mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 04:44:57 +08:00
[BugFix] Implement RoPE for GPT-J (#941)
This commit is contained in:
parent
c9927c1a6a
commit
320a622ec4
@ -1,15 +1,16 @@
|
||||
#include <torch/extension.h>
|
||||
|
||||
void rotary_embedding_neox(
|
||||
void rotary_embedding(
|
||||
torch::Tensor& positions,
|
||||
torch::Tensor& query,
|
||||
torch::Tensor& key,
|
||||
int head_size,
|
||||
torch::Tensor& cos_sin_cache);
|
||||
torch::Tensor& cos_sin_cache,
|
||||
bool is_neox);
|
||||
|
||||
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||||
m.def(
|
||||
"rotary_embedding_neox",
|
||||
&rotary_embedding_neox,
|
||||
"Apply GPT-NeoX style rotary embedding to query and key");
|
||||
"rotary_embedding",
|
||||
&rotary_embedding,
|
||||
"Apply GPT-NeoX or GPT-J style rotary embedding to query and key");
|
||||
}
|
||||
|
||||
@ -5,8 +5,38 @@
|
||||
|
||||
namespace vllm {
|
||||
|
||||
template<typename scalar_t>
|
||||
__global__ void rotary_embedding_neox_kernel(
|
||||
template<typename scalar_t, bool IS_NEOX>
|
||||
inline __device__ void apply_rotary_embedding(
|
||||
scalar_t* __restrict__ arr,
|
||||
const scalar_t* __restrict__ cos_ptr,
|
||||
const scalar_t* __restrict__ sin_ptr,
|
||||
int rot_offset,
|
||||
int embed_dim)
|
||||
{
|
||||
int x_index, y_index;
|
||||
scalar_t cos, sin;
|
||||
if (IS_NEOX) {
|
||||
// GPT-NeoX style rotary embedding.
|
||||
x_index = rot_offset;
|
||||
y_index = embed_dim + rot_offset;
|
||||
cos = __ldg(cos_ptr + x_index);
|
||||
sin = __ldg(sin_ptr + x_index);
|
||||
} else {
|
||||
// GPT-J style rotary embedding.
|
||||
x_index = 2 * rot_offset;
|
||||
y_index = 2 * rot_offset + 1;
|
||||
cos = __ldg(cos_ptr + x_index / 2);
|
||||
sin = __ldg(sin_ptr + x_index / 2);
|
||||
}
|
||||
|
||||
const scalar_t x = arr[x_index];
|
||||
const scalar_t y = arr[y_index];
|
||||
arr[x_index] = x * cos - y * sin;
|
||||
arr[y_index] = y * cos + x * sin;
|
||||
}
|
||||
|
||||
template<typename scalar_t, bool IS_NEOX>
|
||||
__global__ void rotary_embedding_kernel(
|
||||
const int64_t* __restrict__ positions, // [num_tokens]
|
||||
scalar_t* __restrict__ query, // [num_tokens, num_heads, head_size]
|
||||
scalar_t* __restrict__ key, // [num_tokens, num_kv_heads, head_size]
|
||||
@ -23,58 +53,37 @@ __global__ void rotary_embedding_neox_kernel(
|
||||
const scalar_t* cache_ptr = cos_sin_cache + pos * rot_dim;
|
||||
|
||||
const int embed_dim = rot_dim / 2;
|
||||
const scalar_t* cos_ptr = cache_ptr;
|
||||
const scalar_t* sin_ptr = cache_ptr + embed_dim;
|
||||
|
||||
const int nq = num_heads * embed_dim;
|
||||
for (int i = threadIdx.x; i < nq; i += blockDim.x) {
|
||||
const int head_idx = i / embed_dim;
|
||||
const int token_head = token_idx * query_stride + head_idx * head_size;
|
||||
|
||||
const int rot_offset = i % embed_dim;
|
||||
const int x_index = rot_offset;
|
||||
const int y_index = embed_dim + rot_offset;
|
||||
|
||||
const int out_x = token_idx * query_stride + head_idx * head_size + x_index;
|
||||
const int out_y = token_idx * query_stride + head_idx * head_size + y_index;
|
||||
|
||||
const scalar_t cos = __ldg(cache_ptr + x_index);
|
||||
const scalar_t sin = __ldg(cache_ptr + y_index);
|
||||
|
||||
const scalar_t q_x = query[token_head + x_index];
|
||||
const scalar_t q_y = query[token_head + y_index];
|
||||
query[out_x] = q_x * cos - q_y * sin;
|
||||
query[out_y] = q_y * cos + q_x * sin;
|
||||
apply_rotary_embedding<scalar_t, IS_NEOX>(query + token_head, cos_ptr,
|
||||
sin_ptr, rot_offset, embed_dim);
|
||||
}
|
||||
|
||||
const int nk = num_kv_heads * embed_dim;
|
||||
for (int i = threadIdx.x; i < nk; i += blockDim.x) {
|
||||
const int head_idx = i / embed_dim;
|
||||
const int token_head = token_idx * key_stride + head_idx * head_size;
