mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-09 17:35:24 +08:00
[Tests] Add tests for headless internal DP LB (#21450)
Signed-off-by: Nick Hill <nhill@redhat.com>
This commit is contained in:
parent
7c734ee09b
commit
316b1bf706
@ -165,6 +165,7 @@ steps:
|
||||
- tests/examples/offline_inference/data_parallel.py
|
||||
- tests/v1/test_async_llm_dp.py
|
||||
- tests/v1/test_external_lb_dp.py
|
||||
- tests/v1/test_internal_lb_dp.py
|
||||
- tests/v1/engine/test_engine_core_client.py
|
||||
commands:
|
||||
# test with tp=2 and external_dp=2
|
||||
@ -176,6 +177,7 @@ steps:
|
||||
- python3 ../examples/offline_inference/data_parallel.py --enforce-eager
|
||||
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
|
||||
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_external_lb_dp.py
|
||||
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/test_internal_lb_dp.py
|
||||
- pytest -v -s v1/engine/test_engine_core_client.py::test_kv_cache_events_dp
|
||||
- pytest -v -s distributed/test_utils.py
|
||||
- pytest -v -s compile/test_basic_correctness.py
|
||||
|
||||
@ -2,136 +2,19 @@
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
import asyncio
|
||||
import os
|
||||
import re
|
||||
|
||||
import openai # use the official client for correctness check
|
||||
import pytest
|
||||
import pytest_asyncio
|
||||
import requests
|
||||
|
||||
from tests.utils import RemoteOpenAIServer
|
||||
from tests.v1.test_utils import check_request_balancing
|
||||
|
||||
MODEL_NAME = "ibm-research/PowerMoE-3b"
|
||||
|
||||
DP_SIZE = os.getenv("DP_SIZE", "1")
|
||||
|
||||
|
||||
def get_prometheus_metrics(
|
||||
server: RemoteOpenAIServer) -> dict[str, dict[str, float]]:
|
||||
"""Fetch and parse Prometheus metrics from the /metrics endpoint.
|
||||
|
||||
Returns:
|
||||
Dict mapping metric names to their values grouped by labels.
|
||||
For example: {"vllm:request_success": {
|
||||
"engine=0": 5.0, "engine=1": 3.0}
|
||||
}
|
||||
"""
|
||||
try:
|
||||
response = requests.get(server.url_for("metrics"), timeout=10)
|
||||
response.raise_for_status()
|
||||
|
||||
metrics: dict[str, dict[str, float]] = {}
|
||||
|
||||
# Regex patterns for Prometheus metrics
|
||||
metric_with_labels = re.compile(
|
||||
r'^([a-zA-Z_:][a-zA-Z0-9_:]*)\{([^}]*)\}\s+([\d\.\-\+e]+)$')
|
||||
metric_simple = re.compile(
|
||||
r'^([a-zA-Z_:][a-zA-Z0-9_:]*)\s+([\d\.\-\+e]+)$')
|
||||
|
||||
for line in response.text.split('\n'):
|
||||
line = line.strip()
|
||||
# Skip comments and empty lines
|
||||
if not line or line.startswith('#'):
|
||||
continue
|
||||
|
||||
# Try to match metric with labels first
|
||||
match = metric_with_labels.match(line)
|
||||
if match:
|
||||
metric_name, labels_part, value_str = match.groups()
|
||||
try:
|
||||
value = float(value_str)
|
||||
if metric_name not in metrics:
|
||||
metrics[metric_name] = {}
|
||||
metrics[metric_name][f'{{{labels_part}}}'] = value
|
||||
except ValueError:
|
||||
continue
|
||||
else:
|
||||
# Try simple metric without labels
|
||||
match = metric_simple.match(line)
|
||||
if match:
|
||||
metric_name, value_str = match.groups()
|
||||
try:
|
||||
value = float(value_str)
|
||||
if metric_name not in metrics:
|
||||
metrics[metric_name] = {}
|
||||
metrics[metric_name][''] = value
|
||||
except ValueError:
|
||||
continue
|
||||
|
||||
return metrics
|
||||
except Exception as e:
|
||||
pytest.fail(f"Failed to fetch Prometheus metrics: {e}")
|
||||
return {}
|
||||
|
||||
|
||||
def get_engine_request_counts(
|
||||
metrics: dict[str, dict[str, float]]) -> dict[str, float]:
|
||||
"""Extract request counts per engine from Prometheus metrics.
|
||||
|
||||
Returns:
|
||||
Dict mapping engine indices to request counts.
