Merge branch 'main' into copilot/disable-batched-triton-kernel

Signed-off-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
This commit is contained in:
Tyler Michael Smith 2025-12-01 15:59:27 +00:00
commit 320e717c80
1494 changed files with 99168 additions and 37377 deletions

View File

@ -1,46 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import os
template = """<!DOCTYPE html>
<html>
<body>
<h1>Links for vLLM</h1/>
<a href="../{x86_wheel_html_escaped}">{x86_wheel}</a><br/>
<a href="../{arm_wheel_html_escaped}">{arm_wheel}</a><br/>
</body>
</html>
"""
parser = argparse.ArgumentParser()
parser.add_argument("--wheel", help="The wheel path.", required=True)
args = parser.parse_args()
filename = os.path.basename(args.wheel)
with open("index.html", "w") as f:
print(f"Generated index.html for {args.wheel}")
# sync the abi tag with .buildkite/scripts/upload-wheels.sh
if "x86_64" in filename:
x86_wheel = filename
arm_wheel = filename.replace("x86_64", "aarch64").replace(
"manylinux1", "manylinux2014"
)
elif "aarch64" in filename:
x86_wheel = filename.replace("aarch64", "x86_64").replace(
"manylinux2014", "manylinux1"
)
arm_wheel = filename
else:
raise ValueError(f"Unsupported wheel: {filename}")
# cloudfront requires escaping the '+' character
f.write(
template.format(
x86_wheel=x86_wheel,
x86_wheel_html_escaped=x86_wheel.replace("+", "%2B"),
arm_wheel=arm_wheel,
arm_wheel_html_escaped=arm_wheel.replace("+", "%2B"),
)
)

View File

@ -1,12 +0,0 @@
# For vllm script, with -t option (tensor parallel size).
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Qwen2-1.5B-Instruct-W8A16-Channelwise -b "auto" -l 1000 -f 5 -t 1
model_name: "nm-testing/Qwen2-1.5B-Instruct-W8A16-Channelwise"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.595
- name: "exact_match,flexible-extract"
value: 0.582
limit: 1000
num_fewshot: 5

View File

@ -0,0 +1,14 @@
model_name: "Qwen/Qwen3-235B-A22B-Instruct-2507-FP8"
tasks:
- name: "mmlu_pro"
metrics:
- name: "exact_match,custom-extract"
value: 0.82
limit: 250 # will run on 250 * 14 subjects = 3500 samples
num_fewshot: 5
enforce_eager: false # we use false to speed up the eval process
kv_cache_dtype: fp8 # we use fp8 to speed up the eval process
max_model_len: 40960
apply_chat_template: true
fewshot_as_multiturn: true
gen_kwargs: "temperature=0,top_p=1,top_k=0,max_gen_toks=5632,until=<|ENDANSWER|>"

View File

@ -1 +0,0 @@
Meta-Llama-4-Maverick-17B-128E-Instruct-FP8.yaml

View File

@ -0,0 +1 @@
Qwen3-235B-A22B-Instruct-2507-FP8.yaml

View File

@ -21,10 +21,13 @@ def launch_lm_eval(eval_config, tp_size):
max_model_len = eval_config.get("max_model_len", 4096)
batch_size = eval_config.get("batch_size", "auto")
backend = eval_config.get("backend", "vllm")
enforce_eager = eval_config.get("enforce_eager", "true")
kv_cache_dtype = eval_config.get("kv_cache_dtype", "auto")
model_args = (
f"pretrained={eval_config['model_name']},"
f"tensor_parallel_size={tp_size},"
f"enforce_eager=true,"
f"enforce_eager={enforce_eager},"
f"kv_cache_dtype={kv_cache_dtype},"
f"add_bos_token=true,"
f"trust_remote_code={trust_remote_code},"
f"max_model_len={max_model_len},"
@ -37,8 +40,13 @@ def launch_lm_eval(eval_config, tp_size):
limit=eval_config["limit"],
# TODO(yeq): using chat template w/ fewshot_as_multiturn is supposed help
# text models. however, this is regressing measured strict-match for
# existing text models in CI, so only apply it for mm.
apply_chat_template=backend == "vllm-vlm",
# existing text models in CI, so only apply it for mm, or explicitly set
apply_chat_template=eval_config.get(
"apply_chat_template", backend == "vllm-vlm"
),
fewshot_as_multiturn=eval_config.get("fewshot_as_multiturn", False),
# Forward decoding and early-stop controls (e.g., max_gen_toks, until=...)
gen_kwargs=eval_config.get("gen_kwargs"),
batch_size=batch_size,
)
return results

View File

@ -1,184 +0,0 @@
steps:
- label: "Wait for container to be ready"
key: wait-for-container-image
agents:
queue: A100
plugins:
- kubernetes:
podSpec:
containers:
- image: badouralix/curl-jq
command:
- sh .buildkite/nightly-benchmarks/scripts/wait-for-image.sh
- label: "Cleanup H100"
agents:
queue: H100
depends_on: ~
command: docker system prune -a --volumes --force
- label: "A100"
# skip: "use this flag to conditionally skip the benchmark step, useful for PR testing"
agents:
queue: A100
depends_on: wait-for-container-image
if: build.branch == "main"
plugins:
- kubernetes:
podSpec:
priorityClassName: perf-benchmark
containers:
- image: public.ecr.aws/q9t5s3a7/vllm-ci-postmerge-repo:$BUILDKITE_COMMIT
command:
- bash .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
resources:
limits:
nvidia.com/gpu: 8
volumeMounts:
- name: devshm
mountPath: /dev/shm
env:
- name: VLLM_USAGE_SOURCE
value: ci-test
- name: HF_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
nodeSelector:
nvidia.com/gpu.product: NVIDIA-A100-SXM4-80GB
volumes:
- name: devshm
emptyDir:
medium: Memory
- label: "H200"
# skip: "use this flag to conditionally skip the benchmark step, useful for PR testing"
agents:
queue: H200
depends_on: wait-for-container-image
if: build.branch == "main"
plugins:
- docker#v5.12.0:
image: public.ecr.aws/q9t5s3a7/vllm-ci-postmerge-repo:$BUILDKITE_COMMIT
command:
- bash
- .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
mount-buildkite-agent: true
propagate-environment: true
ipc: host
gpus: 4,5,6,7
volumes:
- /data/benchmark-hf-cache:/root/.cache/huggingface
environment:
- VLLM_USAGE_SOURCE
- HF_TOKEN
#- block: "Run H100 Benchmark"
#key: block-h100
#depends_on: ~
- label: "H100"
# skip: "use this flag to conditionally skip the benchmark step, useful for PR testing"
agents:
queue: H100
depends_on: wait-for-container-image
if: build.branch == "main"
plugins:
- docker#v5.12.0:
image: public.ecr.aws/q9t5s3a7/vllm-ci-postmerge-repo:$BUILDKITE_COMMIT
command:
- bash
- .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
mount-buildkite-agent: true
propagate-environment: true
ipc: host
gpus: all # see CUDA_VISIBLE_DEVICES for actual GPUs used
volumes:
- /data/benchmark-hf-cache:/root/.cache/huggingface
environment:
- VLLM_USAGE_SOURCE
- HF_TOKEN
# Premerge benchmark
- label: "A100"
# skip: "use this flag to conditionally skip the benchmark step, useful for PR testing"
agents:
queue: A100
depends_on: wait-for-container-image
if: build.branch != "main"
plugins:
- kubernetes:
podSpec:
priorityClassName: perf-benchmark
containers:
- image: public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:$BUILDKITE_COMMIT
command:
- bash .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
resources:
limits:
nvidia.com/gpu: 8
volumeMounts:
- name: devshm
mountPath: /dev/shm
env:
- name: VLLM_USAGE_SOURCE
value: ci-test
- name: HF_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
nodeSelector:
nvidia.com/gpu.product: NVIDIA-A100-SXM4-80GB
volumes:
- name: devshm
emptyDir:
medium: Memory
- label: "H200"
# skip: "use this flag to conditionally skip the benchmark step, useful for PR testing"
agents:
queue: H200
depends_on: wait-for-container-image
if: build.branch != "main"
plugins:
- docker#v5.12.0:
image: public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:$BUILDKITE_COMMIT
command:
- bash
- .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
mount-buildkite-agent: true
propagate-environment: true
ipc: host
gpus: 4,5,6,7
volumes:
- /data/benchmark-hf-cache:/root/.cache/huggingface
environment:
- VLLM_USAGE_SOURCE
- HF_TOKEN
#- block: "Run H100 Benchmark"
#key: block-h100
#depends_on: ~
- label: "H100"
# skip: "use this flag to conditionally skip the benchmark step, useful for PR testing"
agents:
queue: H100
depends_on: wait-for-container-image
if: build.branch != "main"
plugins:
- docker#v5.12.0:
image: public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:$BUILDKITE_COMMIT
command:
- bash
- .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
mount-buildkite-agent: true
propagate-environment: true
ipc: host
gpus: all # see CUDA_VISIBLE_DEVICES for actual GPUs used
volumes:
- /data/benchmark-hf-cache:/root/.cache/huggingface
environment:
- VLLM_USAGE_SOURCE
- HF_TOKEN

View File

@ -1,28 +0,0 @@
# Nightly benchmark annotation
## Description
This file contains the downloading link for benchmarking results.
- [benchmarking pipeline](artifact://nightly-pipeline.yaml)
- [benchmarking results](artifact://results.zip)
- [benchmarking code](artifact://nightly-benchmarks.zip)
Please download the visualization scripts in the post
## Results reproduction
- Find the docker we use in `benchmarking pipeline`
- Deploy the docker, and inside the docker:
- Download `nightly-benchmarks.zip`.
- In the same folder, run the following code:
```bash
export HF_TOKEN=<your HF token>
apt update
apt install -y git
unzip nightly-benchmarks.zip
VLLM_SOURCE_CODE_LOC=./ bash .buildkite/nightly-benchmarks/scripts/run-nightly-benchmarks.sh
```
And the results will be inside `./benchmarks/results`.

View File

@ -1,39 +0,0 @@
# Nightly benchmark
This benchmark aims to:
- Provide performance clarity: Provide clarity on which one (vllm, tensorrt-llm, lmdeploy and SGLang) leads in performance in what workload.
- Be reproducible: one can run the exact same set of benchmarking commands inside the exact same docker by following reproducing instructions.
Latest results: [results link](https://blog.vllm.ai/2024/09/05/perf-update.html), scroll to the end.
Latest reproduction guide: [github issue link](https://github.com/vllm-project/vllm/issues/8176)
## Setup
- Docker images:
- vLLM: `vllm/vllm-openai:v0.6.2`
- SGLang: `lmsysorg/sglang:v0.3.2-cu121`
- LMDeploy: `openmmlab/lmdeploy:v0.6.1-cu12`
- TensorRT-LLM: `nvcr.io/nvidia/tritonserver:24.07-trtllm-python-py3`
- *NOTE: we use r24.07 as the current implementation only works for this version. We are going to bump this up.*
- Check [nightly-pipeline.yaml](nightly-pipeline.yaml) for the concrete docker images, specs and commands we use for the benchmark.
- Hardware
- 8x Nvidia A100 GPUs
- Workload:
- Dataset
- ShareGPT dataset
- Prefill-heavy dataset (in average 462 input tokens, 16 tokens as output)
- Decode-heavy dataset (in average 462 input tokens, 256 output tokens)
- Check [nightly-tests.json](tests/nightly-tests.json) for the concrete configuration of datasets we use.
- Models: llama-3 8B, llama-3 70B.
- We do not use llama 3.1 as it is incompatible with trt-llm r24.07. ([issue](https://github.com/NVIDIA/TensorRT-LLM/issues/2105)).
- Average QPS (query per second): 2, 4, 8, 16, 32 and inf.
- Queries are randomly sampled, and arrival patterns are determined via Poisson process, but all with fixed random seed.
- Evaluation metrics: Throughput (higher the better), TTFT (time to the first token, lower the better), ITL (inter-token latency, lower the better).
## Known issues
- TRT-LLM crashes with Llama 3.1 8B [issue](https://github.com/NVIDIA/TensorRT-LLM/issues/2105).
- TGI does not support `ignore-eos` flag.

View File

@ -1,196 +0,0 @@
common_pod_spec: &common_pod_spec
priorityClassName: perf-benchmark
nodeSelector:
nvidia.com/gpu.product: NVIDIA-A100-SXM4-80GB
volumes:
- name: devshm
emptyDir:
medium: Memory
- name: hf-cache
hostPath:
path: /root/.cache/huggingface
type: Directory
common_container_settings: &common_container_settings
command:
- bash .buildkite/nightly-benchmarks/scripts/run-nightly-benchmarks.sh
resources:
limits:
nvidia.com/gpu: 8
volumeMounts:
- name: devshm
mountPath: /dev/shm
- name: hf-cache
mountPath: /root/.cache/huggingface
env:
- name: VLLM_USAGE_SOURCE
value: ci-test
- name: HF_HOME
value: /root/.cache/huggingface
- name: VLLM_SOURCE_CODE_LOC
value: /workspace/build/buildkite/vllm/performance-benchmark
- name: HF_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
steps:
- block: ":rocket: Ready for comparing vllm against alternatives? This will take 4 hours."
- label: "A100 vllm step 10"
priority: 100
agents:
queue: A100
plugins:
- kubernetes:
podSpec:
<<: *common_pod_spec
containers:
- image: vllm/vllm-openai:v0.6.2
<<: *common_container_settings
- label: "A100 sglang benchmark"
priority: 100
agents:
queue: A100
plugins:
- kubernetes:
podSpec:
<<: *common_pod_spec
containers:
- image: lmsysorg/sglang:v0.3.2-cu121
<<: *common_container_settings
- label: "A100 lmdeploy benchmark"
priority: 100
agents:
queue: A100
plugins:
- kubernetes:
podSpec:
<<: *common_pod_spec
containers:
- image: openmmlab/lmdeploy:v0.6.1-cu12
<<: *common_container_settings
- label: "A100 trt llama-8B"
priority: 100
agents:
queue: A100
plugins:
- kubernetes:
podSpec:
<<: *common_pod_spec
containers:
- image: nvcr.io/nvidia/tritonserver:24.07-trtllm-python-py3
<<: *common_container_settings
env:
- name: VLLM_USAGE_SOURCE
value: ci-test
- name: HF_HOME
value: /root/.cache/huggingface
- name: VLLM_SOURCE_CODE_LOC
value: /workspace/build/buildkite/vllm/performance-benchmark
- name: HF_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
- name: TEST_SELECTOR
value: "llama8B"
- label: "A100 trt llama-70B"
priority: 100
agents:
queue: A100
plugins:
- kubernetes:
podSpec:
<<: *common_pod_spec
containers:
- image: nvcr.io/nvidia/tritonserver:24.07-trtllm-python-py3
<<: *common_container_settings
env:
- name: VLLM_USAGE_SOURCE
value: ci-test
- name: HF_HOME
value: /root/.cache/huggingface
- name: VLLM_SOURCE_CODE_LOC
value: /workspace/build/buildkite/vllm/performance-benchmark
- name: HF_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
- name: TEST_SELECTOR
value: "llama70B"
# FIXME(Kuntai): uncomment this after NVIDIA gives us their test docker image
# - label: "A100 trt benchmark"
# priority: 100
# agents:
# queue: A100
# plugins:
# - kubernetes:
# podSpec:
# <<: *common_pod_spec
# containers:
# - image: nvcr.io/nvidia/tritonserver:24.07-trtllm-python-py3
# <<: *common_container_settings
# FIXME(Kuntai): uncomment this after TGI supports `--ignore-eos`.
# - label: "A100 tgi benchmark"
# priority: 100
# agents:
# queue: A100
# plugins:
# - kubernetes:
# podSpec:
# <<: *common_pod_spec
# containers:
# - image: ghcr.io/huggingface/text-generation-inference:2.2.0
# <<: *common_container_settings
- wait
- label: "Collect the results"
priority: 100
agents:
queue: A100
plugins:
- kubernetes:
podSpec:
<<: *common_pod_spec
containers:
- image: vllm/vllm-openai:v0.5.0.post1
command:
- bash .buildkite/nightly-benchmarks/scripts/nightly-annotate.sh
resources:
limits:
nvidia.com/gpu: 8
volumeMounts:
- name: devshm
mountPath: /dev/shm
env:
- name: VLLM_USAGE_SOURCE
value: ci-test
- name: VLLM_SOURCE_CODE_LOC
value: /workspace/build/buildkite/vllm/performance-benchmark
- name: HF_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
- block: ":rocket: check the results!"

