Fix peak memory profiling (#2031)

This commit is contained in:
Woosuk Kwon 2023-12-12 22:01:53 -08:00 committed by GitHub
parent 3fefe271ec
commit 30bad5c492
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 3 additions and 9 deletions

View File

@ -40,11 +40,6 @@ def get_max_shared_memory_bytes(gpu: int = 0) -> int:
return int(max_shared_mem)
def get_gpu_memory(gpu: int = 0) -> int:
"""Returns the total memory of the GPU in bytes."""
return torch.cuda.get_device_properties(gpu).total_memory
def get_cpu_memory() -> int:
"""Returns the total CPU memory of the node in bytes."""
return psutil.virtual_memory().total

View File

@ -13,7 +13,6 @@ from vllm.model_executor.parallel_utils.parallel_state import (
from vllm.sequence import SamplerOutput, SequenceGroupMetadata
from vllm.worker.cache_engine import CacheEngine
from vllm.worker.model_runner import ModelRunner
from vllm.utils import get_gpu_memory
class Worker:
@ -81,7 +80,6 @@ class Worker:
# Profile the memory usage of the model and get the maximum number of
# cache blocks that can be allocated with the remaining free memory.
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
# Execute a forward pass with dummy inputs to profile the memory usage
# of the model.
@ -90,8 +88,9 @@ class Worker:
# Calculate the number of blocks that can be allocated with the
# profiled peak memory.
torch.cuda.synchronize()
peak_memory = torch.cuda.max_memory_allocated()
total_gpu_memory = get_gpu_memory()
free_gpu_memory, total_gpu_memory = torch.cuda.mem_get_info()
peak_memory = total_gpu_memory - free_gpu_memory
cache_block_size = CacheEngine.get_cache_block_size(
block_size, self.model_config, self.parallel_config)
num_gpu_blocks = int(