=0.01, - top_p=0.1, - max_tokens=256, - ) - model = "facebook/opt-125m" - llm = LLM( - model=model, - otlp_traces_endpoint=FAKE_TRACE_SERVER_ADDRESS, - ) - prompts = ["This is a short prompt"] - outputs = llm.generate(prompts, sampling_params=sampling_params) - - timeout = 5 - if not trace_service.evt.wait(timeout): - raise TimeoutError( - f"The fake trace service didn't receive a trace within " - f"the {timeout} seconds timeout") - - request = trace_service.request - assert len(request.resource_spans) == 1, ( - f"Expected 1 resource span, " - f"but got {len(request.resource_spans)}") - assert len(request.resource_spans[0].scope_spans) == 1, ( - f"Expected 1 scope span, " - f"but got {len(request.resource_spans[0].scope_spans)}") - assert len(request.resource_spans[0].scope_spans[0].spans) == 1, ( - f"Expected 1 span, " - f"but got {len(request.resource_spans[0].scope_spans[0].spans)}") - - attributes = decode_attributes( - request.resource_spans[0].scope_spans[0].spans[0].attributes) - assert attributes.get(SpanAttributes.GEN_AI_RESPONSE_MODEL) == model - assert attributes.get( - SpanAttributes.GEN_AI_REQUEST_ID) == outputs[0].request_id - assert attributes.get(SpanAttributes.GEN_AI_REQUEST_TEMPERATURE - ) == sampling_params.temperature - assert attributes.get( - SpanAttributes.GEN_AI_REQUEST_TOP_P) == sampling_params.top_p - assert attributes.get(SpanAttributes.GEN_AI_REQUEST_MAX_TOKENS - ) == sampling_params.max_tokens - assert attributes.get( - SpanAttributes.GEN_AI_REQUEST_N) == sampling_params.n - assert attributes.get( - SpanAttributes.GEN_AI_USAGE_PROMPT_TOKENS) == len( - outputs[0].prompt_token_ids) - completion_tokens = sum(len(o.token_ids) for o in outputs[0].outputs) - assert attributes.get( - SpanAttributes.GEN_AI_USAGE_COMPLETION_TOKENS) == completion_tokens - metrics = outputs[0].metrics - assert attributes.get(SpanAttributes.GEN_AI_LATENCY_TIME_IN_QUEUE - ) == metrics.time_in_queue - ttft = metrics.first_token_time - metrics.arrival_time - assert attributes.get( - SpanAttributes.GEN_AI_LATENCY_TIME_TO_FIRST_TOKEN) == ttft - e2e_time = metrics.finished_time - metrics.arrival_time - assert attributes.get(SpanAttributes.GEN_AI_LATENCY_E2E) == e2e_time - assert metrics.scheduler_time > 0 - assert attributes.get(SpanAttributes.GEN_AI_LATENCY_TIME_IN_SCHEDULER - ) == metrics.scheduler_time - # Model forward and model execute should be none, since detailed traces is - # not enabled. - assert metrics.model_forward_time is None - assert metrics.model_execute_time is None - - -def test_traces_with_detailed_steps( - monkeypatch: pytest.MonkeyPatch, - trace_service: FakeTraceService, -): - with monkeypatch.context() as m: - m.setenv(OTEL_EXPORTER_OTLP_TRACES_INSECURE, "true") - - sampling_params = SamplingParams( - temperature=0.01, - top_p=0.1, - max_tokens=256, - ) - model = "facebook/opt-125m" - llm = LLM( - model=model, - otlp_traces_endpoint=FAKE_TRACE_SERVER_ADDRESS, - collect_detailed_traces=["all"], - ) - prompts = ["This is a short prompt"] - outputs = llm.generate(prompts, sampling_params=sampling_params) - - timeout = 5 - if not trace_service.evt.wait(timeout): - raise TimeoutError( - f"The fake trace service didn't receive a trace within " - f"the {timeout} seconds timeout") - - request = trace_service.request - assert len(request.resource_spans) == 1, ( - f"Expected 1 resource span, " - f"but got {len(request.resource_spans)}") - assert len(request.resource_spans[0].scope_spans) == 1, ( - f"Expected 1 scope span, " - f"but got {len(request.resource_spans[0].scope_spans)}") - assert len(request.resource_spans[0].scope_spans[0].spans) == 1, ( - f"Expected 1 span, " - f"but got {len(request.resource_spans[0].scope_spans[0].spans)}") - - attributes = decode_attributes( - request.resource_spans[0].scope_spans[0].spans[0].attributes) - assert attributes.get(SpanAttributes.GEN_AI_RESPONSE_MODEL) == model - assert attributes.get( - SpanAttributes.GEN_AI_REQUEST_ID) == outputs[0].request_id - assert attributes.get(SpanAttributes.GEN_AI_REQUEST_TEMPERATURE - ) == sampling_params.temperature - assert attributes.get( - SpanAttributes.GEN_AI_REQUEST_TOP_P) == sampling_params.top_p - assert attributes.get(SpanAttributes.GEN_AI_REQUEST_MAX_TOKENS - ) == sampling_params.max_tokens - assert attributes.get( - SpanAttributes.GEN_AI_REQUEST_N) == sampling_params.n - assert attributes.get( - SpanAttributes.GEN_AI_USAGE_PROMPT_TOKENS) == len( - outputs[0].prompt_token_ids) - completion_tokens = sum(len(o.token_ids) for o in outputs[0].outputs) - assert attributes.get( - SpanAttributes.GEN_AI_USAGE_COMPLETION_TOKENS) == completion_tokens - metrics = outputs[0].metrics - assert attributes.get(SpanAttributes.GEN_AI_LATENCY_TIME_IN_QUEUE - ) == metrics.time_in_queue - ttft = metrics.first_token_time - metrics.arrival_time - assert attributes.get( - SpanAttributes.GEN_AI_LATENCY_TIME_TO_FIRST_TOKEN) == ttft - e2e_time = metrics.finished_time - metrics.arrival_time - assert attributes.get(SpanAttributes.GEN_AI_LATENCY_E2E) == e2e_time - assert metrics.scheduler_time > 0 - assert attributes.get(SpanAttributes.GEN_AI_LATENCY_TIME_IN_SCHEDULER - ) == metrics.scheduler_time - assert metrics.model_forward_time > 0 - assert attributes.get( - SpanAttributes.GEN_AI_LATENCY_TIME_IN_MODEL_FORWARD - ) == pytest.approx(metrics.model_forward_time / 1000) - assert metrics.model_execute_time > 0 - assert attributes.get( - SpanAttributes.GEN_AI_LATENCY_TIME_IN_MODEL_EXECUTE - ) == metrics.model_execute_time - assert metrics.model_forward_time < 1000 * metrics.model_execute_time diff --git a/tests/metrics/__init__.py b/tests/v1/tracing/__init__.py similarity index 100% rename from tests/metrics/__init__.py rename to tests/v1/tracing/__init__.py