View File

@ -1,26 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
from transformers import AutoTokenizer
def main(model, cachedir):
# Load the tokenizer and save it to the specified directory
tokenizer = AutoTokenizer.from_pretrained(model)
tokenizer.save_pretrained(cachedir)
print(f"Tokenizer saved to {cachedir}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Download and save Hugging Face tokenizer"
)
parser.add_argument("--model", type=str, required=True, help="Name of the model")
parser.add_argument(
"--cachedir", type=str, required=True, help="Directory to save the tokenizer"
)
args = parser.parse_args()
main(args.model, args.cachedir)

View File

@ -1,97 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import json
from pathlib import Path
import numpy as np
import pandas as pd
from tabulate import tabulate
def parse_arguments():
parser = argparse.ArgumentParser(
description="Parse command line arguments for summary-nightly-results script."
)
parser.add_argument(
"--results-folder",
type=str,
required=True,
help="The folder where the results are stored.",
)
parser.add_argument(
"--description", type=str, required=True, help="Description of the results."
)
args = parser.parse_args()
return args
def get_perf(df, method, model, metric):
means = []
for qps in [2, 4, 8, 16, "inf"]:
target = df["Test name"].str.contains(model)
target = target & df["Engine"].str.contains(method)
target = target & df["Test name"].str.contains("qps_" + str(qps))
filtered_df = df[target]
if filtered_df.empty:
means.append(0.0)
else:
means.append(filtered_df[metric].values[0])
return np.array(means)
def get_perf_w_std(df, method, model, metric):
if metric in ["TTFT", "ITL"]:
mean = get_perf(df, method, model, "Mean " + metric + " (ms)")
mean = mean.tolist()
std = get_perf(df, method, model, "Std " + metric + " (ms)")
if std.mean() == 0:
std = None
success = get_perf(df, method, model, "Successful req.")
if std is not None:
std = std / np.sqrt(success)
std = std.tolist()
else:
assert metric == "Tput"
mean = get_perf(df, method, model, "Input Tput (tok/s)") + get_perf(
df, method, model, "Output Tput (tok/s)"
)
mean = mean.tolist()
std = None
return mean, std
def main(args):
results_folder = Path(args.results_folder)
results = []
# collect results
for test_file in results_folder.glob("*_nightly_results.json"):
with open(test_file) as f:
results = results + json.loads(f.read())
# generate markdown table
df = pd.DataFrame.from_dict(results)
md_table = tabulate(df, headers="keys", tablefmt="pipe", showindex=False)
with open(args.description) as f:
description = f.read()
description = description.format(nightly_results_benchmarking_table=md_table)
with open("nightly_results.md", "w") as f:
f.write(description)
if __name__ == "__main__":
args = parse_arguments()
main(args)

View File

@ -1,9 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from lmdeploy.serve.openai.api_client import APIClient
api_client = APIClient("http://localhost:8000")
model_name = api_client.available_models[0]
print(model_name)

View File

@ -1,78 +0,0 @@
#!/bin/bash
set -ex
set -o pipefail
main() {
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
(which jq) || (apt-get update && apt-get -y install jq)
(which zip) || (apt-get install -y zip)
if [ ! -f /workspace/buildkite-agent ]; then
echo "buildkite-agent binary not found. Skip plotting the results."
exit 0
fi
# initial annotation
#description="$VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/nightly-descriptions.md"
# download results
cd "$VLLM_SOURCE_CODE_LOC/benchmarks"
mkdir -p results/
/workspace/buildkite-agent artifact download 'results/*nightly_results.json' results/
ls
ls results/
# upload benchmark results
zip -r results.zip results/
/workspace/buildkite-agent artifact upload "results.zip"
# upload benchmarking scripts
cd "$VLLM_SOURCE_CODE_LOC/"
zip -r nightly-benchmarks.zip .buildkite/ benchmarks/
/workspace/buildkite-agent artifact upload "nightly-benchmarks.zip"
cd "$VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/"
# upload benchmarking pipeline
/workspace/buildkite-agent artifact upload "nightly-pipeline.yaml"
cd "$VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/"
/workspace/buildkite-agent annotate --style "success" --context "nightly-benchmarks-results" --append < nightly-annotation.md
# The figures should be generated by a separate process outside the CI/CD pipeline
# # generate figures
# python3 -m pip install tabulate pandas matplotlib
# python3 $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/scripts/generate-nightly-markdown.py \
# --description $description \
# --results-folder results/
# python3 $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/scripts/plot-nightly-results.py \
# --description $description \
# --results-folder results/ \
# --dataset sharegpt
# python3 $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/scripts/plot-nightly-results.py \
# --description $description \
# --results-folder results/ \
# --dataset sonnet_2048_128
# python3 $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/scripts/plot-nightly-results.py \
# --description $description \
# --results-folder results/ \
# --dataset sonnet_128_2048
# # upload results and figures
# /workspace/buildkite-agent artifact upload "nightly_results*.png"
# /workspace/buildkite-agent artifact upload $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/nightly-pipeline.yaml
# /workspace/buildkite-agent artifact upload $VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/tests/nightly-tests.json
# /workspace/buildkite-agent annotate --style "success" --context "nightly-benchmarks-results" --append < nightly_results.md
}
main "$@"

View File

@ -1,464 +0,0 @@
#!/bin/bash
set -o pipefail
set -x
check_gpus() {
# check the number of GPUs and GPU type.
declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l)
if [[ $gpu_count -gt 0 ]]; then
echo "GPU found."
else
echo "Need at least 1 GPU to run benchmarking."
exit 1
fi
declare -g gpu_type="$(nvidia-smi --query-gpu=name --format=csv,noheader | awk '{print $2}')"
echo "GPU type is $gpu_type"
}
check_hf_token() {
# check if HF_TOKEN is available and valid
if [[ -z "$HF_TOKEN" ]]; then
echo "Error: HF_TOKEN is not set."
exit 1
elif [[ ! "$HF_TOKEN" =~ ^hf_ ]]; then
echo "Error: HF_TOKEN does not start with 'hf_'."
exit 1
else
echo "HF_TOKEN is set and valid."
fi
}
upload_to_buildkite() {
# upload the benchmarking results to buildkite
# if the agent binary is not found, skip uploading the results, exit 0
if [ ! -f /workspace/buildkite-agent ]; then
echo "buildkite-agent binary not found. Skip uploading the results."
return 0
fi
# /workspace/buildkite-agent annotate --style "success" --context "benchmark-results" --append < $RESULTS_FOLDER/${CURRENT_LLM_SERVING_ENGINE}_nightly_results.md
/workspace/buildkite-agent artifact upload "$RESULTS_FOLDER/*"
}
get_current_llm_serving_engine() {
if which lmdeploy >/dev/null; then
echo "Container: lmdeploy"
export CURRENT_LLM_SERVING_ENGINE=lmdeploy
return
fi
if [ -e /tgi-entrypoint.sh ]; then
echo "Container: tgi"
export CURRENT_LLM_SERVING_ENGINE=tgi
return
fi
if which trtllm-build >/dev/null; then
echo "Container: tensorrt-llm"
export CURRENT_LLM_SERVING_ENGINE=trt
return
fi
if [ -e /sgl-workspace ]; then
echo "Container: sglang"
export CURRENT_LLM_SERVING_ENGINE=sglang
return
fi
if [ -e /vllm-workspace ]; then
echo "Container: vllm"
# move to a completely irrelevant directory, to avoid import vllm from current folder
export CURRENT_LLM_SERVING_ENGINE=vllm
return
fi
}
json2args() {
# transforms the JSON string to command line args, and '_' is replaced to '-'
# example:
# input: { "model": "meta-llama/Llama-2-7b-chat-hf", "tensor_parallel_size": 1 }
# output: --model meta-llama/Llama-2-7b-chat-hf --tensor-parallel-size 1
local json_string=$1
local args=$(
echo "$json_string" | jq -r '
to_entries |
map("--" + (.key | gsub("_"; "-")) + " " + (.value | tostring)) |
join(" ")
'
)
echo "$args"
}
kill_gpu_processes() {
pkill -f '[p]ython'
pkill -f '[p]ython3'
pkill -f '[t]ritonserver'
pkill -f '[p]t_main_thread'
pkill -f '[t]ext-generation'
pkill -f '[l]mdeploy'
# vLLM now names the process with VLLM prefix after https://github.com/vllm-project/vllm/pull/21445
pkill -f '[V]LLM'
while [ "$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits | head -n 1)" -ge 1000 ]; do
sleep 1
done
}
wait_for_server() {
# wait for vllm server to start
# return 1 if vllm server crashes
timeout 1200 bash -c '
until curl -s localhost:8000/v1/completions > /dev/null; do
sleep 1
done' && return 0 || return 1
}
ensure_installed() {
# Ensure that the given command is installed by apt-get
local cmd=$1
if ! which "$cmd" >/dev/null; then
apt-get update && apt-get install -y "$cmd"
fi
}
run_serving_tests() {
# run serving tests using `vllm bench serve` command
# $1: a json file specifying serving test cases
local serving_test_file
serving_test_file=$1
# Iterate over serving tests
jq -c '.[]' "$serving_test_file" | while read -r params; do
# get the test name, and append the GPU type back to it.
test_name=$(echo "$params" | jq -r '.test_name')
# if TEST_SELECTOR is set, only run the test cases that match the selector
if [[ -n "$TEST_SELECTOR" ]] && [[ ! "$test_name" =~ $TEST_SELECTOR ]]; then
echo "Skip test case $test_name."
continue
fi
# prepend the current serving engine to the test name
test_name=${CURRENT_LLM_SERVING_ENGINE}_${test_name}
# get common parameters
common_params=$(echo "$params" | jq -r '.common_parameters')
model=$(echo "$common_params" | jq -r '.model')
tp=$(echo "$common_params" | jq -r '.tp')
dataset_name=$(echo "$common_params" | jq -r '.dataset_name')
dataset_path=$(echo "$common_params" | jq -r '.dataset_path')
port=$(echo "$common_params" | jq -r '.port')
num_prompts=$(echo "$common_params" | jq -r '.num_prompts')
reuse_server=$(echo "$common_params" | jq -r '.reuse_server')
# get client and server arguments
server_params=$(echo "$params" | jq -r ".${CURRENT_LLM_SERVING_ENGINE}_server_parameters")
client_params=$(echo "$params" | jq -r ".${CURRENT_LLM_SERVING_ENGINE}_client_parameters")
client_args=$(json2args "$client_params")
qps_list=$(echo "$params" | jq -r '.qps_list')
qps_list=$(echo "$qps_list" | jq -r '.[] | @sh')
echo "Running over qps list $qps_list"
# check if there is enough GPU to run the test
if [[ $gpu_count -lt $tp ]]; then
echo "Required num-shard $tp but only $gpu_count GPU found. Skip testcase $test_name."
continue
fi
if [[ $reuse_server == "true" ]]; then
echo "Reuse previous server for test case $test_name"
else
kill_gpu_processes
bash "$VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/scripts/launch-server.sh" \
"$server_params" "$common_params"
fi
if wait_for_server; then
echo ""
echo "$CURRENT_LLM_SERVING_ENGINE server is up and running."
else
echo ""
echo "$CURRENT_LLM_SERVING_ENGINE failed to start within the timeout period."
break
fi
# prepare tokenizer
# this is required for lmdeploy.
cd "$VLLM_SOURCE_CODE_LOC/benchmarks"
rm -rf /tokenizer_cache
mkdir /tokenizer_cache
python3 ../.buildkite/nightly-benchmarks/scripts/download-tokenizer.py \
--model "$model" \
--cachedir /tokenizer_cache
cd "$VLLM_SOURCE_CODE_LOC/benchmarks"
# change model name for lmdeploy (it will not follow standard hf name)
if [[ "$CURRENT_LLM_SERVING_ENGINE" == "lmdeploy" ]]; then
model=$(python ../.buildkite/nightly-benchmarks/scripts/get-lmdeploy-modelname.py)
fi
# iterate over different QPS
for qps in $qps_list; do
# remove the surrounding single quote from qps
if [[ "$qps" == *"inf"* ]]; then
echo "qps was $qps"
qps="inf"
echo "now qps is $qps"
fi
new_test_name=$test_name"_qps_"$qps
backend=$CURRENT_LLM_SERVING_ENGINE
if [[ $backend = "trt" ]]; then
backend="tensorrt-llm"
fi
if [[ "$backend" == *"vllm"* ]]; then
backend="vllm"
fi
if [[ "$dataset_name" = "sharegpt" ]]; then
client_command="vllm bench serve \
--backend $backend \
--tokenizer /tokenizer_cache \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--num-prompts $num_prompts \
--port $port \
--save-result \
--result-dir $RESULTS_FOLDER \
--result-filename ${new_test_name}.json \
--request-rate $qps \
--ignore-eos \
$client_args"
elif [[ "$dataset_name" = "sonnet" ]]; then
sonnet_input_len=$(echo "$common_params" | jq -r '.sonnet_input_len')
sonnet_output_len=$(echo "$common_params" | jq -r '.sonnet_output_len')
sonnet_prefix_len=$(echo "$common_params" | jq -r '.sonnet_prefix_len')
client_command="vllm bench serve \
--backend $backend \
--tokenizer /tokenizer_cache \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--num-prompts $num_prompts \
--sonnet-input-len $sonnet_input_len \
--sonnet-output-len $sonnet_output_len \
--sonnet-prefix-len $sonnet_prefix_len \
--port $port \
--save-result \
--result-dir $RESULTS_FOLDER \
--result-filename ${new_test_name}.json \
--request-rate $qps \
--ignore-eos \
$client_args"
else
echo "The dataset name must be either 'sharegpt' or 'sonnet'. Got $dataset_name."
exit 1
fi
echo "Running test case $test_name with qps $qps"
echo "Client command: $client_command"
eval "$client_command"
server_command="None"
# record the benchmarking commands
jq_output=$(jq -n \
--arg server "$server_command" \
--arg client "$client_command" \
--arg gpu "$gpu_type" \
--arg engine "$CURRENT_LLM_SERVING_ENGINE" \
'{
server_command: $server,
client_command: $client,
gpu_type: $gpu,
engine: $engine
}')
echo "$jq_output" >"$RESULTS_FOLDER/${new_test_name}.commands"
done
done
kill_gpu_processes
}
run_genai_perf_tests() {
# run genai-perf tests
# $1: a json file specifying genai-perf test cases
local genai_perf_test_file
genai_perf_test_file=$1
# Iterate over genai-perf tests
jq -c '.[]' "$genai_perf_test_file" | while read -r params; do
# get the test name, and append the GPU type back to it.
test_name=$(echo "$params" | jq -r '.test_name')
# if TEST_SELECTOR is set, only run the test cases that match the selector
if [[ -n "$TEST_SELECTOR" ]] && [[ ! "$test_name" =~ $TEST_SELECTOR ]]; then
echo "Skip test case $test_name."
continue
fi
# prepend the current serving engine to the test name
test_name=${CURRENT_LLM_SERVING_ENGINE}_${test_name}
# get common parameters
common_params=$(echo "$params" | jq -r '.common_parameters')
model=$(echo "$common_params" | jq -r '.model')
tp=$(echo "$common_params" | jq -r '.tp')
dataset_name=$(echo "$common_params" | jq -r '.dataset_name')
dataset_path=$(echo "$common_params" | jq -r '.dataset_path')
port=$(echo "$common_params" | jq -r '.port')
num_prompts=$(echo "$common_params" | jq -r '.num_prompts')
reuse_server=$(echo "$common_params" | jq -r '.reuse_server')
# get client and server arguments
server_params=$(echo "$params" | jq -r ".${CURRENT_LLM_SERVING_ENGINE}_server_parameters")
qps_list=$(echo "$params" | jq -r '.qps_list')
qps_list=$(echo "$qps_list" | jq -r '.[] | @sh')
echo "Running over qps list $qps_list"
# check if there is enough GPU to run the test
if [[ $gpu_count -lt $tp ]]; then
echo "Required num-shard $tp but only $gpu_count GPU found. Skip testcase $test_name."
continue
fi
if [[ $reuse_server == "true" ]]; then
echo "Reuse previous server for test case $test_name"
else
kill_gpu_processes
bash "$VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/scripts/launch-server.sh" \
"$server_params" "$common_params"
fi
if wait_for_server; then
echo ""
echo "$CURRENT_LLM_SERVING_ENGINE server is up and running."
else
echo ""
echo "$CURRENT_LLM_SERVING_ENGINE failed to start within the timeout period."
break
fi
# iterate over different QPS
for qps in $qps_list; do
# remove the surrounding single quote from qps
if [[ "$qps" == *"inf"* ]]; then
echo "qps was $qps"
qps=$num_prompts
echo "now qps is $qps"
fi
new_test_name=$test_name"_qps_"$qps
backend=$CURRENT_LLM_SERVING_ENGINE
if [[ "$backend" == *"vllm"* ]]; then
backend="vllm"
fi
#TODO: add output dir.
client_command="genai-perf profile \
-m $model \
--service-kind openai \
--backend "$backend" \
--endpoint-type chat \
--streaming \
--url localhost:$port \
--request-rate $qps \
--num-prompts $num_prompts \
"
echo "Client command: $client_command"
eval "$client_command"
#TODO: process/record outputs
done
done
kill_gpu_processes
}
prepare_dataset() {
# download sharegpt dataset
cd "$VLLM_SOURCE_CODE_LOC/benchmarks"
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
# duplicate sonnet by 4x, to allow benchmarking with input length 2048
cd "$VLLM_SOURCE_CODE_LOC/benchmarks"
echo "" > sonnet_4x.txt
for _ in {1..4}
do
cat sonnet.txt >> sonnet_4x.txt
done
}
main() {
# check if the environment variable is successfully injected from yaml
check_gpus
check_hf_token
get_current_llm_serving_engine
pip install -U transformers
pip install -r requirements/dev.txt
which genai-perf
# check storage
df -h
ensure_installed wget
ensure_installed curl
ensure_installed jq
# genai-perf dependency
ensure_installed libb64-0d
prepare_dataset
cd "$VLLM_SOURCE_CODE_LOC/benchmarks"
declare -g RESULTS_FOLDER=results/
mkdir -p $RESULTS_FOLDER
BENCHMARK_ROOT="$VLLM_SOURCE_CODE_LOC/.buildkite/nightly-benchmarks/"
# run the test
run_serving_tests "$BENCHMARK_ROOT/tests/nightly-tests.json"
# run genai-perf tests
run_genai_perf_tests "$BENCHMARK_ROOT/tests/genai-perf-tests.json"
mv artifacts/ $RESULTS_FOLDER/
# upload benchmark results to buildkite
python3 -m pip install tabulate pandas
python3 "$BENCHMARK_ROOT/scripts/summary-nightly-results.py"
upload_to_buildkite
}
main "$@"