|
||||
For example: {"0": 15.0, "1": 12.0}
|
||||
"""
|
||||
engine_counts = {}
|
||||
|
||||
# Look for request success metrics with engine labels
|
||||
success_metrics = metrics.get("vllm:request_success_total", {})
|
||||
engine_pattern = re.compile(r'engine="([^"]*)"')
|
||||
|
||||
for labels, count in success_metrics.items():
|
||||
# Extract engine ID from labels using regex
|
||||
match = engine_pattern.search(labels)
|
||||
if match:
|
||||
engine_id = match.group(1)
|
||||
if engine_id not in engine_counts:
|
||||
engine_counts[engine_id] = 0.0
|
||||
engine_counts[engine_id] += count
|
||||
|
||||
return engine_counts
|
||||
|
||||
|
||||
def check_request_balancing(server: RemoteOpenAIServer):
|
||||
"""Check request balancing via Prometheus metrics if DP_SIZE > 1.
|
||||
|
||||
Args:
|
||||
server: The RemoteOpenAIServer instance
|
||||
"""
|
||||
dp_size = int(DP_SIZE)
|
||||
if dp_size <= 1:
|
||||
return
|
||||
|
||||
# Get metrics after all requests are completed
|
||||
metrics = get_prometheus_metrics(server)
|
||||
engine_counts = get_engine_request_counts(metrics)
|
||||
|
||||
# Check that multiple engines received requests
|
||||
engines_with_requests = [
|
||||
engine for engine, count in engine_counts.items() if count > 0
|
||||
]
|
||||
assert len(engines_with_requests) == dp_size, (
|
||||
f"Expected requests to be distributed across multiple engines,"
|
||||
f" but only engine(s) {engines_with_requests} received "
|
||||
f"requests. Engine counts: {engine_counts}")
|
||||
|
||||
# Verify that the load is reasonably balanced
|
||||
# (no engine should handle all requests)
|
||||
total_requests = sum(engine_counts.values())
|
||||
|
||||
for count in engine_counts.values():
|
||||
assert count > total_requests // (dp_size + 1), (
|
||||
f"requests are imbalanced: {engine_counts}")
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def default_server_args():
|
||||
return [
|
||||
@ -217,7 +100,7 @@ async def test_single_completion(client: openai.AsyncOpenAI,
|
||||
assert all(completion is not None for completion in results)
|
||||
|
||||
# Check request balancing via Prometheus metrics if DP_SIZE > 1
|
||||
check_request_balancing(server)
|
||||
check_request_balancing(server, int(DP_SIZE))
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@ -295,4 +178,4 @@ async def test_completion_streaming(client: openai.AsyncOpenAI,
|
||||
assert all(results), "Not all streaming requests completed successfully."
|
||||
|
||||
# Check request balancing via Prometheus metrics if DP_SIZE > 1
|
||||
check_request_balancing(server)
|
||||
check_request_balancing(server, int(DP_SIZE))
|
||||
|
||||
639
tests/v1/test_internal_lb_dp.py
Normal file
639
tests/v1/test_internal_lb_dp.py
Normal file
@ -0,0 +1,639 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
import asyncio
|
||||
import os
|
||||
import threading
|
||||
import time
|
||||
|
||||
import openai # use the official client for correctness check
|
||||
import pytest
|
||||
import pytest_asyncio
|
||||
|
||||
from tests.utils import RemoteOpenAIServer
|
||||
from tests.v1.test_utils import check_request_balancing
|
||||
from vllm.platforms import Platform
|
||||
|
||||
MODEL_NAME = "ibm-research/PowerMoE-3b"
|
||||
|
||||
# Number of data parallel ranks for multi-node internal LB testing
|
||||
DP_SIZE = int(os.getenv("DP_SIZE", "2"))
|
||||
# Default tensor parallel size to use
|
||||
TP_SIZE = int(os.getenv("TP_SIZE", "1"))
|
||||
|
||||
# Number of nodes to simulate
|
||||
NUM_NODES = 2
|
||||
|
||||
|
||||
class MultinodeInternalLBServerManager:
|
||||
"""Manages multi-node data parallel vLLM server instances for internal
|
||||
load balancer testing using --headless mode."""
|
||||
|
||||
def __init__(self,
|
||||
model_name: str,
|
||||
dp_size: int,
|
||||
api_server_count: int,
|
||||
base_server_args: list,
|
||||
dp_per_node: int = 1,
|
||||
tp_size: int = TP_SIZE):
|
||||
self.model_name = model_name
|
||||
self.dp_size = dp_size
|
||||
self.dp_per_node = dp_per_node
|
||||
self.tp_size = tp_size
|
||||
self.api_server_count = api_server_count
|
||||
self.base_server_args = base_server_args
|
||||
self.servers: list[tuple[RemoteOpenAIServer, list[str]]] = []
|
||||
self.server_threads: list[threading.Thread] = []
|
||||
|
||||
def __enter__(self) -> list[tuple[RemoteOpenAIServer, list[str]]]:
|
||||
"""Start all server instances for multi-node internal LB mode."""