|
||||
|
||||
const int rot_offset = i % embed_dim;
|
||||
const int x_index = rot_offset;
|
||||
const int y_index = embed_dim + rot_offset;
|
||||
|
||||
const int out_x = token_idx * key_stride + head_idx * head_size + x_index;
|
||||
const int out_y = token_idx * key_stride + head_idx * head_size + y_index;
|
||||
|
||||
const scalar_t cos = __ldg(cache_ptr + x_index);
|
||||
const scalar_t sin = __ldg(cache_ptr + y_index);
|
||||
|
||||
const scalar_t k_x = key[token_head + x_index];
|
||||
const scalar_t k_y = key[token_head + y_index];
|
||||
key[out_x] = k_x * cos - k_y * sin;
|
||||
key[out_y] = k_y * cos + k_x * sin;
|
||||
apply_rotary_embedding<scalar_t, IS_NEOX>(key + token_head, cos_ptr,
|
||||
sin_ptr, rot_offset, embed_dim);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace vllm
|
||||
|
||||
void rotary_embedding_neox(
|
||||
void rotary_embedding(
|
||||
torch::Tensor& positions, // [num_tokens]
|
||||
torch::Tensor& query, // [num_tokens, num_heads * head_size]
|
||||
torch::Tensor& key, // [num_tokens, num_kv_heads * head_size]
|
||||
int head_size,
|
||||
torch::Tensor& cos_sin_cache) // [max_position, rot_dim]
|
||||
{
|
||||
torch::Tensor& cos_sin_cache, // [max_position, rot_dim]
|
||||
bool is_neox) {
|
||||
int num_tokens = query.size(0);
|
||||
int rot_dim = cos_sin_cache.size(1);
|
||||
int num_heads = query.size(1) / head_size;
|
||||
@ -87,18 +96,32 @@ void rotary_embedding_neox(
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
VLLM_DISPATCH_FLOATING_TYPES(
|
||||
query.scalar_type(),
|
||||
"rotary_embedding_neox",
|
||||
"rotary_embedding",
|
||||
[&] {
|
||||
vllm::rotary_embedding_neox_kernel<scalar_t><<<grid, block, 0, stream>>>(
|
||||
positions.data_ptr<int64_t>(),
|
||||
query.data_ptr<scalar_t>(),
|
||||
key.data_ptr<scalar_t>(),
|
||||
cos_sin_cache.data_ptr<scalar_t>(),
|
||||
rot_dim,
|
||||
query_stride,
|
||||
key_stride,
|
||||
num_heads,
|
||||
num_kv_heads,
|
||||
head_size);
|
||||
if (is_neox) {
|
||||
vllm::rotary_embedding_kernel<scalar_t, true><<<grid, block, 0, stream>>>(
|
||||
positions.data_ptr<int64_t>(),
|
||||
query.data_ptr<scalar_t>(),
|
||||
key.data_ptr<scalar_t>(),
|
||||
cos_sin_cache.data_ptr<scalar_t>(),
|
||||
rot_dim,
|
||||
query_stride,
|
||||
key_stride,
|
||||
num_heads,
|
||||
num_kv_heads,
|
||||
head_size);
|
||||
} else {
|
||||
vllm::rotary_embedding_kernel<scalar_t, false><<<grid, block, 0, stream>>>(
|
||||
positions.data_ptr<int64_t>(),
|
||||
query.data_ptr<scalar_t>(),
|
||||
key.data_ptr<scalar_t>(),
|
||||
cos_sin_cache.data_ptr<scalar_t>(),
|
||||
rot_dim,
|
||||
query_stride,
|
||||
key_stride,
|
||||
num_heads,
|
||||
num_kv_heads,
|
||||
head_size);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
@ -7,49 +7,64 @@ import torch.nn.functional as F
|
||||
|
||||
from vllm import pos_encoding_ops
|
||||
|
||||
IS_NEOX_STYLE = [True, False]
|
||||
DTYPES = [torch.half, torch.bfloat16, torch.float]
|
||||
HEAD_SIZES = [64, 80, 96, 112, 128, 256]
|
||||
ROTARY_DIMS = [None, 32] # None means rotary dim == head size
|
||||
NUM_HEADS = [7, 12, 40, 52] # Arbitrary values for testing
|
||||
NUM_TOKENS = [7, 83, 2048] # Arbitrary values for testing
|
||||
NUM_TOKENS = [11, 83, 2048] # Arbitrary values for testing
|
||||
SEEDS = [0]
|
||||
|
||||
|
||||
def rotate_half(x: torch.Tensor) -> torch.Tensor:
|
||||
def rotate_neox(x: torch.Tensor) -> torch.Tensor:
|
||||
x1 = x[..., :x.shape[-1] // 2]
|
||||
x2 = x[..., x.shape[-1] // 2:]
|
||||
return torch.cat((-x2, x1), dim=-1)
|
||||
|
||||
|
||||
def apply_rotary_pos_emb(
|
||||
def rotate_gptj(x: torch.Tensor) -> torch.Tensor:
|
||||
x1 = x[..., ::2]
|
||||
x2 = x[..., 1::2]
|
||||
x = torch.stack((-x2, x1), dim=-1)
|
||||
return x.flatten(-2)
|
||||
|
||||
|
||||
def apply_rope(