View File

@ -1,82 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import datetime
import json
import os
from pathlib import Path
import pandas as pd
from tabulate import tabulate
results_folder = Path("results/")
# serving results and the keys that will be printed into markdown
serving_results = []
serving_column_mapping = {
"test_name": "Test name",
"gpu_type": "GPU",
"completed": "Successful req.",
"request_throughput": "Tput (req/s)",
"mean_ttft_ms": "Mean TTFT (ms)",
"std_ttft_ms": "Std TTFT (ms)",
"median_ttft_ms": "Median TTFT (ms)",
"mean_itl_ms": "Mean ITL (ms)",
"std_itl_ms": "Std ITL (ms)",
"median_itl_ms": "Median ITL (ms)",
"mean_tpot_ms": "Mean TPOT (ms)",
"std_tpot_ms": "Std TPOT (ms)",
"median_tpot_ms": "Median TPOT (ms)",
"total_token_throughput": "Total Token Tput (tok/s)",
"output_throughput": "Output Tput (tok/s)",
"total_input_tokens": "Total input tokens",
"total_output_tokens": "Total output tokens",
"engine": "Engine",
}
if __name__ == "__main__":
# collect results
for test_file in results_folder.glob("*.json"):
with open(test_file) as f:
raw_result = json.loads(f.read())
# attach the benchmarking command to raw_result
with open(test_file.with_suffix(".commands")) as f:
command = json.loads(f.read())
raw_result.update(command)
# update the test name of this result
raw_result.update({"test_name": test_file.stem})
# add the result to raw_result
serving_results.append(raw_result)
continue
serving_results = pd.DataFrame.from_dict(serving_results)
if not serving_results.empty:
serving_results = serving_results[list(serving_column_mapping.keys())].rename(
columns=serving_column_mapping
)
serving_md_table_with_headers = tabulate(
serving_results, headers="keys", tablefmt="pipe", showindex=False
)
# remove the first line of header
serving_md_table_lines = serving_md_table_with_headers.split("\n")
serving_md_table_without_header = "\n".join(serving_md_table_lines[2:])
prefix = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
prefix = prefix + "_" + os.environ.get("CURRENT_LLM_SERVING_ENGINE")
# document benchmarking results in markdown
with open(results_folder / f"{prefix}_nightly_results.md", "w") as f:
# document results with header.
# for those who wants to reproduce our benchmark.
f.write(serving_md_table_with_headers)
f.write("\n")
# document benchmarking results in json
with open(results_folder / f"{prefix}_nightly_results.json", "w") as f:
results = serving_results.to_dict(orient="records")
f.write(json.dumps(results))

View File

@ -1,23 +0,0 @@
#!/bin/sh
TOKEN=$(curl -s -L "https://public.ecr.aws/token?service=public.ecr.aws&scope=repository:q9t5s3a7/vllm-ci-postmerge-repo:pull" | jq -r .token)
if [[ "$BUILDKITE_BRANCH" == "main" ]]; then
URL="https://public.ecr.aws/v2/q9t5s3a7/vllm-ci-postmerge-repo/manifests/$BUILDKITE_COMMIT"
else
URL="https://public.ecr.aws/v2/q9t5s3a7/vllm-ci-test-repo/manifests/$BUILDKITE_COMMIT"
fi
TIMEOUT_SECONDS=10
retries=0
while [ $retries -lt 1000 ]; do
if [ "$(curl -s --max-time "$TIMEOUT_SECONDS" -L -H "Authorization: Bearer $TOKEN" -o /dev/null -w "%{http_code}" "$URL")" -eq 200 ]; then
exit 0
fi
echo "Waiting for image to be available..."
retries=$((retries + 1))
sleep 5
done
exit 1

View File

@ -2,40 +2,23 @@
## Introduction
This directory contains two sets of benchmark for vllm.
- Performance benchmark: benchmark vllm's performance under various workload, for **developers** to gain clarity on whether their PR improves/degrades vllm's performance
- Nightly benchmark: compare vllm's performance against alternatives (tgi, trt-llm and lmdeploy), for **the public** to know when to choose vllm.
See [vLLM performance dashboard](https://hud.pytorch.org/benchmark/llms?repoName=vllm-project%2Fvllm) for the latest performance benchmark results and [vLLM GitHub README](https://github.com/vllm-project/vllm/blob/main/README.md) for latest nightly benchmark results.
This directory contains a benchmarking suite for **developers** to run locally and gain clarity on whether their PR improves/degrades vllm's performance.
vLLM also maintains a continuous performance benchmark under [perf.vllm.ai](https://perf.vllm.ai/), hosted under PyTorch CI HUD.
## Performance benchmark quick overview
**Benchmarking Coverage**: latency, throughput and fix-qps serving on A100 (the support for FP8 benchmark on H100 is coming!) and Intel® Xeon® Processors, with different models.
**Benchmarking Coverage**: latency, throughput and fix-qps serving on B200, A100, H100, Intel® Xeon® Processors and Intel® Gaudi® 3 Accelerators with different models.
**Benchmarking Duration**: about 1hr.
**For benchmarking developers**: please try your best to constraint the duration of benchmarking to about 1 hr so that it won't take forever to run.
## Nightly benchmark quick overview
**Benchmarking Coverage**: Fix-qps serving on A100 (the support for FP8 benchmark on H100 is coming!) on Llama-3 8B, 70B and Mixtral 8x7B.
**Benchmarking engines**: vllm, TGI, trt-llm and lmdeploy.
**Benchmarking Duration**: about 3.5hrs.
## Trigger the benchmark
Performance benchmark will be triggered when:
- A PR being merged into vllm.
- Every commit for those PRs with `perf-benchmarks` label AND `ready` label.
Manually Trigger the benchmark
The benchmark needs to be triggered manually:
```bash
bash .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
bash .buildkite/performance-benchmarks/scripts/run-performance-benchmarks.sh
```
Runtime environment variables:
@ -47,14 +30,11 @@ Runtime environment variables:
- `REMOTE_HOST`: IP for the remote vLLM service to benchmark. Default value is empty string.
- `REMOTE_PORT`: Port for the remote vLLM service to benchmark. Default value is empty string.
Nightly benchmark will be triggered when:
- Every commit for those PRs with `perf-benchmarks` label and `nightly-benchmarks` label.
## Performance benchmark details
See [performance-benchmarks-descriptions.md](performance-benchmarks-descriptions.md) for detailed descriptions, and use `tests/latency-tests.json`, `tests/throughput-tests.json`, `tests/serving-tests.json` to configure the test cases.
> NOTE: For Intel® Xeon® Processors, use `tests/latency-tests-cpu.json`, `tests/throughput-tests-cpu.json`, `tests/serving-tests-cpu.json` instead.
For Intel® Gaudi® 3 Accelerators, use `tests/latency-tests-hpu.json`, `tests/throughput-tests-hpu.json`, `tests/serving-tests-hpu.json` instead.
>
### Latency test
@ -152,26 +132,3 @@ Here is an example using the script to compare result_a and result_b with Model,
A comparison diagram will be generated below the table.
Here is an example to compare between 96c/results_gnr_96c_091_tp2pp3 and 128c/results_gnr_128c_091_tp2pp3
<img width="1886" height="828" alt="image" src="https://github.com/user-attachments/assets/c02a43ef-25d0-4fd6-90e5-2169a28682dd" />
## Nightly test details
See [nightly-descriptions.md](nightly-descriptions.md) for the detailed description on test workload, models and docker containers of benchmarking other llm engines.
### Workflow
- The [nightly-pipeline.yaml](nightly-pipeline.yaml) specifies the docker containers for different LLM serving engines.
- Inside each container, we run [scripts/run-nightly-benchmarks.sh](scripts/run-nightly-benchmarks.sh), which will probe the serving engine of the current container.
- The `scripts/run-nightly-benchmarks.sh` will parse the workload described in [nightly-tests.json](tests/nightly-tests.json) and launch the right benchmark for the specified serving engine via `scripts/launch-server.sh`.
- At last, we run [scripts/summary-nightly-results.py](scripts/summary-nightly-results.py) to collect and plot the final benchmarking results, and update the results to buildkite.
### Nightly tests
In [nightly-tests.json](tests/nightly-tests.json), we include the command line arguments for benchmarking commands, together with the benchmarking test cases. The format is highly similar to performance benchmark.
### Docker containers
The docker containers for benchmarking are specified in `nightly-pipeline.yaml`.
WARNING: the docker versions are HARD-CODED and SHOULD BE ALIGNED WITH `nightly-descriptions.md`. The docker versions need to be hard-coded as there are several version-specific bug fixes inside `scripts/run-nightly-benchmarks.sh` and `scripts/launch-server.sh`.
WARNING: populating `trt-llm` to latest version is not easy, as it requires updating several protobuf files in [tensorrt-demo](https://github.com/neuralmagic/tensorrt-demo.git).

View File

@ -5,7 +5,7 @@
- Input length: 32 tokens.
- Output length: 128 tokens.
- Batch size: fixed (8).
- GPU Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
- GPU/HPU Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
- CPU Models: llama-3.1 8B.
- Evaluation metrics: end-to-end latency (mean, median, p99).
@ -16,7 +16,7 @@
- Input length: randomly sample 200 prompts from ShareGPT dataset (with fixed random seed).
- Output length: the corresponding output length of these 200 prompts.
- Batch size: dynamically determined by vllm to achieve maximum throughput.
- GPU Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
- GPU/HPU Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
- CPU Models: llama-3.1 8B.
- Evaluation metrics: throughput.
@ -28,7 +28,7 @@
- Output length: the corresponding output length of these 200 prompts.
- Batch size: dynamically determined by vllm and the arrival pattern of the requests.
- **Average QPS (query per second)**: 1, 4, 16 and inf. QPS = inf means all requests come at once. For other QPS values, the arrival time of each query is determined using a random Poisson process (with fixed random seed).
- GPU Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
- GPU/HPU Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
- We also added a speculative decoding test for llama-3 70B on GPU, under QPS 2
- CPU Models: llama-3.1 8B.
- Evaluation metrics: throughput, TTFT (time to the first token, with mean, median and p99), ITL (inter-token latency, with mean, median and p99).