|
||||
for rank in range(0, self.dp_size, self.dp_per_node):
|
||||
# Create server args for this specific rank
|
||||
server_args = self.base_server_args.copy()
|
||||
|
||||
if rank == 0:
|
||||
# Head node - runs API server and first DP rank
|
||||
server_args.extend([
|
||||
"--data-parallel-size",
|
||||
str(self.dp_size),
|
||||
"--data-parallel-size-local",
|
||||
str(self.dp_per_node),
|
||||
"--tensor-parallel-size",
|
||||
str(self.tp_size),
|
||||
"--port",
|
||||
"8000", # Single endpoint for all requests
|
||||
"--api-server-count",
|
||||
str(self.api_server_count),
|
||||
"--data-parallel-address",
|
||||
"127.0.0.1",
|
||||
"--data-parallel-rpc-port",
|
||||
"13345",
|
||||
])
|
||||
else:
|
||||
# Secondary nodes - run in headless mode
|
||||
server_args.extend([
|
||||
"--headless",
|
||||
"--data-parallel-size",
|
||||
str(self.dp_size),
|
||||
"--data-parallel-size-local",
|
||||
str(self.dp_per_node),
|
||||
"--data-parallel-start-rank",
|
||||
str(rank),
|
||||
"--tensor-parallel-size",
|
||||
str(self.tp_size),
|
||||
"--data-parallel-address",
|
||||
"127.0.0.1",
|
||||
"--data-parallel-rpc-port",
|
||||
"13345",
|
||||
])
|
||||
|
||||
# Use a thread to start each server to allow parallel initialization
|
||||
def start_server(r: int, sargs: list[str]):
|
||||
gpus_per_node = self.tp_size * self.dp_per_node
|
||||
try:
|
||||
# Start the server
|
||||
server = RemoteOpenAIServer(
|
||||
self.model_name,
|
||||
sargs,
|
||||
auto_port=False,
|
||||
env_dict={
|
||||
"CUDA_VISIBLE_DEVICES":
|
||||
",".join(
|
||||
str(Platform.device_id_to_physical_device_id(
|
||||
i)) for i in range(r, r + gpus_per_node))
|
||||
})
|
||||
server.__enter__()
|
||||
if r == 0:
|
||||
print(
|
||||
f"Head node (rank {r}) started successfully with "
|
||||
f"{self.api_server_count} API servers")
|
||||
else:
|
||||
print(f"Headless node (rank {r}) started successfully")
|
||||
self.servers.append((server, sargs))
|
||||
except Exception as e:
|
||||
print(f"Failed to start server rank {r}: {e}")
|
||||
raise
|
||||
|
||||
thread = threading.Thread(target=start_server,
|
||||
args=(rank, server_args))
|
||||
thread.start()
|
||||
|
||||
self.server_threads.append(thread)
|
||||
|
||||
# Wait for all servers to start
|
||||
for thread in self.server_threads:
|
||||
thread.join()
|
||||
|
||||
# Give servers additional time to fully initialize and coordinate
|
||||
time.sleep(3)
|
||||
|
||||
if len(self.servers) != self.dp_size // self.dp_per_node:
|
||||
raise Exception("Servers failed to start")
|
||||
|
||||
return self.servers
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
"""Stop all server instances."""
|
||||
while self.servers:
|
||||
try:
|
||||
self.servers.pop()[0].__exit__(exc_type, exc_val, exc_tb)
|
||||
except Exception as e:
|
||||
print(f"Error stopping server: {e}")
|
||||
|
||||
|
||||
class APIOnlyServerManager:
|
||||
"""Manages API-only server (Node 0) and headless engines server (Node 1)
|
||||
for testing separated API server and engine configuration."""
|
||||
|
||||
def __init__(self,
|
||||
model_name: str,
|
||||
dp_size: int,
|
||||
api_server_count: int,
|
||||
base_server_args: list,
|
||||
tp_size: int = TP_SIZE):
|
||||
self.model_name = model_name
|
||||
self.dp_size = dp_size
|
||||
self.tp_size = tp_size
|
||||
self.api_server_count = api_server_count
|
||||
self.base_server_args = base_server_args
|
||||
self.servers: list[tuple[RemoteOpenAIServer, list[str]]] = []
|
||||
self.server_threads: list[threading.Thread] = []
|
||||
|
||||
def __enter__(self) -> list[tuple[RemoteOpenAIServer, list[str]]]:
|
||||
"""Start API-only server and headless engines server."""