|
||||
q: torch.Tensor,
|
||||
k: torch.Tensor,
|
||||
cos: torch.Tensor,
|
||||
sin: torch.Tensor,
|
||||
is_neox_style: bool,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
q_embed = (q * cos) + (rotate_half(q) * sin)
|
||||
k_embed = (k * cos) + (rotate_half(k) * sin)
|
||||
rotate_fn = rotate_neox if is_neox_style else rotate_gptj
|
||||
q_embed = (q * cos) + (rotate_fn(q) * sin)
|
||||
k_embed = (k * cos) + (rotate_fn(k) * sin)
|
||||
return q_embed, k_embed
|
||||
|
||||
|
||||
class RefRotaryEmbeddingNeox(nn.Module):
|
||||
"""Reference implementation of the GPT-NeoX style rotary embedding."""
|
||||
class RefRotaryEmbedding(nn.Module):
|
||||
"""Reference implementation of rotary embedding."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
max_position_embeddings: int = 2048,
|
||||
is_neox_style: bool,
|
||||
max_position_embeddings: int = 8192,
|
||||
base: int = 10000,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.rotary_dim = dim
|
||||
self.is_neox_style = is_neox_style
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
|
||||
# Create cos and sin embeddings.
|
||||
inv_freq = 1.0 / (base**(torch.arange(0, dim, 2) / dim))
|
||||
t = torch.arange(max_position_embeddings).float()
|
||||
freqs = torch.einsum("i,j->ij", t, inv_freq.float())
|
||||
emb = torch.cat((freqs, freqs), dim=-1)
|
||||
if is_neox_style:
|
||||
emb = torch.cat((freqs, freqs), dim=-1)
|
||||
else:
|
||||
emb = torch.repeat_interleave(freqs, 2, -1)
|
||||
cos = emb.cos().to(dtype=inv_freq.dtype)
|
||||
sin = emb.sin().to(dtype=inv_freq.dtype)
|
||||
self.register_buffer("cos_cached", cos, persistent=False)
|
||||
@ -61,7 +76,6 @@ class RefRotaryEmbeddingNeox(nn.Module):
|
||||
query: torch.Tensor, # [num_tokens, num_heads, head_size]
|
||||
key: torch.Tensor, # [num_tokens, num_heads, head_size]
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
|
||||
query_rot = query[..., :self.rotary_dim]
|
||||
query_pass = query[..., self.rotary_dim:]
|
||||
key_rot = key[..., :self.rotary_dim]
|
||||
@ -71,7 +85,9 @@ class RefRotaryEmbeddingNeox(nn.Module):
|
||||
key_rot = key_rot.transpose(0, 1)
|
||||
cos = F.embedding(positions, self.cos_cached)
|
||||
sin = F.embedding(positions, self.sin_cached)
|
||||
query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin)
|
||||
|
||||
query_rot, key_rot = apply_rope(query_rot, key_rot, cos, sin,
|
||||
self.is_neox_style)
|
||||
query_rot = query_rot.transpose(0, 1).contiguous()
|
||||
key_rot = key_rot.transpose(0, 1).contiguous()
|
||||
|
||||
@ -82,6 +98,7 @@ class RefRotaryEmbeddingNeox(nn.Module):
|
||||
return query, key
|
||||
|
||||
|
||||
@pytest.mark.parametrize("is_neox_style", IS_NEOX_STYLE)
|
||||
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
|
||||
@pytest.mark.parametrize("num_heads", NUM_HEADS)
|
||||
@pytest.mark.parametrize("head_size", HEAD_SIZES)
|
||||
@ -89,7 +106,8 @@ class RefRotaryEmbeddingNeox(nn.Module):
|
||||
@pytest.mark.parametrize("dtype", DTYPES)
|
||||
@pytest.mark.parametrize("seed", SEEDS)
|
||||
@torch.inference_mode()
|
||||
def test_rotary_embedding_neox(
|
||||
def test_rotary_embedding(
|
||||
is_neox_style: bool,
|
||||
num_tokens: int,
|
||||
num_heads: int,
|
||||
head_size: int,
|
||||
@ -104,15 +122,15 @@ def test_rotary_embedding_neox(
|
||||
torch.random.manual_seed(seed)
|
||||
torch.cuda.manual_seed(seed)
|
||||
|
||||
positions = torch.randint(0, max_position, (num_tokens, ), device='cuda')
|
||||
positions = torch.randint(0, max_position, (num_tokens, ), device="cuda")
|
||||
query = torch.randn(num_tokens,
|
||||
num_heads * head_size,
|
||||
dtype=dtype,
|
||||
device='cuda')
|
||||
device="cuda")
|
||||
key = torch.randn(num_tokens,
|
||||
num_heads * head_size,
|
||||
dtype=dtype,
|
||||
device='cuda')
|
||||
device="cuda")