View File

@ -392,7 +392,7 @@ if __name__ == "__main__":
json_file = "benchmark_results.json"
with open(results_folder / md_file, "w") as f:
results = read_markdown(
"../.buildkite/nightly-benchmarks/"
"../.buildkite/performance-benchmarks/"
+ "performance-benchmarks-descriptions.md"
)
results = results.format(

View File

@ -15,6 +15,8 @@ check_gpus() {
declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l)
elif command -v amd-smi; then
declare -g gpu_count=$(amd-smi list | grep 'GPU' | wc -l)
elif command -v hl-smi; then
declare -g gpu_count=$(hl-smi --list | grep -i "Module ID" | wc -l)
fi
if [[ $gpu_count -gt 0 ]]; then
@ -23,10 +25,16 @@ check_gpus() {
echo "Need at least 1 GPU to run benchmarking."
exit 1
fi
declare -g arch_suffix=''
if command -v nvidia-smi; then
declare -g gpu_type=$(nvidia-smi --query-gpu=name --format=csv,noheader | awk '{print $2}')
elif command -v amd-smi; then
declare -g gpu_type=$(amd-smi static -g 0 -a | grep 'MARKET_NAME' | awk '{print $2}')
elif command -v hl-smi; then
declare -g gpu_type=$(hl-smi -q | grep "Product Name" | head -n 1 | awk -F ':' '{print $2}' | sed 's/^ *//')
arch_suffix='-hpu'
fi
echo "GPU type is $gpu_type"
}
@ -138,6 +146,10 @@ kill_gpu_processes() {
while [ "$(amd-smi metric -g 0 | grep 'USED_VRAM' | awk '{print $2}')" -ge 1000 ]; do
sleep 1
done
elif command -v hl-smi; then
while [ "$(hl-smi -q | grep "Used" | head -n 1 | awk '{print $3}')" -ge 1000 ]; do
sleep 1
done
fi
# remove vllm config file
@ -451,6 +463,7 @@ main() {
ARCH='-cpu'
else
check_gpus
ARCH="$arch_suffix"
fi
check_hf_token
@ -469,7 +482,7 @@ main() {
ensure_sharegpt_downloaded
declare -g RESULTS_FOLDER=results/
mkdir -p $RESULTS_FOLDER
QUICK_BENCHMARK_ROOT=../.buildkite/nightly-benchmarks/
QUICK_BENCHMARK_ROOT=../.buildkite/performance-benchmarks/
# dump vllm info via vllm collect-env
env_output=$(vllm collect-env)

View File

@ -0,0 +1,55 @@
[
{
"test_name": "latency_llama8B_tp1",
"environment_variables": {
"PT_HPU_LAZY_MODE": 1,
"VLLM_CONTIGUOUS_PA": 1,
"VLLM_DEFRAG": 1
},
"parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 1,
"load_format": "dummy",
"num-iters-warmup": 5,
"num-iters": 15,
"max-model-len": 256,
"async-scheduling": ""
}
},
{
"test_name": "latency_llama70B_tp4",
"environment_variables": {
"PT_HPU_LAZY_MODE": 1,
"PT_HPU_ENABLE_LAZY_COLLECTIVES": 1,
"VLLM_CONTIGUOUS_PA": 1,
"VLLM_DEFRAG": 1
},
"parameters": {
"model": "meta-llama/Meta-Llama-3.1-70B-Instruct",
"tensor_parallel_size": 4,
"load_format": "dummy",
"num-iters-warmup": 5,
"num-iters": 15,
"max-model-len": 256,
"async-scheduling": ""
}
},
{
"test_name": "latency_mixtral8x7B_tp2",
"environment_variables": {
"PT_HPU_LAZY_MODE": 1,
"PT_HPU_ENABLE_LAZY_COLLECTIVES": 1,
"VLLM_CONTIGUOUS_PA": 1,
"VLLM_DEFRAG": 1
},
"parameters": {
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"tensor_parallel_size": 2,
"load_format": "dummy",
"num-iters-warmup": 5,
"num-iters": 15,
"max-model-len": 256,
"async-scheduling": ""
}
}
]

View File

@ -0,0 +1,82 @@
[
{
"test_name": "serving_llama8B_tp1_sharegpt",
"qps_list": [1, 4, 16, "inf"],
"server_environment_variables": {
"PT_HPU_LAZY_MODE": 1,
"VLLM_CONTIGUOUS_PA": 1,
"VLLM_DEFRAG": 1
},
"server_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 1,
"swap_space": 16,
"disable_log_stats": "",
"load_format": "dummy",
"max-model-len": 2048,
"max-num-seqs": 256,
"async-scheduling": ""
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_llama70B_tp4_sharegpt",
"qps_list": [1, 4, 16, "inf"],
"server_environment_variables": {
"PT_HPU_LAZY_MODE": 1,
"PT_HPU_ENABLE_LAZY_COLLECTIVES": 1,
"VLLM_CONTIGUOUS_PA": 1,
"VLLM_DEFRAG": 1
},
"server_parameters": {
"model": "meta-llama/Meta-Llama-3.1-70B-Instruct",
"tensor_parallel_size": 4,
"swap_space": 16,
"disable_log_stats": "",
"load_format": "dummy",
"max-model-len": 2048,
"max-num-seqs": 256,
"async-scheduling": ""
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3.1-70B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
{
"test_name": "serving_mixtral8x7B_tp2_sharegpt",
"qps_list": [1, 4, 16, "inf"],
"server_environment_variables": {
"PT_HPU_LAZY_MODE": 1,
"PT_HPU_ENABLE_LAZY_COLLECTIVES": 1,
"VLLM_CONTIGUOUS_PA": 1,
"VLLM_DEFRAG": 1
},
"server_parameters": {
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"tensor_parallel_size": 2,
"swap_space": 16,
"disable_log_stats": "",
"load_format": "dummy",
"max-model-len": 2048,
"max-num-seqs": 256,
"async-scheduling": ""
},
"client_parameters": {
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
}
]

View File

@ -0,0 +1,61 @@
[
{
"test_name": "throughput_llama8B_tp1",
"environment_variables": {
"PT_HPU_LAZY_MODE": 1,
"VLLM_CONTIGUOUS_PA": 1,
"VLLM_DEFRAG": 1
},
"parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 1,
"load_format": "dummy",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 1000,
"backend": "vllm",
"max-model-len": 2048,
"max-num-seqs": 512,
"async-scheduling": ""
}
},
{
"test_name": "throughput_llama70B_tp4",
"environment_variables": {
"PT_HPU_LAZY_MODE": 1,
"PT_HPU_ENABLE_LAZY_COLLECTIVES": 1,
"VLLM_CONTIGUOUS_PA": 1,
"VLLM_DEFRAG": 1
},
"parameters": {
"model": "meta-llama/Meta-Llama-3.1-70B-Instruct",
"tensor_parallel_size": 4,
"load_format": "dummy",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 1000,
"backend": "vllm",
"max-model-len": 2048,
"max-num-seqs": 512,
"async-scheduling": ""
}
},
{
"test_name": "throughput_mixtral8x7B_tp2",
"environment_variables": {
"PT_HPU_LAZY_MODE": 1,
"PT_HPU_ENABLE_LAZY_COLLECTIVES": 1,
"VLLM_CONTIGUOUS_PA": 1,
"VLLM_DEFRAG": 1
},
"parameters": {
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"tensor_parallel_size": 2,
"load_format": "dummy",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 1000,
"backend": "vllm",
"max-model-len": 2048,
"max-num-seqs": 512,
"async-scheduling": ""
}
}
]

View File

@ -8,7 +8,7 @@ steps:
commands:
# #NOTE: torch_cuda_arch_list is derived from upstream PyTorch build files here:
# https://github.com/pytorch/pytorch/blob/main/.ci/aarch64_linux/aarch64_ci_build.sh#L7
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg VLLM_MAIN_CUDA_VERSION=12.9 --build-arg torch_cuda_arch_list='8.7 8.9 9.0 10.0+PTX 12.0' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg torch_cuda_arch_list='8.7 8.9 9.0 10.0+PTX 12.0' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
- "bash .buildkite/scripts/upload-wheels.sh"
@ -30,19 +30,6 @@ steps:
DOCKER_BUILDKIT: "1"
# x86 + CUDA builds
- label: "Build wheel - CUDA 12.8"
depends_on: ~
id: build-wheel-cuda-12-8
agents:
queue: cpu_queue_postmerge
commands:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.8.1 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
- "bash .buildkite/scripts/upload-wheels.sh"
env:
DOCKER_BUILDKIT: "1"
- label: "Build wheel - CUDA 12.9"
depends_on: ~
id: build-wheel-cuda-12-9
@ -109,31 +96,12 @@ steps:
- label: "Annotate release workflow"
depends_on:
- create-multi-arch-manifest
- build-wheel-cuda-12-8
id: annotate-release-workflow
agents:
queue: cpu_queue_postmerge
commands:
- "bash .buildkite/scripts/annotate-release.sh"
- label: "Build and publish TPU release image"
depends_on: ~
if: build.env("NIGHTLY") == "1"
agents:
queue: tpu_queue_postmerge
commands:
- "yes | docker system prune -a"
- "git fetch --all"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --tag vllm/vllm-tpu:nightly --tag vllm/vllm-tpu:$BUILDKITE_COMMIT --progress plain -f docker/Dockerfile.tpu ."
- "docker push vllm/vllm-tpu:nightly"
- "docker push vllm/vllm-tpu:$BUILDKITE_COMMIT"
plugins:
- docker-login#v3.0.0:
username: vllmbot
password-env: DOCKERHUB_TOKEN
env:
DOCKER_BUILDKIT: "1"
- input: "Provide Release version here"
id: input-release-version
fields:
@ -150,7 +118,7 @@ steps:
queue: cpu_queue_postmerge
commands:
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg GIT_REPO_CHECK=1 --build-arg VLLM_CPU_AVX512BF16=true --build-arg VLLM_CPU_AVX512VNNI=true --tag public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:$(buildkite-agent meta-data get release-version) --tag public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:latest --progress plain --target vllm-openai -f docker/Dockerfile.cpu ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg GIT_REPO_CHECK=1 --build-arg VLLM_CPU_AVX512BF16=true --build-arg VLLM_CPU_AVX512VNNI=true --build-arg VLLM_CPU_AMXBF16=true --tag public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:$(buildkite-agent meta-data get release-version) --tag public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:latest --progress plain --target vllm-openai -f docker/Dockerfile.cpu ."
- "docker push public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:latest"
- "docker push public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:$(buildkite-agent meta-data get release-version)"
env:

View File

@ -2,22 +2,29 @@
set -ex
# Get release version and strip leading 'v' if present
RELEASE_VERSION=$(buildkite-agent meta-data get release-version | sed 's/^v//')
if [ -z "$RELEASE_VERSION" ]; then
echo "Error: RELEASE_VERSION is empty. 'release-version' metadata might not be set or is invalid."
exit 1
# Get release version, default to 1.0.0.dev for nightly/per-commit builds
RELEASE_VERSION=$(buildkite-agent meta-data get release-version 2>/dev/null | sed 's/^v//')
if [ -z "${RELEASE_VERSION}" ]; then
RELEASE_VERSION="1.0.0.dev"
fi
buildkite-agent annotate --style 'info' --context 'release-workflow' << EOF
To download the wheel:
To download the wheel (by commit):
\`\`\`
aws s3 cp s3://vllm-wheels/${BUILDKITE_COMMIT}/vllm-${RELEASE_VERSION}-cp38-abi3-manylinux1_x86_64.whl .
aws s3 cp s3://vllm-wheels/${BUILDKITE_COMMIT}/vllm-${RELEASE_VERSION}-cp38-abi3-manylinux2014_aarch64.whl .
aws s3 cp s3://vllm-wheels/${BUILDKITE_COMMIT}/vllm-${RELEASE_VERSION}+cu129-cp38-abi3-manylinux1_x86_64.whl .
aws s3 cp s3://vllm-wheels/${BUILDKITE_COMMIT}/vllm-${RELEASE_VERSION}+cu129-cp38-abi3-manylinux1_x86_64.whl .
\`\`\`
To download the wheel (by version):
\`\`\`
aws s3 cp s3://vllm-wheels/${RELEASE_VERSION}/vllm-${RELEASE_VERSION}-cp38-abi3-manylinux1_x86_64.whl .
aws s3 cp s3://vllm-wheels/${RELEASE_VERSION}/vllm-${RELEASE_VERSION}-cp38-abi3-manylinux2014_aarch64.whl .
aws s3 cp s3://vllm-wheels/${RELEASE_VERSION}+cu126/vllm-${RELEASE_VERSION}+cu126-cp38-abi3-manylinux1_x86_64.whl .
aws s3 cp s3://vllm-wheels/${RELEASE_VERSION}+cu129/vllm-${RELEASE_VERSION}+cu129-cp38-abi3-manylinux1_x86_64.whl .
aws s3 cp s3://vllm-wheels/${RELEASE_VERSION}+cu130/vllm-${RELEASE_VERSION}+cu130-cp38-abi3-manylinux1_x86_64.whl .
\`\`\`
To download and upload the image:
@ -38,9 +45,10 @@ docker tag vllm/vllm-openai:aarch64 vllm/vllm-openai:v${RELEASE_VERSION}-aarch64
docker push vllm/vllm-openai:latest-aarch64
docker push vllm/vllm-openai:v${RELEASE_VERSION}-aarch64
docker manifest create vllm/vllm-openai:latest vllm/vllm-openai:latest-x86_64 vllm/vllm-openai:latest-aarch64 --amend
docker manifest create vllm/vllm-openai:v${RELEASE_VERSION} vllm/vllm-openai:v${RELEASE_VERSION}-x86_64 vllm/vllm-openai:v${RELEASE_VERSION}-aarch64 --amend
docker manifest rm vllm/vllm-openai:latest
docker manifest create vllm/vllm-openai:latest vllm/vllm-openai:latest-x86_64 vllm/vllm-openai:latest-aarch64
docker manifest create vllm/vllm-openai:v${RELEASE_VERSION} vllm/vllm-openai:v${RELEASE_VERSION}-x86_64 vllm/vllm-openai:v${RELEASE_VERSION}-aarch64
docker manifest push vllm/vllm-openai:latest
docker manifest push vllm/vllm-openai:v${RELEASE_VERSION}
\`\`\`
EOF
EOF