|
||||
|
||||
# Start API-only server (Node 0) - no engines, only API server
|
||||
api_server_args = self.base_server_args.copy()
|
||||
api_server_args.extend([
|
||||
"--data-parallel-size",
|
||||
str(self.dp_size),
|
||||
"--data-parallel-size-local",
|
||||
"0", # No engines on this node
|
||||
"--tensor-parallel-size",
|
||||
str(self.tp_size),
|
||||
"--port",
|
||||
"8000",
|
||||
"--api-server-count",
|
||||
str(self.api_server_count),
|
||||
"--data-parallel-address",
|
||||
"127.0.0.1",
|
||||
"--data-parallel-rpc-port",
|
||||
"13345",
|
||||
])
|
||||
|
||||
# Start headless engines server (Node 1) - all engines, no API server
|
||||
engines_server_args = self.base_server_args.copy()
|
||||
engines_server_args.extend([
|
||||
"--headless",
|
||||
"--data-parallel-size",
|
||||
str(self.dp_size),
|
||||
"--data-parallel-size-local",
|
||||
str(self.dp_size), # All engines on this node
|
||||
"--tensor-parallel-size",
|
||||
str(self.tp_size),
|
||||
"--data-parallel-address",
|
||||
"127.0.0.1",
|
||||
"--data-parallel-rpc-port",
|
||||
"13345",
|
||||
])
|
||||
|
||||
# Use threads to start both servers in parallel
|
||||
def start_api_server():
|
||||
try:
|
||||
server = RemoteOpenAIServer(
|
||||
self.model_name,
|
||||
api_server_args,
|
||||
auto_port=False,
|
||||
env_dict={}) # No GPUs needed for API-only server
|
||||
server.__enter__()
|
||||
print(f"API-only server started successfully with "
|
||||
f"{self.api_server_count} API servers")
|
||||
self.servers.append((server, api_server_args))
|
||||
except Exception as e:
|
||||
print(f"Failed to start API-only server: {e}")
|
||||
raise
|
||||
|
||||
def start_engines_server():
|
||||
try:
|
||||
server = RemoteOpenAIServer(
|
||||
self.model_name,
|
||||
engines_server_args,
|
||||
auto_port=False,
|
||||
env_dict={
|
||||
"CUDA_VISIBLE_DEVICES":
|
||||
",".join(
|
||||
str(Platform.device_id_to_physical_device_id(i))
|
||||
for i in range(self.dp_size * self.tp_size))
|
||||
})
|
||||
server.__enter__()
|
||||
print(f"Headless engines server started successfully with "
|
||||
f"{self.dp_size} engines")
|
||||
self.servers.append((server, engines_server_args))
|
||||
except Exception as e:
|
||||
print(f"Failed to start headless engines server: {e}")
|
||||
raise
|
||||
|
||||
# Start API server first
|
||||
api_thread = threading.Thread(target=start_api_server)
|
||||
api_thread.start()
|
||||
self.server_threads.append(api_thread)
|
||||
|
||||
# Start engines server second
|
||||
engines_thread = threading.Thread(target=start_engines_server)
|
||||
engines_thread.start()
|
||||
self.server_threads.append(engines_thread)
|
||||
|
||||
# Wait for both servers to start
|
||||
for thread in self.server_threads:
|
||||
thread.join()
|
||||
|
||||
# Give servers additional time to fully initialize and coordinate
|
||||
time.sleep(3)
|
||||
|
||||
if len(self.servers) != 2:
|
||||
raise Exception("Both servers failed to start")
|
||||
|
||||
return self.servers
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
"""Stop both server instances."""
|
||||
while self.servers:
|
||||
try:
|
||||
self.servers.pop()[0].__exit__(exc_type, exc_val, exc_tb)
|
||||
except Exception as e:
|
||||
print(f"Error stopping server: {e}")
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def default_server_args():
|
||||
return [
|
||||
# use half precision for speed and memory savings in CI environment
|
||||
"--dtype",
|
||||
"bfloat16",
|
||||
"--max-model-len",
|
||||
"2048",
|
||||
"--max-num-seqs",
|
||||
"128",
|
||||
"--enforce-eager",
|
||||
]
|
||||
|
||||
|
||||
@pytest.fixture(scope="module", params=[1, 4])
|
||||
def servers(request, default_server_args):
|
||||
api_server_count = request.param
|
||||
with MultinodeInternalLBServerManager(MODEL_NAME, DP_SIZE,
|
||||
api_server_count,
|
||||
default_server_args,
|
||||
DP_SIZE // NUM_NODES,
|
||||
TP_SIZE) as server_list:
|
||||
yield server_list
|
||||
|
||||
|
||||
@pytest.fixture(scope="module", params=[1, 4])
|
||||
def api_only_servers(request, default_server_args):
|
||||
"""Fixture for API-only server + headless engines configuration."""
|
||||
api_server_count = request.param
|
||||
with APIOnlyServerManager(MODEL_NAME, DP_SIZE, api_server_count,
|
||||
default_server_args, TP_SIZE) as server_list:
|
||||
yield server_list
|
||||
|
||||
|
||||
@pytest_asyncio.fixture
|
||||
async def client(servers: list[tuple[RemoteOpenAIServer, list[str]]]):
|
||||
# For internal LB, we only connect to the head node (rank 0)
|
||||
# which provides the single API endpoint
|
||||
head_server = servers[0][0]
|
||||
async with head_server.get_async_client() as client:
|
||||
yield client
|
||||
|
||||
|
||||
@pytest_asyncio.fixture
|
||||
async def api_only_client(api_only_servers: list[tuple[RemoteOpenAIServer,
|
||||
list[str]]]):
|
||||
"""Client fixture for API-only server configuration."""
