mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 10:18:39 +08:00
[Minor] Add more detailed explanation on quantization argument (#2145)
This commit is contained in:
parent
3a765bd5e1
commit
30fb0956df
@ -183,7 +183,12 @@ class EngineArgs:
|
||||
type=str,
|
||||
choices=['awq', 'gptq', 'squeezellm', None],
|
||||
default=None,
|
||||
help='Method used to quantize the weights')
|
||||
help='Method used to quantize the weights. If '
|
||||
'None, we first check the `quantization_config` '
|
||||
'attribute in the model config file. If that is '
|
||||
'None, we assume the model weights are not '
|
||||
'quantized and use `dtype` to determine the data '
|
||||
'type of the weights.')
|
||||
parser.add_argument('--enforce-eager',
|
||||
action='store_true',
|
||||
help='Always use eager-mode PyTorch. If False, '
|
||||
|
||||
@ -38,9 +38,10 @@ class LLM:
|
||||
However, if the `torch_dtype` in the config is `float32`, we will
|
||||
use `float16` instead.
|
||||
quantization: The method used to quantize the model weights. Currently,
|
||||
we support "awq", "gptq" and "squeezellm". If None, we assume the
|
||||
model weights are not quantized and use `dtype` to determine the
|
||||
data type of the weights.
|
||||
we support "awq", "gptq" and "squeezellm". If None, we first check
|
||||
the `quantization_config` attribute in the model config file. If
|
||||
that is None, we assume the model weights are not quantized and use
|
||||
`dtype` to determine the data type of the weights.
|
||||
revision: The specific model version to use. It can be a branch name,
|
||||
a tag name, or a commit id.
|
||||
tokenizer_revision: The specific tokenizer version to use. It can be a
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user