View File

@ -0,0 +1,369 @@
#!/usr/bin/env python3
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# do not complain about line length (for docstring)
# ruff: noqa: E501
import argparse
import json
import re
import sys
from dataclasses import asdict, dataclass
from pathlib import Path
from typing import Any
from urllib.parse import quote
if not sys.version_info >= (3, 10):
raise RuntimeError("This script requires Python 3.10 or higher.")
INDEX_HTML_TEMPLATE = """<!DOCTYPE html>
<html>
<meta name="pypi:repository-version" content="1.0">
<body>
{items}
</body>
</html>
"""
@dataclass
class WheelFileInfo:
package_name: str
version: str
build_tag: str | None
python_tag: str
abi_tag: str
platform_tag: str
variant: str | None
filename: str
def parse_from_filename(file: str) -> WheelFileInfo:
"""
Parse wheel file name to extract metadata.
The format of wheel names:
{package_name}-{version}(-{build_tag})?-{python_tag}-{abi_tag}-{platform_tag}.whl
All versions could contain a variant like '+cu129' or '.cpu' or `.rocm` (or not).
Example:
vllm-0.11.0-cp38-abi3-manylinux1_x86_64.whl
vllm-0.10.2rc2+cu129-cp38-abi3-manylinux2014_aarch64.whl
vllm-0.11.1rc8.dev14+gaa384b3c0-cp38-abi3-manylinux2014_aarch64.whl
vllm-0.11.1rc8.dev14+gaa384b3c0.cu130-cp38-abi3-manylinux1_x86_64.whl
"""
wheel_file_re = re.compile(
r"^(?P<package_name>.+)-(?P<version>[^-]+?)(-(?P<build_tag>[^-]+))?-(?P<python_tag>[^-]+)-(?P<abi_tag>[^-]+)-(?P<platform_tag>[^-]+)\.whl$"
)
match = wheel_file_re.match(file)
if not match:
raise ValueError(f"Invalid wheel file name: {file}")
package_name = match.group("package_name")
version = match.group("version")
build_tag = match.group("build_tag")
python_tag = match.group("python_tag")
abi_tag = match.group("abi_tag")
platform_tag = match.group("platform_tag")
# extract variant from version
variant = None
if "dev" in version:
ver_after_dev = version.split("dev")[-1]
if "." in ver_after_dev:
variant = ver_after_dev.split(".")[-1]
version = version.removesuffix("." + variant)
else:
if "+" in version:
version, variant = version.split("+")
return WheelFileInfo(
package_name=package_name,
version=version,
build_tag=build_tag,
python_tag=python_tag,
abi_tag=abi_tag,
platform_tag=platform_tag,
variant=variant,
filename=file,
)
def generate_project_list(subdir_names: list[str]) -> str:
"""
Generate project list HTML content linking to each project & variant sub-directory.
"""
href_tags = []
for name in sorted(subdir_names):
name = name.strip("/").strip(".")
href_tags.append(f' <a href="{name}/">{name}/</a><br/>')
return INDEX_HTML_TEMPLATE.format(items="\n".join(href_tags))
def generate_package_index_and_metadata(
wheel_files: list[WheelFileInfo], wheel_base_dir: Path, index_base_dir: Path
) -> tuple[str, str]:
"""
Generate package index HTML content for a specific package, linking to actual wheel files.
"""
href_tags = []
metadata = []
for file in sorted(wheel_files, key=lambda x: x.filename):
relative_path = (
wheel_base_dir.relative_to(index_base_dir, walk_up=True) / file.filename
)
# handle with '+' in URL, and avoid double-encoding '/' and already-encoded '%2B'
# NOTE: this is AWS S3 specific behavior!
file_path_quoted = quote(relative_path.as_posix(), safe=":%/")
href_tags.append(f' <a href="{file_path_quoted}">{file.filename}</a><br/>')
file_meta = asdict(file)
file_meta["path"] = file_path_quoted
metadata.append(file_meta)
index_str = INDEX_HTML_TEMPLATE.format(items="\n".join(href_tags))
metadata_str = json.dumps(metadata, indent=2)
return index_str, metadata_str
def generate_index_and_metadata(
whl_files: list[str],
wheel_base_dir: Path,
index_base_dir: Path,
default_variant: str | None = None,
alias_to_default: str | None = None,
):
"""
Generate index for all wheel files.
Args:
whl_files (list[str]): List of wheel files (must be directly under `wheel_base_dir`).
wheel_base_dir (Path): Base directory for wheel files.
index_base_dir (Path): Base directory to store index files.
default_variant (str | None): The default variant name, if any.
alias_to_default (str | None): Alias variant name for the default variant, if any.
First, parse all wheel files to extract metadata.
We need to collect all wheel files for each variant, and generate an index for it (in a sub-directory).
The index for the default variant (if any) is generated in the root index directory.
If `default_variant` is provided, all wheels must have variant suffixes, and the default variant index
is purely a copy of the corresponding variant index, with only the links adjusted.
Otherwise, all wheels without variant suffixes are treated as the default variant.
If `alias_to_default` is provided, an additional alias sub-directory is created, it has the same content
as the default variant index, but the links are adjusted accordingly.
Index directory structure:
index_base_dir/ (hosted at wheels.vllm.ai/{nightly,$commit,$version}/)
index.html # project list, linking to "vllm/" and other packages, and all variant sub-directories
vllm/
index.html # package index, pointing to actual files in wheel_base_dir (relative path)
metadata.json # machine-readable metadata for all wheels in this package
cpu/ # cpu variant sub-directory
index.html
vllm/
index.html
metadata.json
cu129/ # cu129 is actually the alias to default variant
index.html
vllm/
index.html
metadata.json
cu130/ # cu130 variant sub-directory
index.html
vllm/
index.html
metadata.json
...
metadata.json stores a dump of all wheel files' metadata in a machine-readable format:
[
{
"package_name": "vllm",
"version": "0.10.2rc2",
"build_tag": null,
"python_tag": "cp38",
"abi_tag": "abi3",
"platform_tag": "manylinux2014_aarch64",
"variant": "cu129",
"filename": "vllm-0.10.2rc2+cu129-cp38-abi3-manylinux2014_aarch64.whl",
"path": "../vllm-0.10.2rc2%2Bcu129-cp38-abi3-manylinux2014_aarch64.whl" # to be concatenated with the directory URL and URL-encoded
},
...
]
"""
parsed_files = [parse_from_filename(f) for f in whl_files]
if not parsed_files:
print("No wheel files found, skipping index generation.")
return
# Group by variant
variant_to_files: dict[str, list[WheelFileInfo]] = {}
for file in parsed_files:
variant = file.variant or "default"
if variant not in variant_to_files:
variant_to_files[variant] = []
variant_to_files[variant].append(file)
print(f"Found variants: {list(variant_to_files.keys())}")
# sanity check for default variant
if default_variant:
if "default" in variant_to_files:
raise ValueError(
"All wheel files must have variant suffixes when `default_variant` is specified."
)
if default_variant not in variant_to_files:
raise ValueError(
f"Default variant '{default_variant}' not found among wheel files."
)
if alias_to_default:
if "default" not in variant_to_files:
# e.g. only some wheels are uploaded to S3 currently
print(
"[WARN] Alias to default variant specified, but no default variant found."
)
elif alias_to_default in variant_to_files:
raise ValueError(
f"Alias variant name '{alias_to_default}' already exists among wheel files."
)
else:
variant_to_files[alias_to_default] = variant_to_files["default"].copy()
print(f"Alias variant '{alias_to_default}' created for default variant.")
# Generate index for each variant
subdir_names = set()
for variant, files in variant_to_files.items():
if variant == "default":
variant_dir = index_base_dir
else:
variant_dir = index_base_dir / variant
subdir_names.add(variant)
variant_dir.mkdir(parents=True, exist_ok=True)
# gather all package names in this variant
packages = set(f.package_name for f in files)
if variant == "default":
# these packages should also appear in the "project list"
# generate after all variants are processed
subdir_names = subdir_names.union(packages)
else:
# generate project list for this variant directly
project_list_str = generate_project_list(sorted(packages))
with open(variant_dir / "index.html", "w") as f:
f.write(project_list_str)
for package in packages:
# filter files belonging to this package only
package_files = [f for f in files if f.package_name == package]
package_dir = variant_dir / package
package_dir.mkdir(parents=True, exist_ok=True)
index_str, metadata_str = generate_package_index_and_metadata(
package_files, wheel_base_dir, package_dir
)
with open(package_dir / "index.html", "w") as f:
f.write(index_str)
with open(package_dir / "metadata.json", "w") as f:
f.write(metadata_str)
# Generate top-level project list index
project_list_str = generate_project_list(sorted(subdir_names))
with open(index_base_dir / "index.html", "w") as f:
f.write(project_list_str)
if __name__ == "__main__":
"""
Arguments:
--version <version> : version string for the current build (e.g., commit hash)
--current-objects <path_to_json> : path to JSON file containing current S3 objects listing in this version directory
--output-dir <output_directory> : directory to store generated index files
--alias-to-default <alias_variant_name> : (optional) alias variant name for the default variant
"""
parser = argparse.ArgumentParser(
description="Process nightly build wheel files to generate indices."
)
parser.add_argument(
"--version",
type=str,
required=True,
help="Version string for the current build (e.g., commit hash)",
)
parser.add_argument(
"--current-objects",
type=str,
required=True,
help="Path to JSON file containing current S3 objects listing in this version directory",
)
parser.add_argument(
"--output-dir",
type=str,
required=True,
help="Directory to store generated index files",
)
parser.add_argument(
"--alias-to-default",
type=str,
default=None,
help="Alias variant name for the default variant",
)
args = parser.parse_args()
version = args.version
if "/" in version or "\\" in version:
raise ValueError("Version string must not contain slashes.")
current_objects_path = Path(args.current_objects)
output_dir = Path(args.output_dir)
if not output_dir.exists():
output_dir.mkdir(parents=True, exist_ok=True)
# Read current objects JSON
with open(current_objects_path) as f:
current_objects: dict[str, list[dict[str, Any]]] = json.load(f)
# current_objects looks like from list_objects_v2 S3 API:
"""
"Contents": [
{
"Key": "e2f56c309d2a28899c68975a7e104502d56deb8f/vllm-0.11.2.dev363+ge2f56c309-cp38-abi3-manylinux1_x86_64.whl",
"LastModified": "2025-11-28T14:00:32+00:00",
"ETag": "\"37a38339c7cdb61ca737021b968075df-52\"",
"ChecksumAlgorithm": [
"CRC64NVME"
],
"ChecksumType": "FULL_OBJECT",
"Size": 435649349,
"StorageClass": "STANDARD"
},
...
]
"""
# Extract wheel file keys
wheel_files = []
for item in current_objects.get("Contents", []):
key: str = item["Key"]
if key.endswith(".whl"):
wheel_files.append(key.split("/")[-1]) # only the filename is used
print(f"Found {len(wheel_files)} wheel files for version {version}: {wheel_files}")
# Generate index and metadata, assuming wheels and indices are stored as:
# s3://vllm-wheels/{version}/<wheel files>
# s3://vllm-wheels/<anything>/<index files>
wheel_base_dir = Path(output_dir).parent / version
index_base_dir = Path(output_dir)
generate_index_and_metadata(
whl_files=wheel_files,
wheel_base_dir=wheel_base_dir,
index_base_dir=index_base_dir,
default_variant=None,
alias_to_default=args.alias_to_default,
)
print(f"Successfully generated index and metadata in {output_dir}")

View File

@ -59,7 +59,7 @@ while true; do
fi
done
echo "--- Pulling container"
echo "--- Pulling container"
image_name="rocm/vllm-ci:${BUILDKITE_COMMIT}"
container_name="rocm_${BUILDKITE_COMMIT}_$(tr -dc A-Za-z0-9 < /dev/urandom | head -c 10; echo)"
docker pull "${image_name}"
@ -78,17 +78,13 @@ HF_MOUNT="/root/.cache/huggingface"
commands=$@
echo "Commands:$commands"
if [[ $commands == *"pytest -v -s basic_correctness/test_basic_correctness.py"* ]]; then
commands=${commands//"pytest -v -s basic_correctness/test_basic_correctness.py"/"VLLM_USE_TRITON_FLASH_ATTN=0 pytest -v -s basic_correctness/test_basic_correctness.py"}
fi
commands=${commands//"pytest -v -s basic_correctness/test_basic_correctness.py"/"pytest -v -s basic_correctness/test_basic_correctness.py"}
if [[ $commands == *"pytest -v -s models/test_registry.py"* ]]; then
commands=${commands//"pytest -v -s models/test_registry.py"/"pytest -v -s models/test_registry.py -k 'not BambaForCausalLM and not GritLM and not Mamba2ForCausalLM and not Zamba2ForCausalLM'"}
fi
if [[ $commands == *"pytest -v -s compile/test_basic_correctness.py"* ]]; then
commands=${commands//"pytest -v -s compile/test_basic_correctness.py"/"VLLM_USE_TRITON_FLASH_ATTN=0 pytest -v -s compile/test_basic_correctness.py"}
fi
commands=${commands//"pytest -v -s compile/test_basic_correctness.py"/"pytest -v -s compile/test_basic_correctness.py"}
if [[ $commands == *"pytest -v -s lora"* ]]; then
commands=${commands//"pytest -v -s lora"/"VLLM_ROCM_CUSTOM_PAGED_ATTN=0 pytest -v -s lora"}
@ -173,19 +169,28 @@ fi
PARALLEL_JOB_COUNT=8
MYPYTHONPATH=".."
# check if the command contains shard flag, we will run all shards in parallel because the host have 8 GPUs.
# Test that we're launching on the machine that has
# proper access to GPUs
render_gid=$(getent group render | cut -d: -f3)
if [[ -z "$render_gid" ]]; then
echo "Error: 'render' group not found. This is required for GPU access." >&2
exit 1
fi
# check if the command contains shard flag, we will run all shards in parallel because the host have 8 GPUs.
if [[ $commands == *"--shard-id="* ]]; then
# assign job count as the number of shards used
commands=${commands//"--num-shards= "/"--num-shards=${PARALLEL_JOB_COUNT} "}
# assign job count as the number of shards used
commands=$(echo "$commands" | sed -E "s/--num-shards[[:blank:]]*=[[:blank:]]*[0-9]*/--num-shards=${PARALLEL_JOB_COUNT} /g" | sed 's/ \\ / /g')
for GPU in $(seq 0 $(($PARALLEL_JOB_COUNT-1))); do
# assign shard-id for each shard
commands_gpu=${commands//"--shard-id= "/"--shard-id=${GPU} "}
commands_gpu=$(echo "$commands" | sed -E "s/--shard-id[[:blank:]]*=[[:blank:]]*[0-9]*/--shard-id=${GPU} /g" | sed 's/ \\ / /g')
echo "Shard ${GPU} commands:$commands_gpu"
echo "Render devices: $BUILDKITE_AGENT_META_DATA_RENDER_DEVICES"
docker run \
--device /dev/kfd $BUILDKITE_AGENT_META_DATA_RENDER_DEVICES \
--network=host \
--shm-size=16gb \
--group-add "$render_gid" \
--rm \
-e HIP_VISIBLE_DEVICES="${GPU}" \
-e HF_TOKEN \
@ -217,8 +222,8 @@ else
--device /dev/kfd $BUILDKITE_AGENT_META_DATA_RENDER_DEVICES \
--network=host \
--shm-size=16gb \
--group-add "$render_gid" \
--rm \
-e HIP_VISIBLE_DEVICES=0 \
-e HF_TOKEN \
-e AWS_ACCESS_KEY_ID \
-e AWS_SECRET_ACCESS_KEY \

View File

@ -0,0 +1,62 @@
#!/bin/bash
# This script build the CPU docker image and run the offline inference inside the container.
# It serves a sanity check for compilation and basic model usage.
set -ex
# allow to bind to different cores
CORE_RANGE=${CORE_RANGE:-0-16}
OMP_CORE_RANGE=${OMP_CORE_RANGE:-0-16}
export CMAKE_BUILD_PARALLEL_LEVEL=16
# Setup cleanup
remove_docker_container() {
set -e;
docker rm -f cpu-test || true;
}
trap remove_docker_container EXIT
remove_docker_container
# Try building the docker image
docker build --tag cpu-test --target vllm-test -f docker/Dockerfile.cpu .
# Run the image
docker run -itd --cpuset-cpus="$CORE_RANGE" --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=16 --env VLLM_CPU_CI_ENV=1 -e E2E_OMP_THREADS="$OMP_CORE_RANGE" --shm-size=4g --name cpu-test cpu-test
function cpu_tests() {
set -e
docker exec cpu-test bash -c "
set -e
pip list"
# offline inference
docker exec cpu-test bash -c "
set -e
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m"
# Run kernel tests
docker exec cpu-test bash -c "
set -e
pytest -x -v -s tests/kernels/test_onednn.py
pytest -x -v -s tests/kernels/attention/test_cpu_attn.py"
# basic online serving
docker exec cpu-test bash -c '
set -e
VLLM_CPU_OMP_THREADS_BIND=$E2E_OMP_THREADS vllm serve Qwen/Qwen3-0.6B --max-model-len 2048 &
server_pid=$!
timeout 600 bash -c "until curl localhost:8000/v1/models; do sleep 1; done" || exit 1
vllm bench serve \
--backend vllm \
--dataset-name random \
--model Qwen/Qwen3-0.6B \
--num-prompts 20 \
--endpoint /v1/completions
kill -s SIGTERM $server_pid &'
}
# All of CPU tests are expected to be finished less than 40 mins.
export -f cpu_tests
timeout 2h bash -c cpu_tests