|
||||
# Connect to the API-only server (first server in the list)
|
||||
api_server = api_only_servers[0][0]
|
||||
async with api_server.get_async_client() as client:
|
||||
yield client
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize(
|
||||
"model_name",
|
||||
[MODEL_NAME],
|
||||
)
|
||||
async def test_multinode_dp_completion(client: openai.AsyncOpenAI,
|
||||
servers: list[tuple[RemoteOpenAIServer,
|
||||
list[str]]],
|
||||
model_name: str) -> None:
|
||||
|
||||
async def make_request():
|
||||
completion = await client.completions.create(
|
||||
model=model_name,
|
||||
prompt="Hello, my name is",
|
||||
max_tokens=10,
|
||||
temperature=1.0)
|
||||
|
||||
assert completion.id is not None
|
||||
assert completion.choices is not None and len(completion.choices) == 1
|
||||
|
||||
choice = completion.choices[0]
|
||||
# The exact number of tokens can vary slightly with temperature=1.0,
|
||||
# so we check for a reasonable minimum length.
|
||||
assert len(choice.text) >= 1
|
||||
# Finish reason might not always be 'length' if the model finishes early
|
||||
# or due to other reasons, especially with high temperature.
|
||||
# So, we'll accept 'length' or 'stop'.
|
||||
assert choice.finish_reason in ("length", "stop")
|
||||
|
||||
# Token counts can also vary, so we check they are positive.
|
||||
assert completion.usage.completion_tokens > 0
|
||||
assert completion.usage.prompt_tokens > 0
|
||||
assert completion.usage.total_tokens > 0
|
||||
return completion
|
||||
|
||||
# Test single request
|
||||
result = await make_request()
|
||||
assert result is not None
|
||||
print(
|
||||
"Multi-node internal LB handled single completion request successfully"
|
||||
)
|
||||
|
||||
await asyncio.sleep(0.5)
|
||||
|
||||
# Send multiple requests - internal LB should distribute across DP ranks
|
||||
num_requests = 50
|
||||
all_tasks = [make_request() for _ in range(num_requests)]
|
||||
|
||||
results = await asyncio.gather(*all_tasks)
|
||||
assert len(results) == num_requests
|
||||
assert all(completion is not None for completion in results)
|
||||
|
||||
await asyncio.sleep(0.5)
|
||||
|
||||
# Second burst of requests
|
||||
all_tasks = [make_request() for _ in range(num_requests)]
|
||||
|
||||
results = await asyncio.gather(*all_tasks)
|
||||
assert len(results) == num_requests
|
||||
assert all(completion is not None for completion in results)
|
||||
|
||||
_, server_args = servers[0]
|
||||
api_server_count = (
|
||||
server_args.count('--api-server-count')
|
||||
and server_args[server_args.index('--api-server-count') + 1] or 1)
|
||||
print(f"Successfully completed multi-node internal LB test with "
|
||||
f"{len(servers)} DP ranks (API server count: {api_server_count})")
|
||||
|
||||
# Check request balancing via Prometheus metrics
|
||||
head_server = servers[0][0]
|
||||
check_request_balancing(head_server, DP_SIZE)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize(
|
||||
"model_name",
|
||||
[MODEL_NAME],
|
||||
)
|
||||
async def test_multinode_dp_completion_streaming(client: openai.AsyncOpenAI,
|
||||
servers: list[
|
||||
tuple[RemoteOpenAIServer,
|
||||
list[str]]],
|
||||
model_name: str) -> None:
|
||||
prompt = "What is an LLM?"
|
||||
|
||||
async def make_streaming_request():
|
||||
# Perform a non-streaming request to get the expected full output
|
||||
single_completion = await client.completions.create(
|
||||
model=model_name,
|
||||
prompt=prompt,
|
||||
max_tokens=5,
|
||||
temperature=0.0,
|
||||
)
|
||||
single_output = single_completion.choices[0].text
|
||||
|
||||
# Perform the streaming request
|
||||
stream = await client.completions.create(model=model_name,
|
||||
prompt=prompt,
|
||||
max_tokens=5,
|
||||
temperature=0.0,
|
||||
stream=True)
|
||||
chunks: list[str] = []
|
||||
finish_reason_count = 0
|
||||
last_chunk = None
|
||||
async for chunk in stream:
|
||||
chunks.append(chunk.choices[0].text)
|
||||
if chunk.choices[0].finish_reason is not None:
|
||||
finish_reason_count += 1
|
||||
last_chunk = chunk # Keep track of the last chunk
|
||||
|
||||
# finish reason should only return in the last block for OpenAI API
|
||||
assert finish_reason_count == 1, (
|
||||
"Finish reason should appear exactly once.")