|
||||
|
||||
# Create the rotary embedding.
|
||||
inv_freq = 1.0 / (base**(torch.arange(0, rotary_dim, 2) / rotary_dim))
|
||||
@ -126,20 +144,22 @@ def test_rotary_embedding_neox(
|
||||
# Run the kernel. The kernel is in-place, so we need to clone the inputs.
|
||||
out_query = query.clone()
|
||||
out_key = key.clone()
|
||||
pos_encoding_ops.rotary_embedding_neox(
|
||||
pos_encoding_ops.rotary_embedding(
|
||||
positions,
|
||||
out_query,
|
||||
out_key,
|
||||
head_size,
|
||||
cos_sin_cache,
|
||||
is_neox_style,
|
||||
)
|
||||
|
||||
# Run the reference implementation.
|
||||
ref_rotary_embedding = RefRotaryEmbeddingNeox(
|
||||
ref_rotary_embedding = RefRotaryEmbedding(
|
||||
dim=rotary_dim,
|
||||
is_neox_style=is_neox_style,
|
||||
max_position_embeddings=max_position,
|
||||
base=base,
|
||||
).to(dtype=dtype, device='cuda')
|
||||
).to(dtype=dtype, device="cuda")
|
||||
ref_query, ref_key = ref_rotary_embedding(
|
||||
positions,
|
||||
query.view(num_tokens, num_heads, head_size),
|
||||
|
||||
@ -242,7 +242,7 @@ class PagedAttention(nn.Module):
|
||||
|
||||
|
||||
class PagedAttentionWithRoPE(PagedAttention):
|
||||
"""PagedAttention with GPT-NeoX style rotary embedding."""
|
||||
"""PagedAttention with rotary embedding."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
@ -253,8 +253,10 @@ class PagedAttentionWithRoPE(PagedAttention):
|
||||
max_position: int = 8192,
|
||||
base: int = 10000,
|
||||
num_kv_heads: Optional[int] = None,
|
||||
is_neox_style: bool = True,
|
||||
) -> None:
|
||||
super().__init__(num_heads, head_size, scale, num_kv_heads)
|
||||
self.is_neox_style = is_neox_style
|
||||
|
||||
# Create the cos and sin cache.
|
||||
inv_freq = 1.0 / (base**(torch.arange(0, rotary_dim, 2) / rotary_dim))
|
||||
@ -303,12 +305,13 @@ class PagedAttentionWithRoPE(PagedAttention):
|
||||
|
||||
# Apply rotary embedding to the query and key before passing them
|
||||
# to the attention op.
|
||||
pos_encoding_ops.rotary_embedding_neox(
|
||||
pos_encoding_ops.rotary_embedding(
|
||||
positions,
|
||||
query,
|
||||
key,
|
||||
self.head_size,
|
||||
self.cos_sin_cache,
|
||||
self.is_neox_style,
|
||||
)
|
||||
return super().forward(
|
||||
query,
|
||||
|
||||
@ -67,8 +67,11 @@ class GPTJAttention(nn.Module):
|
||||
scaling = self.head_size**-0.5
|
||||
assert getattr(config, "rotary", True)
|
||||
assert config.rotary_dim % 2 == 0
|
||||
self.attn = PagedAttentionWithRoPE(self.num_heads, self.head_size,
|
||||
scaling, config.rotary_dim)
|
||||
self.attn = PagedAttentionWithRoPE(self.num_heads,
|
||||
self.head_size,
|
||||
scaling,
|
||||
config.rotary_dim,
|
||||
is_neox_style=False)
|
||||
self.warmup = False
|
||||
|
||||
def forward(
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user