View File

@ -25,20 +25,22 @@ function cpu_tests() {
# offline inference
podman exec -it "$container_id" bash -c "
export TORCH_COMPILE_DISABLE=1
set -xve
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m" >> $HOME/test_basic.log
# Run basic model test
podman exec -it "$container_id" bash -c "
export TORCH_COMPILE_DISABLE=1
set -evx
pip install pytest pytest-asyncio einops peft Pillow soundfile transformers_stream_generator matplotlib
pip install sentence-transformers datamodel_code_generator
pip install sentence-transformers datamodel_code_generator tblib
# Note: disable Bart until supports V1
# pytest -v -s tests/models/language/generation/test_bart.py -m cpu_model
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-openai-community/gpt2]
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-facebook/opt-125m]
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-google/gemma-1.1-2b-it]
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-False-5-32-openai-community/gpt2]
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-False-5-32-facebook/opt-125m]
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-False-5-32-google/gemma-1.1-2b-it]
pytest -v -s tests/models/language/pooling/test_classification.py::test_models[float-jason9693/Qwen2.5-1.5B-apeach]
# TODO: Below test case tests/models/language/pooling/test_embedding.py::test_models[True-ssmits/Qwen2-7B-Instruct-embed-base] fails on ppc64le. Disabling it for time being.
# pytest -v -s tests/models/language/pooling/test_embedding.py -m cpu_model" >> $HOME/test_rest.log

View File

@ -21,8 +21,8 @@ trap remove_docker_container EXIT
remove_docker_container
# Try building the docker image
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --tag cpu-test-"$NUMA_NODE" --target vllm-test -f docker/Dockerfile.cpu .
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" --tag cpu-test-"$NUMA_NODE"-avx2 --target vllm-test -f docker/Dockerfile.cpu .
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --progress plain --tag cpu-test-"$NUMA_NODE" --target vllm-test -f docker/Dockerfile.cpu .
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --progress plain --build-arg VLLM_CPU_DISABLE_AVX512="true" --tag cpu-test-"$NUMA_NODE"-avx2 --target vllm-test -f docker/Dockerfile.cpu .
# Run the image, setting --shm-size=4g for tensor parallel.
docker run -itd --cpuset-cpus="$CORE_RANGE" --cpuset-mems="$NUMA_NODE" --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=16 --env VLLM_CPU_CI_ENV=1 -e E2E_OMP_THREADS="$OMP_CORE_RANGE" --shm-size=4g --name cpu-test-"$NUMA_NODE" cpu-test-"$NUMA_NODE"
@ -49,6 +49,7 @@ function cpu_tests() {
# Run kernel tests
docker exec cpu-test-"$NUMA_NODE" bash -c "
set -e
pytest -x -v -s tests/kernels/attention/test_cpu_attn.py
pytest -x -v -s tests/kernels/test_onednn.py"
# Run basic model test
@ -72,12 +73,11 @@ function cpu_tests() {
pytest -x -s -v \
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_logprobs"
# Note: disable it until supports V1
# Run AWQ test
# docker exec cpu-test-"$NUMA_NODE" bash -c "
# set -e
# VLLM_USE_V1=0 pytest -x -s -v \
# tests/quantization/test_ipex_quant.py"
# Run AWQ/GPTQ test
docker exec cpu-test-"$NUMA_NODE" bash -c "
set -e
pytest -x -s -v \
tests/quantization/test_cpu_wna16.py"
# Run multi-lora tests
docker exec cpu-test-"$NUMA_NODE" bash -c "
@ -116,4 +116,4 @@ function cpu_tests() {
# All of CPU tests are expected to be finished less than 40 mins.
export -f cpu_tests
timeout 2h bash -c "cpu_tests $CORE_RANGE $NUMA_NODE"
timeout 2.5h bash -c "cpu_tests $CORE_RANGE $NUMA_NODE"

View File

@ -20,7 +20,10 @@ trap remove_docker_container EXIT
# Run the image and test offline inference/tensor parallel
docker run \
--device /dev/dri \
--device /dev/dri:/dev/dri \
--net=host \
--ipc=host \
--privileged \
-v /dev/dri/by-path:/dev/dri/by-path \
--entrypoint="" \
-e "HF_TOKEN=${HF_TOKEN}" \
@ -32,7 +35,7 @@ docker run \
echo $ZE_AFFINITY_MASK
pip install tblib==3.1.0
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 -O3 -O.cudagraph_mode=NONE
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 -O3 -cc.cudagraph_mode=NONE
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend ray
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend mp
VLLM_ATTENTION_BACKEND=TRITON_ATTN python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager
@ -42,7 +45,7 @@ docker run \
pytest -v -s v1/sample --ignore=v1/sample/test_logprobs.py --ignore=v1/sample/test_logprobs_e2e.py
pytest -v -s v1/worker --ignore=v1/worker/test_gpu_model_runner.py
pytest -v -s v1/structured_output
pytest -v -s v1/spec_decode --ignore=v1/spec_decode/test_max_len.py --ignore=v1/spec_decode/test_tree_attention.py
pytest -v -s v1/kv_connector/unit --ignore=v1/kv_connector/unit/test_multi_connector.py --ignore=v1/kv_connector/unit/test_nixl_connector.py --ignore=v1/kv_connector/unit/test_shared_storage_connector.py
pytest -v -s v1/spec_decode --ignore=v1/spec_decode/test_max_len.py --ignore=v1/spec_decode/test_tree_attention.py --ignore=v1/spec_decode/test_speculators_eagle3.py
pytest -v -s v1/kv_connector/unit --ignore=v1/kv_connector/unit/test_multi_connector.py --ignore=v1/kv_connector/unit/test_nixl_connector.py --ignore=v1/kv_connector/unit/test_shared_storage_connector.py --ignore=v1/kv_connector/unit/test_lmcache_integration.py
pytest -v -s v1/test_serial_utils.py
'

View File

@ -0,0 +1,72 @@
#!/usr/bin/env bash
set -euxo pipefail
# args: [THRESHOLD] [NUM_QUESTIONS] [START_PORT]
THRESHOLD=${1:-0.25}
NUM_Q=${2:-1319}
PORT=${3:-8010}
OUT_DIR=${OUT_DIR:-/tmp/vllm-scheduled}
mkdir -p "${OUT_DIR}"
wait_for_server() {
local port=$1
timeout 600 bash -c '
until curl -sf "http://127.0.0.1:'"$port"'/health" > /dev/null; do
sleep 1
done'
}
MODEL="deepseek-ai/DeepSeek-V2-lite"
# Set BACKENDS based on platform
if command -v rocm-smi &> /dev/null || [[ -d /opt/rocm ]] || [[ -n "${ROCM_PATH:-}" ]]; then
# ROCm platform
BACKENDS=("allgather_reducescatter")
# Disable MOE padding for ROCm since it is causing eplb to fail
export VLLM_ROCM_MOE_PADDING=0
else
# Non-ROCm platform (CUDA/other)
BACKENDS=("deepep_high_throughput" "deepep_low_latency")
fi
cleanup() {
if [[ -n "${SERVER_PID:-}" ]] && kill -0 "${SERVER_PID}" 2>/dev/null; then
kill "${SERVER_PID}" 2>/dev/null || true
for _ in {1..20}; do
kill -0 "${SERVER_PID}" 2>/dev/null || break
sleep 0.5
done
kill -9 "${SERVER_PID}" 2>/dev/null || true
fi
}
trap cleanup EXIT
for BACK in "${BACKENDS[@]}"; do
VLLM_DEEP_GEMM_WARMUP=skip \
VLLM_ALL2ALL_BACKEND=$BACK \
vllm serve "$MODEL" \
--enforce-eager \
--tensor-parallel-size 2 \
--data-parallel-size 2 \
--enable-expert-parallel \
--enable-eplb \
--trust-remote-code \
--max-model-len 2048 \
--port $PORT &
SERVER_PID=$!
wait_for_server $PORT
TAG=$(echo "$MODEL" | tr '/: \\n' '_____')
OUT="${OUT_DIR}/${TAG}_${BACK}.json"
python3 tests/evals/gsm8k/gsm8k_eval.py --host http://127.0.0.1 --port $PORT --num-questions ${NUM_Q} --save-results ${OUT}
python3 - <<PY
import json; acc=json.load(open('${OUT}'))['accuracy']
print(f"${MODEL} ${BACK}: accuracy {acc:.3f}")
assert acc >= ${THRESHOLD}, f"${MODEL} ${BACK} accuracy {acc}"
PY
cleanup
SERVER_PID=
sleep 1
PORT=$((PORT+1))
done

View File

@ -0,0 +1,74 @@
#!/usr/bin/env bash
set -euxo pipefail
# args: [THRESHOLD] [NUM_QUESTIONS] [START_PORT] [DATA_PARALLEL_SIZE] [TENSOR_PARALLEL_SIZE]
THRESHOLD=${1:-0.8}
NUM_Q=${2:-1319}
PORT=${3:-8020}
DATA_PARALLEL_SIZE=${4:-2}
TENSOR_PARALLEL_SIZE=${5:-2}
OUT_DIR=${OUT_DIR:-/tmp/vllm-scheduled}
mkdir -p "${OUT_DIR}"
wait_for_server() {
local port=$1
timeout 600 bash -c '
until curl -sf "http://127.0.0.1:'"$port"'/health" > /dev/null; do
sleep 1
done'
}
MODEL="QWen/Qwen3-30B-A3B-FP8"
# Set BACKENDS based on platform
if command -v rocm-smi &> /dev/null || [[ -d /opt/rocm ]] || [[ -n "${ROCM_PATH:-}" ]]; then
# ROCm platform
BACKENDS=("allgather_reducescatter")
# Disable MOE padding for ROCm since it is causing eplb to fail
export VLLM_ROCM_MOE_PADDING=0
else
# Non-ROCm platform (CUDA/other)
BACKENDS=("deepep_high_throughput" "deepep_low_latency")
fi
cleanup() {
if [[ -n "${SERVER_PID:-}" ]] && kill -0 "${SERVER_PID}" 2>/dev/null; then
kill "${SERVER_PID}" 2>/dev/null || true
for _ in {1..20}; do
kill -0 "${SERVER_PID}" 2>/dev/null || break
sleep 0.5
done
kill -9 "${SERVER_PID}" 2>/dev/null || true
fi
}
trap cleanup EXIT
for BACK in "${BACKENDS[@]}"; do
VLLM_DEEP_GEMM_WARMUP=skip \
VLLM_ALL2ALL_BACKEND=$BACK \
vllm serve "$MODEL" \
--enforce-eager \
--enable-eplb \
--eplb-config '{"window_size":10, "step_interval":100, "num_redundant_experts":0, "log_balancedness":true}' \
--tensor-parallel-size ${TENSOR_PARALLEL_SIZE} \
--data-parallel-size ${DATA_PARALLEL_SIZE} \
--enable-expert-parallel \
--trust-remote-code \
--max-model-len 2048 \
--port $PORT &
SERVER_PID=$!
wait_for_server $PORT
TAG=$(echo "$MODEL" | tr '/: \\n' '_____')
OUT="${OUT_DIR}/${TAG}_${BACK}.json"
python3 tests/evals/gsm8k/gsm8k_eval.py --host http://127.0.0.1 --port $PORT --num-questions ${NUM_Q} --save-results ${OUT}
python3 - <<PY
import json; acc=json.load(open('${OUT}'))['accuracy']
print(f"${MODEL} ${BACK}: accuracy {acc:.3f}")
assert acc >= ${THRESHOLD}, f"${MODEL} ${BACK} accuracy {acc}"
PY
cleanup
SERVER_PID=
sleep 1
PORT=$((PORT+1))
done

View File

@ -2,6 +2,28 @@
set -ex
# ======== part 0: setup ========
BUCKET="vllm-wheels"
INDICES_OUTPUT_DIR="indices"
DEFAULT_VARIANT_ALIAS="cu129" # align with vLLM_MAIN_CUDA_VERSION in vllm/envs.py
PYTHON=${PYTHON_PROG:=python3} # try to read from env var, otherwise use python3
SUBPATH=$BUILDKITE_COMMIT
S3_COMMIT_PREFIX="s3://$BUCKET/$SUBPATH/"
# detect if python3.10+ is available
has_new_python=$($PYTHON -c "print(1 if __import__('sys').version_info >= (3,10) else 0)")
if [[ "$has_new_python" -eq 0 ]]; then
# use new python from docker
docker pull python:3-slim
PYTHON="docker run --rm -v $(pwd):/app -w /app python:3-slim python3"
fi
echo "Using python interpreter: $PYTHON"
echo "Python version: $($PYTHON --version)"
# ========= part 1: collect, rename & upload the wheel ==========
# Assume wheels are in artifacts/dist/*.whl
wheel_files=(artifacts/dist/*.whl)
@ -10,74 +32,69 @@ if [[ ${#wheel_files[@]} -ne 1 ]]; then
echo "Error: Expected exactly one wheel file in artifacts/dist/, but found ${#wheel_files[@]}"
exit 1
fi
# Get the single wheel file
wheel="${wheel_files[0]}"
# Detect architecture and rename 'linux' to appropriate manylinux version
arch=$(uname -m)
if [[ $arch == "x86_64" ]]; then
manylinux_version="manylinux1"
elif [[ $arch == "aarch64" ]]; then
manylinux_version="manylinux2014"
else
echo "Warning: Unknown architecture $arch, using manylinux1 as default"
manylinux_version="manylinux1"
fi
# current build image uses ubuntu 20.04, which corresponds to manylinux_2_31
# refer to https://github.com/mayeut/pep600_compliance?tab=readme-ov-file#acceptable-distros-to-build-wheels
manylinux_version="manylinux_2_31"
# Rename 'linux' to the appropriate manylinux version in the wheel filename
if [[ "$wheel" != *"linux"* ]]; then
echo "Error: Wheel filename does not contain 'linux': $wheel"
exit 1
fi
new_wheel="${wheel/linux/$manylinux_version}"
mv -- "$wheel" "$new_wheel"
wheel="$new_wheel"
echo "Renamed wheel to: $wheel"
# Extract the version from the wheel
version=$(unzip -p "$wheel" '**/METADATA' | grep '^Version: ' | cut -d' ' -f2)
echo "Version: $version"
echo "Version in wheel: $version"
pure_version="${version%%+*}"
echo "Pure version (without variant): $pure_version"
normal_wheel="$wheel" # Save the original wheel filename
# copy wheel to its own bucket
aws s3 cp "$wheel" "$S3_COMMIT_PREFIX"
# If the version contains "dev", rename it to v1.0.0.dev for consistency
if [[ $version == *dev* ]]; then
suffix="${version##*.}"
if [[ $suffix == cu* ]]; then
new_version="1.0.0.dev+${suffix}"
else
new_version="1.0.0.dev"
fi
new_wheel="${wheel/$version/$new_version}"
# use cp to keep both files in the artifacts directory
cp -- "$wheel" "$new_wheel"
wheel="$new_wheel"
version="$new_version"
fi
# ========= part 2: generate and upload indices ==========
# generate indices for all existing wheels in the commit directory
# this script might be run multiple times if there are multiple variants being built
# so we need to guarantee there is little chance for "TOCTOU" issues
# i.e., one process is generating indices while another is uploading a new wheel
# so we need to ensure no time-consuming operations happen below
# Upload the wheel to S3
python3 .buildkite/generate_index.py --wheel "$normal_wheel"
# list all wheels in the commit directory
echo "Existing wheels on S3:"
aws s3 ls "$S3_COMMIT_PREFIX"
obj_json="objects.json"
aws s3api list-objects-v2 --bucket "$BUCKET" --prefix "$SUBPATH/" --delimiter / --output json > "$obj_json"
mkdir -p "$INDICES_OUTPUT_DIR"
# generate index for this commit
aws s3 cp "$wheel" "s3://vllm-wheels/$BUILDKITE_COMMIT/"
aws s3 cp "$normal_wheel" "s3://vllm-wheels/$BUILDKITE_COMMIT/"
if [[ $normal_wheel == *"cu129"* ]]; then
# only upload index.html for cu129 wheels (default wheels) as it
# is available on both x86 and arm64
aws s3 cp index.html "s3://vllm-wheels/$BUILDKITE_COMMIT/vllm/index.html"
aws s3 cp "s3://vllm-wheels/nightly/index.html" "s3://vllm-wheels/$BUILDKITE_COMMIT/index.html"
# call script to generate indicies for all existing wheels
# this indices have relative paths that could work as long as it is next to the wheel directory in s3
# i.e., the wheels are always in s3://vllm-wheels/<commit>/
# and indices can be placed in /<commit>/, or /nightly/, or /<version>/
if [[ ! -z "$DEFAULT_VARIANT_ALIAS" ]]; then
alias_arg="--alias-to-default $DEFAULT_VARIANT_ALIAS"
else
echo "Skipping index files for non-cu129 wheels"
alias_arg=""
fi
# generate index for nightly
aws s3 cp "$wheel" "s3://vllm-wheels/nightly/"
aws s3 cp "$normal_wheel" "s3://vllm-wheels/nightly/"
$PYTHON .buildkite/scripts/generate-nightly-index.py --version "$SUBPATH" --current-objects "$obj_json" --output-dir "$INDICES_OUTPUT_DIR" $alias_arg
if [[ $normal_wheel == *"cu129"* ]]; then
# only upload index.html for cu129 wheels (default wheels) as it
# is available on both x86 and arm64
aws s3 cp index.html "s3://vllm-wheels/nightly/vllm/index.html"
else
echo "Skipping index files for non-cu129 wheels"
# copy indices to /<commit>/ unconditionally
echo "Uploading indices to $S3_COMMIT_PREFIX"
aws s3 cp --recursive "$INDICES_OUTPUT_DIR/" "$S3_COMMIT_PREFIX"
# copy to /nightly/ only if it is on the main branch and not a PR
if [[ "$BUILDKITE_BRANCH" == "main" && "$BUILDKITE_PULL_REQUEST" == "false" ]]; then
echo "Uploading indices to overwrite /nightly/"
aws s3 cp --recursive "$INDICES_OUTPUT_DIR/" "s3://$BUCKET/nightly/"
fi
aws s3 cp "$wheel" "s3://vllm-wheels/$version/"
aws s3 cp index.html "s3://vllm-wheels/$version/vllm/index.html"
# copy to /<pure_version>/ only if it does not have "dev" in the version
if [[ "$version" != *"dev"* ]]; then
echo "Uploading indices to overwrite /$pure_version/"
aws s3 cp --recursive "$INDICES_OUTPUT_DIR/" "s3://$BUCKET/$pure_version/"
fi