|
||||
assert last_chunk is not None, (
|
||||
"Stream should have yielded at least one chunk.")
|
||||
assert last_chunk.choices[
|
||||
0].finish_reason == "length", "Finish reason should be 'length'."
|
||||
# Check that the combined text matches the non-streamed version.
|
||||
assert "".join(
|
||||
chunks
|
||||
) == single_output, "Streamed output should match non-streamed output."
|
||||
return True # Indicate success for this request
|
||||
|
||||
# Test single streaming request
|
||||
result = await make_streaming_request()
|
||||
assert result is not None
|
||||
print(
|
||||
"Multi-node internal LB handled single streaming request successfully")
|
||||
|
||||
await asyncio.sleep(0.5)
|
||||
|
||||
# Send multiple streaming requests - internal LB should distribute across
|
||||
# DP ranks
|
||||
num_requests = 50
|
||||
all_tasks = [make_streaming_request() for _ in range(num_requests)]
|
||||
|
||||
results = await asyncio.gather(*all_tasks)
|
||||
assert len(results) == num_requests
|
||||
assert all(results), "Not all streaming requests completed successfully."
|
||||
|
||||
await asyncio.sleep(0.5)
|
||||
|
||||
# Second burst of streaming requests
|
||||
all_tasks = [make_streaming_request() for _ in range(num_requests)]
|
||||
|
||||
results = await asyncio.gather(*all_tasks)
|
||||
assert len(results) == num_requests
|
||||
assert all(results), "Not all streaming requests completed successfully."
|
||||
|
||||
_, server_args = servers[0]
|
||||
api_server_count = (
|
||||
server_args.count('--api-server-count')
|
||||
and server_args[server_args.index('--api-server-count') + 1] or 1)
|
||||
print(f"Successfully completed multi-node internal LB streaming test with "
|
||||
f"{len(servers)} DP ranks (API server count: {api_server_count})")
|
||||
|
||||
# Check request balancing via Prometheus metrics
|
||||
head_server = servers[0][0]
|
||||
check_request_balancing(head_server, DP_SIZE)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize(
|
||||
"model_name",
|
||||
[MODEL_NAME],
|
||||
)
|
||||
async def test_api_only_multinode_dp_completion(
|
||||
api_only_client: openai.AsyncOpenAI,
|
||||
api_only_servers: list[tuple[RemoteOpenAIServer,
|
||||
list[str]]], model_name: str) -> None:
|
||||
"""Test API-only server with all engines on separate headless server."""
|
||||
|
||||
async def make_request():
|
||||
completion = await api_only_client.completions.create(
|
||||
model=model_name,
|
||||
prompt="Hello, my name is",
|
||||
max_tokens=10,
|
||||
temperature=1.0)
|
||||
|
||||
assert completion.id is not None
|
||||
assert completion.choices is not None and len(completion.choices) == 1
|
||||
|
||||
choice = completion.choices[0]
|
||||
# The exact number of tokens can vary slightly with temperature=1.0,
|
||||
# so we check for a reasonable minimum length.
|
||||
assert len(choice.text) >= 1
|
||||
# Finish reason might not always be 'length' if the model finishes
|
||||
# early or due to other reasons, especially with high temperature.
|
||||
# So, we'll accept 'length' or 'stop'.
|
||||
assert choice.finish_reason in ("length", "stop")
|
||||
|
||||
# Token counts can also vary, so we check they are positive.
|
||||
assert completion.usage.completion_tokens > 0
|
||||
assert completion.usage.prompt_tokens > 0
|
||||
assert completion.usage.total_tokens > 0
|
||||
return completion
|
||||
|
||||
# Test single request
|
||||
result = await make_request()
|
||||
assert result is not None
|
||||
print("API-only server handled single completion request successfully")
|
||||
|
||||
await asyncio.sleep(0.5)
|
||||
|
||||
# Send multiple requests - should be distributed across engines on
|
||||
# headless server
|
||||
num_requests = 50
|
||||
all_tasks = [make_request() for _ in range(num_requests)]
|
||||
|
||||
results = await asyncio.gather(*all_tasks)
|
||||
assert len(results) == num_requests
|
||||
assert all(completion is not None for completion in results)
|
||||
|
||||
await asyncio.sleep(0.5)
|
||||
|
||||
# Second burst of requests
|
||||
all_tasks = [make_request() for _ in range(num_requests)]
|
||||
|
||||
results = await asyncio.gather(*all_tasks)
|
||||
assert len(results) == num_requests
|
||||
assert all(completion is not None for completion in results)
|
||||
|
||||
_, api_server_args = api_only_servers[0]
|
||||
api_server_count = (
|
||||
api_server_args.count('--api-server-count')
|
||||
and api_server_args[api_server_args.index('--api-server-count') + 1]
|
||||
or 1)
|
||||
print(f"Successfully completed API-only multi-node test with {DP_SIZE} "
|
||||
f"engines on headless server (API server count: {api_server_count})")
|
||||
|
||||
# Check request balancing via Prometheus metrics
|
||||
api_server = api_only_servers[0][0]
|
||||
check_request_balancing(api_server, DP_SIZE)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize(
|
||||
"model_name",
|
||||
[MODEL_NAME],
|
||||
)
|
||||
async def test_api_only_multinode_dp_completion_streaming(
|
||||
api_only_client: openai.AsyncOpenAI,
|
||||
api_only_servers: list[tuple[RemoteOpenAIServer,
|
||||
list[str]]], model_name: str) -> None:
|
||||
"""Test API-only server streaming with all engines on separate
|
||||
headless server."""
|
||||
prompt = "What is an LLM?"
|
||||
|
||||
async def make_streaming_request():
|
||||
# Perform a non-streaming request to get the expected full output
|
||||
single_completion = await api_only_client.completions.create(
|
||||
model=model_name,
|
||||
prompt=prompt,
|
||||
max_tokens=5,
|
||||
temperature=0.0,
|
||||
)
|
||||
single_output = single_completion.choices[0].text
|
||||
|
||||
# Perform the streaming request
|
||||
stream = await api_only_client.completions.create(model=model_name,
|
||||
prompt=prompt,
|
||||
max_tokens=5,
|
||||
temperature=0.0,
|
||||
stream=True)
|
||||
chunks: list[str] = []
|
||||
finish_reason_count = 0
|
||||
last_chunk = None
|
||||
async for chunk in stream:
|
||||
chunks.append(chunk.choices[0].text)
|
||||
if chunk.choices[0].finish_reason is not None:
|
||||
finish_reason_count += 1
|
||||
last_chunk = chunk # Keep track of the last chunk
|
||||
|
||||
# finish reason should only return in the last block for OpenAI API
|
||||
assert finish_reason_count == 1, (
|
||||
"Finish reason should appear exactly once.")
|
||||
assert last_chunk is not None, (
|
||||
"Stream should have yielded at least one chunk.")
|
||||
assert last_chunk.choices[
|
||||
0].finish_reason == "length", "Finish reason should be 'length'."
|
||||
# Check that the combined text matches the non-streamed version.
|
||||
assert "".join(
|
||||
chunks
|
||||
) == single_output, "Streamed output should match non-streamed output."
|
||||
return True # Indicate success for this request
|
||||
|
||||
# Test single streaming request
|
||||
result = await make_streaming_request()
|
||||
assert result is not None
|
||||
print("API-only server handled single streaming request successfully")
|
||||
|
||||
await asyncio.sleep(0.5)
|
||||
|
||||
# Send multiple streaming requests - should be distributed across engines
|
||||
num_requests = 50
|
||||
all_tasks = [make_streaming_request() for _ in range(num_requests)]
|
||||
|
||||
results = await asyncio.gather(*all_tasks)
|
||||
assert len(results) == num_requests
|
||||
assert all(results), "Not all streaming requests completed successfully."
|
||||
|
||||
await asyncio.sleep(0.5)
|
||||
|
||||
# Second burst of streaming requests
|
||||
all_tasks = [make_streaming_request() for _ in range(num_requests)]
|
||||
|
||||
results = await asyncio.gather(*all_tasks)
|
||||
assert len(results) == num_requests
|
||||
assert all(results), "Not all streaming requests completed successfully."
|
||||
|
||||
_, api_server_args = api_only_servers[0]
|
||||
api_server_count = (
|
||||
api_server_args.count('--api-server-count')
|
||||
and api_server_args[api_server_args.index('--api-server-count') + 1]
|
||||
or 1)
|
||||
print(f"Successfully completed API-only streaming test with {DP_SIZE} "
|
||||
f"engines on headless server (API server count: {api_server_count})")
|
||||
|
||||
# Check request balancing via Prometheus metrics
|
||||
api_server = api_only_servers[0][0]
|
||||
check_request_balancing(api_server, DP_SIZE)
|
||||
@ -1,8 +1,13 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import re
|
||||
|
||||
import pytest
|
||||
import requests
|
||||
import torch
|
||||
|
||||
from tests.utils import RemoteOpenAIServer
|
||||
from vllm.v1.worker.utils import bind_kv_cache
|
||||
|
||||
|
||||
@ -61,3 +66,122 @@ def test_bind_kv_cache_non_attention():
|
||||
|
||||
assert runner_kv_caches[0] is kv_cache['model.layers.20.attn']
|
||||
assert runner_kv_caches[1] is kv_cache['model.layers.28.attn']
|
||||
|
||||
|
||||
# Prometheus metrics utilities for testing
|
||||
|
||||
|
||||
def get_prometheus_metrics(
|
||||
server: RemoteOpenAIServer) -> dict[str, dict[str, float]]:
|
||||
"""Fetch and parse Prometheus metrics from the /metrics endpoint.