View File

@ -48,8 +48,8 @@ steps:
commands:
- bash standalone_tests/pytorch_nightly_dependency.sh
- label: Async Engine, Inputs, Utils, Worker Test # 36min
timeout_in_minutes: 50
- label: Async Engine, Inputs, Utils, Worker Test # 10min
timeout_in_minutes: 15
mirror_hardwares: [amdexperimental, amdproduction]
agent_pool: mi325_1
# grade: Blocking
@ -61,8 +61,8 @@ steps:
- pytest -v -s -m 'not cpu_test' multimodal
- pytest -v -s utils_
- label: Async Engine, Inputs, Utils, Worker Test (CPU) # 4 mins
timeout_in_minutes: 10
- label: Async Engine, Inputs, Utils, Worker, Config Test (CPU) # 15min
timeout_in_minutes: 20
mirror_hardwares: [amdexperimental, amdproduction]
agent_pool: mi325_1
# grade: Blocking
@ -72,14 +72,18 @@ steps:
- tests/test_outputs.py
- tests/multimodal
- tests/standalone_tests/lazy_imports.py
- tests/tokenizers_
- tests/transformers_utils
- tests/config
no_gpu: true
commands:
- python3 standalone_tests/lazy_imports.py
- pytest -v -s test_inputs.py
- pytest -v -s test_outputs.py
- pytest -v -s -m 'cpu_test' multimodal
- pytest -v -s tokenizers_
- pytest -v -s transformers_utils
- pytest -v -s config
- label: Python-only Installation Test # 10min
timeout_in_minutes: 20
@ -187,7 +191,7 @@ steps:
- tests/distributed/test_utils
- tests/distributed/test_pynccl
- tests/distributed/test_events
- tests/compile/test_basic_correctness
- tests/compile/fullgraph/test_basic_correctness.py
- examples/offline_inference/rlhf.py
- examples/offline_inference/rlhf_colocate.py
- tests/examples/offline_inference/data_parallel.py
@ -215,7 +219,7 @@ steps:
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/distributed/test_hybrid_lb_dp.py
- pytest -v -s v1/engine/test_engine_core_client.py::test_kv_cache_events_dp
- pytest -v -s distributed/test_utils.py
- pytest -v -s compile/test_basic_correctness.py
- pytest -v -s compile/fullgraph/test_basic_correctness.py
- pytest -v -s distributed/test_pynccl.py
- pytest -v -s distributed/test_events.py
- pytest -v -s distributed/test_symm_mem_allreduce.py
@ -226,6 +230,27 @@ steps:
- VLLM_ALLOW_INSECURE_SERIALIZATION=1 RAY_DEDUP_LOGS=0 python3 rlhf_colocate.py
- popd
- label: Distributed Tests (8 GPUs) # 4min
timeout_in_minutes: 10
mirror_hardwares: [amdexperimental]
agent_pool: mi325_8
# grade: Blocking
gpu: h100
num_gpus: 8
working_dir: "/vllm-workspace/tests"
source_file_dependencies:
- examples/offline_inference/torchrun_dp_example.py
- vllm/config/parallel.py
- vllm/distributed/
- vllm/v1/engine/llm_engine.py
- vllm/v1/executor/uniproc_executor.py
- vllm/v1/worker/gpu_worker.py
commands:
# https://github.com/NVIDIA/nccl/issues/1838
#- export NCCL_CUMEM_HOST_ENABLE=0
# test with torchrun tp=2 and dp=4 with ep
- torchrun --nproc-per-node=8 ../examples/offline_inference/torchrun_dp_example.py --tp-size=2 --pp-size=1 --dp-size=4 --enable-ep
- label: EPLB Algorithm Test # 5min
mirror_hardwares: [amdexperimental, amdproduction]
agent_pool: mi325_1
@ -238,11 +263,11 @@ steps:
commands:
- pytest -v -s distributed/test_eplb_algo.py
- label: EPLB Execution Test # 5min
- label: EPLB Execution Test # 10min
mirror_hardwares: [amdexperimental, amdproduction]
agent_pool: mi325_4
# grade: Blocking
timeout_in_minutes: 15
timeout_in_minutes: 20
working_dir: "/vllm-workspace/tests"
num_gpus: 4
source_file_dependencies:
@ -250,6 +275,7 @@ steps:
- tests/distributed/test_eplb_execute.py
commands:
- pytest -v -s distributed/test_eplb_execute.py
- pytest -v -s distributed/test_eplb_spec_decode.py
- label: Metrics, Tracing Test # 12min
timeout_in_minutes: 20
@ -273,7 +299,7 @@ steps:
- label: Regression Test # 7min
timeout_in_minutes: 20
mirror_hardwares: [amdexperimental, amdproduction]
mirror_hardwares: [amdexperimental, amdproduction, amdtentative]
agent_pool: mi325_1
grade: Blocking
source_file_dependencies:
@ -284,23 +310,20 @@ steps:
- pytest -v -s test_regression.py
working_dir: "/vllm-workspace/tests" # optional
- label: Engine Test # 25min
timeout_in_minutes: 40
- label: Engine Test # 9min
timeout_in_minutes: 15
mirror_hardwares: [amdexperimental, amdproduction]
agent_pool: mi325_1
#grade: Blocking
# grade: Blocking
source_file_dependencies:
- vllm/
- tests/engine
- tests/tokenization
- tests/test_sequence
- tests/test_config
- tests/test_logger
- tests/test_vllm_port
commands:
- pytest -v -s engine test_sequence.py test_config.py test_logger.py test_vllm_port.py
# OOM in the CI unless we run this separately
- pytest -v -s tokenization
- label: V1 Test e2e + engine # 30min
timeout_in_minutes: 45
@ -318,7 +341,7 @@ steps:
- label: V1 Test entrypoints # 35min
timeout_in_minutes: 50
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
agent_pool: mi325_1
# grade: Blocking
source_file_dependencies:
@ -337,6 +360,7 @@ steps:
- tests/v1
commands:
# split the test to avoid interference
- uv pip install --system -r /vllm-workspace/requirements/kv_connectors.txt
- pytest -v -s -m 'not cpu_test' v1/core
- pytest -v -s v1/executor
- pytest -v -s v1/kv_offload
@ -348,10 +372,34 @@ steps:
- pytest -v -s -m 'not cpu_test' v1/metrics
- pytest -v -s v1/test_oracle.py
- pytest -v -s v1/test_request.py
- pytest -v -s v1/test_outputs.py
# Integration test for streaming correctness (requires special branch).
- pip install -U git+https://github.com/robertgshaw2-redhat/lm-evaluation-harness.git@streaming-api
- pytest -v -s entrypoints/openai/correctness/test_lmeval.py::test_lm_eval_accuracy_v1_engine
# TODO: Add the "V1 Test attetion (MI300)" test group
- label: V1 Test attention (H100) # 10min
mirror_hardwares: [amdexperimental]
agent_pool: mi325_1
# grade: Blocking
timeout_in_minutes: 30
gpu: h100
source_file_dependencies:
- vllm/v1/attention
- tests/v1/attention
commands:
- pytest -v -s v1/attention
- label: V1 Test attention (B200) # 10min
timeout_in_minutes: 30
gpu: b200
source_file_dependencies:
- vllm/v1/attention
- tests/v1/attention
commands:
- VLLM_DISABLE_FLASHINFER_PREFILL=1 pytest -v -s v1/attention # TODO: FI prefill is bugged and causes incorrectness, fix this
- label: V1 Test others (CPU) # 5 mins
mirror_hardwares: [amdexperimental, amdproduction]
agent_pool: mi325_1
@ -441,7 +489,7 @@ steps:
--ignore=lora/test_llm_with_multi_loras.py \
--ignore=lora/test_olmoe_tp.py \
--ignore=lora/test_deepseekv2_tp.py \
--ignore=lora/test_gptoss.py \
--ignore=lora/test_gptoss_tp.py \
--ignore=lora/test_qwen3moe_tp.py
parallelism: 4
@ -455,17 +503,12 @@ steps:
- vllm/
- tests/compile
commands:
- pytest -v -s compile/test_pass_manager.py
- pytest -v -s compile/test_fusion.py
- pytest -v -s compile/test_fusion_attn.py
- pytest -v -s compile/test_functionalization.py
- pytest -v -s compile/test_silu_mul_quant_fusion.py
# - pytest -v -s compile/test_sequence_parallelism.py
# - pytest -v -s compile/test_async_tp.py
- pytest -v -s compile/test_fusion_all_reduce.py
- pytest -v -s compile/test_decorator.py
- pytest -v -s compile/test_noop_elimination.py
- pytest -v -s compile/test_aot_compile.py
# Run unit tests defined directly under compile/,
# not including subdirectories, which are usually heavier
# tests covered elsewhere.
# Use `find` to launch multiple instances of pytest so that
# they do not suffer from https://github.com/vllm-project/vllm/issues/28965
- "find compile/ -maxdepth 1 -name 'test_*.py' -exec pytest -s -v {} \\\\;"
- label: PyTorch Fullgraph Smoke Test # 15min
timeout_in_minutes: 30
@ -477,11 +520,14 @@ steps:
- vllm/
- tests/compile
commands:
- pytest -v -s compile/test_basic_correctness.py
- pytest -v -s compile/piecewise/
# Run smoke tests under fullgraph directory, except test_full_graph.py
# as it is a heavy test that is covered in other steps.
# Use `find` to launch multiple instances of pytest so that
# they do not suffer from https://github.com/vllm-project/vllm/issues/28965
- "find compile/fullgraph/ -name 'test_*.py' -not -name 'test_full_graph.py' -exec pytest -s -v {} \\\\;"
- label: PyTorch Fullgraph Test # 22min
timeout_in_minutes: 35
- label: PyTorch Fullgraph Test # 27min
timeout_in_minutes: 40
mirror_hardwares: [amdexperimental, amdproduction]
agent_pool: mi325_1
# grade: Blocking
@ -490,8 +536,23 @@ steps:
- vllm/
- tests/compile
commands:
- pytest -v -s compile/test_full_graph.py
- pytest -v -s compile/test_fusions_e2e.py
- pytest -v -s compile/fullgraph/test_full_graph.py -k 'not test_fp8_kv_scale_compile'
# Limit to no custom ops to reduce running time
# Wrap with quotes to escape yaml and avoid starting -k string with a -
- "pytest -v -s compile/distributed/test_fusions_e2e.py -k 'TRITON and not +quant_fp8 and not Llama-4'"
- label: Cudagraph test
timeout_in_minutes: 20
mirror_hardwares: [amdexperimental, amdproduction]
agent_pool: mi325_1
source_file_dependencies:
- tests/v1/cudagraph
- vllm/v1/cudagraph_dispatcher.py
- vllm/config/compilation.py
- vllm/compilation
commands:
- pytest -v -s v1/cudagraph/test_cudagraph_dispatch.py
- pytest -v -s v1/cudagraph/test_cudagraph_mode.py
- label: Kernels Core Operation Test # 48min
timeout_in_minutes: 75
@ -543,6 +604,8 @@ steps:
- tests/kernels/moe
- vllm/model_executor/layers/fused_moe/
- vllm/distributed/device_communicators/
- vllm/envs.py
- vllm/config
commands:
- pytest -v -s kernels/moe --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
parallelism: 2
@ -561,10 +624,13 @@ steps:
- label: Model Executor Test # 23min
timeout_in_minutes: 35
torch_nightly: true
mirror_hardwares: [amdexperimental, amdproduction]
agent_pool: mi325_1
# grade: Blocking
source_file_dependencies:
- vllm/engine/arg_utils.py
- vllm/config/model.py
- vllm/model_executor
- tests/model_executor
- tests/entrypoints/openai/test_tensorizer_entrypoint.py
@ -616,9 +682,9 @@ steps:
- uv pip install --system torchao==0.13.0
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization/ --ignore quantization/test_blackwell_moe.py
- label: LM Eval Small Models # 53min
timeout_in_minutes: 75
mirror_hardwares: [amdexperimental]
- label: LM Eval Small Models # 15min
timeout_in_minutes: 20
mirror_hardwares: [amdexperimental, amdproduction]
agent_pool: mi325_1
# grade: Blocking
source_file_dependencies:
@ -627,16 +693,17 @@ steps:
commands:
- pytest -s -v evals/gsm8k/test_gsm8k_correctness.py --config-list-file=configs/models-small.txt --tp-size=1
- label: OpenAI API correctness # 22min
timeout_in_minutes: 30
mirror_hardwares: [amdexperimental]
- label: OpenAI API correctness # 10min
timeout_in_minutes: 15
mirror_hardwares: [amdexperimental, amdproduction]
agent_pool: mi325_1
# grade: Blocking
source_file_dependencies:
- csrc/
- vllm/entrypoints/openai/
- vllm/model_executor/models/whisper.py
commands: # LMEval+Transcription WER check
commands: # LMEval
# Transcription WER check is skipped because encoder-decoder models are not supported on ROCm, see https://github.com/vllm-project/vllm/issues/27442
- pytest -s entrypoints/openai/correctness/
- label: OpenAI-Compatible Tool Use # 23 min
@ -686,6 +753,7 @@ steps:
torch_nightly: true
source_file_dependencies:
- vllm/model_executor/models/
- vllm/transformers_utils/
- tests/models/test_initialization.py
commands:
# Only when vLLM model source is modified - test initialization of a large
@ -858,10 +926,11 @@ steps:
- pytest -v -s models/multimodal -m core_model --ignore models/multimodal/generation/test_whisper.py --ignore models/multimodal/processing
- cd .. && VLLM_WORKER_MULTIPROC_METHOD=spawn pytest -v -s tests/models/multimodal/generation/test_whisper.py -m core_model # Otherwise, mp_method="spawn" doesn't work
- label: Multi-Modal Accuracy Eval (Small Models) # 50min
mirror_hardwares: [amdexperimental]
agent_pool: mi325_1
- label: Multi-Modal Accuracy Eval (Small Models) # 10min
timeout_in_minutes: 70
mirror_hardwares: [amdexperimental, amdproduction]
agent_pool: mi325_1
# grade: Blocking
working_dir: "/vllm-workspace/.buildkite/lm-eval-harness"