|
||||
|
||||
Returns:
|
||||
Dict mapping metric names to their values grouped by labels.
|
||||
For example: {"vllm:request_success": {
|
||||
"engine=0": 5.0, "engine=1": 3.0}
|
||||
}
|
||||
"""
|
||||
try:
|
||||
response = requests.get(server.url_for("metrics"), timeout=10)
|
||||
response.raise_for_status()
|
||||
|
||||
metrics: dict[str, dict[str, float]] = {}
|
||||
|
||||
# Regex patterns for Prometheus metrics
|
||||
metric_with_labels = re.compile(
|
||||
r'^([a-zA-Z_:][a-zA-Z0-9_:]*)\{([^}]*)\}\s+([\d\.\-\+e]+)$')
|
||||
metric_simple = re.compile(
|
||||
r'^([a-zA-Z_:][a-zA-Z0-9_:]*)\s+([\d\.\-\+e]+)$')
|
||||
|
||||
for line in response.text.split('\n'):
|
||||
line = line.strip()
|
||||
# Skip comments and empty lines
|
||||
if not line or line.startswith('#'):
|
||||
continue
|
||||
|
||||
# Try to match metric with labels first
|
||||
match = metric_with_labels.match(line)
|
||||
if match:
|
||||
metric_name, labels_part, value_str = match.groups()
|
||||
try:
|
||||
value = float(value_str)
|
||||
if metric_name not in metrics:
|
||||
metrics[metric_name] = {}
|
||||
metrics[metric_name][f'{{{labels_part}}}'] = value
|
||||
except ValueError:
|
||||
continue
|
||||
else:
|
||||
# Try simple metric without labels
|
||||
match = metric_simple.match(line)
|
||||
if match:
|
||||
metric_name, value_str = match.groups()
|
||||
try:
|
||||
value = float(value_str)
|
||||
if metric_name not in metrics:
|
||||
metrics[metric_name] = {}
|
||||
metrics[metric_name][''] = value
|
||||
except ValueError:
|
||||
continue
|
||||
|
||||
return metrics
|
||||
except Exception as e:
|
||||
pytest.fail(f"Failed to fetch Prometheus metrics: {e}")
|
||||
return {}
|
||||
|
||||
|
||||
def get_engine_request_counts(
|
||||
metrics: dict[str, dict[str, float]]) -> dict[str, float]:
|
||||
"""Extract request counts per engine from Prometheus metrics.
|
||||
|
||||
Returns:
|
||||
Dict mapping engine indices to request counts.
|
||||
For example: {"0": 15.0, "1": 12.0}
|
||||
"""
|
||||
engine_counts = {}
|
||||
|
||||
# Look for request success metrics with engine labels
|
||||
success_metrics = metrics.get("vllm:request_success_total", {})
|
||||
engine_pattern = re.compile(r'engine="([^"]*)"')
|
||||
|
||||
for labels, count in success_metrics.items():
|
||||
# Extract engine ID from labels using regex
|
||||
match = engine_pattern.search(labels)
|
||||
if match:
|
||||
engine_id = match.group(1)
|
||||
if engine_id not in engine_counts:
|
||||
engine_counts[engine_id] = 0.0
|
||||
engine_counts[engine_id] += count
|
||||
|
||||
return engine_counts
|
||||
|
||||
|
||||
def check_request_balancing(server: RemoteOpenAIServer, dp_size: int):
|
||||
"""Check request balancing via Prometheus metrics if dp_size > 1.
|
||||
|
||||
Args:
|
||||
server: The RemoteOpenAIServer instance
|
||||
dp_size: Number of data parallel ranks
|
||||
"""
|
||||
if dp_size <= 1:
|
||||
return
|
||||
|
||||
# Get metrics after all requests are completed
|
||||
metrics = get_prometheus_metrics(server)
|
||||
engine_counts = get_engine_request_counts(metrics)
|
||||
|
||||
# Check that multiple engines received requests
|
||||
engines_with_requests = [
|
||||
engine for engine, count in engine_counts.items() if count > 0
|
||||
]
|
||||
assert len(engines_with_requests) == dp_size, (
|
||||
f"Expected requests to be distributed across multiple engines,"
|
||||
f" but only engine(s) {engines_with_requests} received "
|
||||
f"requests. Engine counts: {engine_counts}")
|
||||
|
||||
# Verify that the load is reasonably balanced
|
||||
# (no engine should handle all requests)
|
||||
total_requests = sum(engine_counts.values())
|
||||
|
||||
for count in engine_counts.values():
|
||||
assert count > total_requests // (dp_size + 1), (
|
||||
f"requests are imbalanced: {engine_counts}")
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user