source_file_dependencies:
- vllm/multimodal/
@ -932,16 +1001,17 @@ steps:
- label: Transformers Nightly Models Test
mirror_hardwares: [amdexperimental]
agent_pool: mi325_1
# grade: Blocking
working_dir: "/vllm-workspace/"
optional: true
commands:
- pip install --upgrade git+https://github.com/huggingface/transformers
- pytest -v -s tests/models/test_initialization.py
- pytest -v -s tests/models/test_initialization.py -k 'not (Gemma3 or ModernBert or Qwen2_5_VL or Qwen2_5vl or Qwen2VL or TransformersMultiModalEmbeddingModel or TransformersMultiModalForSequenceClassification or Ultravox or Phi4Multimodal or LlavaNextVideo or MiniCPMO or Lfm2Moe or PaliGemma or RobertaForSequenceClassification or Ovis2_5 or Fuyu or DeepseekOCR or KimiVL)'
- pytest -v -s tests/models/test_transformers.py
- pytest -v -s tests/models/multimodal/processing/
- pytest -v -s tests/models/multimodal/test_mapping.py
# - pytest -v -s tests/models/multimodal/processing/
- pytest -v -s tests/models/multimodal/test_mapping.py -k 'not (Gemma3 or Qwen2VL or Qwen2_5_VL)'
- python3 examples/offline_inference/basic/chat.py
- python3 examples/offline_inference/vision_language.py --model-type qwen2_5_vl
# - python3 examples/offline_inference/vision_language.py --model-type qwen2_5_vl
# Whisper needs spawn method to avoid deadlock
- VLLM_WORKER_MULTIPROC_METHOD=spawn python3 examples/offline_inference/audio_language.py --model-type whisper
@ -959,11 +1029,16 @@ steps:
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py
- vllm/model_executor/layers/quantization/utils/flashinfer_utils.py
- vllm/v1/attention/backends/flashinfer.py
- vllm/v1/attention/backends/mla/cutlass_mla.py
- vllm/v1/attention/backends/mla/flashinfer_mla.py
- vllm/platforms/cuda.py
- vllm/attention/selector.py
commands:
- nvidia-smi
- python3 examples/offline_inference/basic/chat.py
# Attention
# num_heads2 broken by https://github.com/flashinfer-ai/flashinfer/issues/1353
- pytest -v -s tests/kernels/attention/test_attention_selector.py
- pytest -v -s tests/kernels/attention/test_flashinfer.py -k 'not num_heads2'
- pytest -v -s tests/kernels/attention/test_flashinfer_trtllm_attention.py
- pytest -v -s tests/kernels/attention/test_cutlass_mla_decode.py
@ -981,7 +1056,7 @@ steps:
- pytest -v -s tests/kernels/moe/test_ocp_mx_moe.py
- pytest -v -s tests/kernels/moe/test_flashinfer.py
- label: Blackwell Fusion Tests # 30 min
- label: Blackwell Fusion and Compile Tests # 30 min
timeout_in_minutes: 40
working_dir: "/vllm-workspace/"
gpu: b200
@ -999,13 +1074,40 @@ steps:
- pytest -v -s tests/compile/test_fusion_attn.py
- pytest -v -s tests/compile/test_silu_mul_quant_fusion.py
# this runner has 2 GPUs available even though num_gpus=2 is not set
- pytest -v -s tests/compile/test_fusion_all_reduce.py
- pytest -v -s tests/compile/test_fusions_e2e.py
- pytest -v -s tests/compile/distributed/test_fusion_all_reduce.py
# Limit to Inductor partition, no custom ops, and allreduce & attn fusion to reduce running time
# Wrap with quotes to escape yaml
- "pytest -v -s tests/compile/distributed/test_fusions_e2e.py::test_tp2_attn_quant_allreduce_rmsnorm -k 'True and not +quant_fp8 and not +rms_norm'"
# test_fp8_kv_scale_compile requires FlashAttention (not supported on default L4/L40)
- pytest -v -s tests/compile/distributed/test_full_graph.py::test_fp8_kv_scale_compile
- label: Blackwell GPT-OSS Eval
timeout_in_minutes: 60
- label: Blackwell Fusion E2E Tests # 30 min
timeout_in_minutes: 40
working_dir: "/vllm-workspace/"
gpu: b200
optional: true
num_gpus: 2
source_file_dependencies:
- csrc/quantization/fp4/
- vllm/model_executor/layers/quantization/utils/flashinfer_utils.py
- vllm/v1/attention/backends/flashinfer.py
- vllm/compilation/
# can affect pattern matching
- vllm/model_executor/layers/layernorm.py
- vllm/model_executor/layers/activation.py
- vllm/model_executor/layers/quantization/input_quant_fp8.py
- tests/compile/distributed/test_fusions_e2e.py
- tests/compile/fullgraph/test_full_graph.py
commands:
- nvidia-smi
# Run all e2e fusion tests
- pytest -v -s tests/compile/test_fusions_e2e.py
- label: ROCm GPT-OSS Eval
timeout_in_minutes: 60
working_dir: "/vllm-workspace/"
agent_pool: mi325_1
mirror_hardwares: [amdexperimental, amdproduction]
optional: true # run on nightlies
source_file_dependencies:
- tests/evals/gpt_oss
@ -1014,7 +1116,7 @@ steps:
- vllm/v1/attention/backends/flashinfer.py
commands:
- uv pip install --system 'gpt-oss[eval]==0.0.5'
- pytest -s -v tests/evals/gpt_oss/test_gpqa_correctness.py --model openai/gpt-oss-20b --metric 0.58
- VLLM_ROCM_USE_AITER_MHA=0 VLLM_ROCM_USE_AITER=1 VLLM_USE_AITER_UNIFIED_ATTENTION=1 pytest -s -v tests/evals/gpt_oss/test_gpqa_correctness.py --model openai/gpt-oss-20b --metric 0.58
- label: Blackwell Quantized MoE Test
timeout_in_minutes: 60
@ -1104,7 +1206,7 @@ steps:
- vllm/worker/worker_base.py
- vllm/v1/engine/
- vllm/v1/worker/
- tests/compile/test_basic_correctness.py
- tests/compile/fullgraph/test_basic_correctness.py
- tests/compile/test_wrapper.py
- tests/distributed/
- tests/entrypoints/llm/test_collective_rpc.py
@ -1117,7 +1219,7 @@ steps:
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/distributed/test_external_lb_dp.py
- DP_SIZE=2 pytest -v -s v1/entrypoints/openai/test_multi_api_servers.py
- pytest -v -s entrypoints/llm/test_collective_rpc.py
- pytest -v -s ./compile/test_basic_correctness.py
- pytest -v -s ./compile/fullgraph/test_basic_correctness.py
- pytest -v -s ./compile/test_wrapper.py
- VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py | grep 'Same node test passed'
- VLLM_TEST_SAME_HOST=1 VLLM_TEST_WITH_DEFAULT_DEVICE_SET=1 torchrun --nproc-per-node=4 distributed/test_same_node.py | grep 'Same node test passed'
@ -1218,6 +1320,11 @@ steps:
- pytest -v -s -x lora/test_llm_with_multi_loras.py
- pytest -v -s -x lora/test_olmoe_tp.py
# Disabled for now because MXFP4 backend on non-cuda platform
# doesn't support LoRA yet
#- pytest -v -s -x lora/test_gptoss_tp.py
- label: Weight Loading Multiple GPU Test # 33min
timeout_in_minutes: 45
mirror_hardwares: [amdexperimental]
@ -1230,7 +1337,7 @@ steps:
- vllm/
- tests/weight_loading
commands:
- bash weight_loading/run_model_weight_loading_test.sh -c weight_loading/models.txt
- bash weight_loading/run_model_weight_loading_test.sh -c weight_loading/models-amd.txt
- label: Weight Loading Multiple GPU Test - Large Models # optional
mirror_hardwares: [amdexperimental]
@ -1238,17 +1345,17 @@ steps:
# grade: Blocking
working_dir: "/vllm-workspace/tests"
num_gpus: 2
gpu: a100
optional: true
source_file_dependencies:
- vllm/
- tests/weight_loading
commands:
- bash weight_loading/run_model_weight_loading_test.sh -c weight_loading/models-large.txt
- bash weight_loading/run_model_weight_loading_test.sh -c weight_loading/models-large-amd.txt
- label: NixlConnector PD accuracy tests (Distributed) # 30min
mirror_hardwares: [amdexperimental]
agent_pool: mi325_4
# grade: Blocking
timeout_in_minutes: 30
working_dir: "/vllm-workspace/tests"
num_gpus: 4
@ -1263,6 +1370,9 @@ steps:
##### A100 test #####
- label: Distributed Tests (A100) # optional
mirror_hardwares: [amdexperimental]
agent_pool: mi325_4
# grade: Blocking
gpu: a100
optional: true
num_gpus: 4
@ -1277,6 +1387,9 @@ steps:
- pytest -v -s -x lora/test_mixtral.py
- label: LM Eval Large Models # optional
mirror_hardwares: [amdexperimental, amdproduction]
agent_pool: mi325_4
# grade: Blocking
gpu: a100
optional: true
num_gpus: 4
@ -1288,19 +1401,41 @@ steps:
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-large.txt --tp-size=4
##### H100 test #####
- label: LM Eval Large Models (H100) # optional
mirror_hardwares: [amdexperimental, amdproduction]
agent_pool: mi325_4
# grade: Blocking
gpu: h100
optional: true
num_gpus: 4
working_dir: "/vllm-workspace/.buildkite/lm-eval-harness"
source_file_dependencies:
- csrc/
- vllm/model_executor/layers/quantization
commands:
- export VLLM_USE_DEEP_GEMM=0 # We found Triton is faster than DeepGEMM for H100
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-large-hopper.txt --tp-size=4
##### H200 test #####
- label: Distributed Tests (H200) # optional
mirror_hardwares: [amdexperimental]
agent_pool: mi325_2
# grade: Blocking
gpu: h200
optional: true
working_dir: "/vllm-workspace/"
num_gpus: 2
commands:
- pytest -v -s tests/compile/test_async_tp.py
- pytest -v -s tests/compile/test_sequence_parallelism.py
- pytest -v -s tests/compile/test_fusion_all_reduce.py
- pytest -v -s tests/compile/test_fusions_e2e.py::test_tp2_attn_quant_allreduce_rmsnorm
- pytest -v -s tests/compile/distributed/test_async_tp.py
- pytest -v -s tests/compile/distributed/test_sequence_parallelism.py
- pytest -v -s tests/compile/distributed/test_fusion_all_reduce.py
#- pytest -v -s tests/compile/distributed/test_fusions_e2e.py::test_tp2_attn_quant_allreduce_rmsnorm
- "pytest -v -s tests/compile/distributed/test_fusions_e2e.py -k 'not Llama-4'"
- pytest -v -s tests/compile/distributed/test_sequence_parallel.py
- pytest -v -s tests/distributed/test_context_parallel.py
- CUDA_VISIBLE_DEVICES=1,2 VLLM_ALL2ALL_BACKEND=deepep_high_throughput VLLM_USE_DEEP_GEMM=1 VLLM_LOGGING_LEVEL=DEBUG python3 examples/offline_inference/data_parallel.py --model Qwen/Qwen1.5-MoE-A2.7B --tp-size=1 --dp-size=2 --max-model-len 2048
- pytest -v -s tests/v1/distributed/test_dbo.py
##### B200 test #####
- label: Distributed Tests (B200) # optional
@ -1311,6 +1446,7 @@ steps:
commands:
- pytest -v -s tests/distributed/test_context_parallel.py
- pytest -v -s tests/distributed/test_nccl_symm_mem_allreduce.py
- pytest -v -s tests/v1/distributed/test_dbo.py
##### RL Integration Tests #####
- label: Prime-RL Integration Test # 15min
@ -1326,3 +1462,27 @@ steps:
- .buildkite/scripts/run-prime-rl-test.sh
commands:
- bash .buildkite/scripts/run-prime-rl-test.sh
- label: DeepSeek V2-Lite Accuracy
mirror_hardwares: [amdexperimental]
agent_pool: mi325_4
# grade: Blocking
timeout_in_minutes: 60
gpu: h100
optional: true
num_gpus: 4
working_dir: "/vllm-workspace"
commands:
- bash .buildkite/scripts/scheduled_integration_test/deepseek_v2_lite_ep_eplb.sh 0.25 200 8010
- label: Qwen3-30B-A3B-FP8-block Accuracy
mirror_hardwares: [amdexperimental]
agent_pool: mi325_4
# grade: Blocking
timeout_in_minutes: 60
gpu: h100
optional: true
num_gpus: 4
working_dir: "/vllm-workspace"
commands:
- bash .buildkite/scripts/scheduled_integration_test/qwen30b_a3b_fp8_block_ep_eplb.sh 0.8 200 8020

View File

@ -25,6 +25,7 @@
# and $$BUILDKITE_PARALLEL_JOB_COUNT environment variables.
# working_dir(str): specify the place where the command should execute, default to /vllm-workspace/tests
# source_file_dependencies(list): the list of prefixes to opt-in the test for, if empty, the test will always run.
# autorun_on_main (bool): default to false, if true, the test will run automatically when commit is pushed to main branch.
# When adding a test
# - If the test belongs to an existing group, add it there
@ -56,22 +57,26 @@ steps:
- pytest -v -s -m 'not cpu_test' multimodal
- pytest -v -s utils_
- label: Async Engine, Inputs, Utils, Worker Test (CPU) # 4 mins
timeout_in_minutes: 10
- label: Async Engine, Inputs, Utils, Worker, Config Test (CPU) # 15min
timeout_in_minutes: 20
source_file_dependencies:
- vllm/
- tests/test_inputs.py
- tests/test_outputs.py
- tests/multimodal
- tests/standalone_tests/lazy_imports.py
- tests/tokenizers_
- tests/transformers_utils
- tests/config
no_gpu: true
commands:
- python3 standalone_tests/lazy_imports.py
- pytest -v -s test_inputs.py
- pytest -v -s test_outputs.py
- pytest -v -s -m 'cpu_test' multimodal
- pytest -v -s tokenizers_
- pytest -v -s transformers_utils
- pytest -v -s config
- label: Python-only Installation Test # 10min
timeout_in_minutes: 20
@ -164,7 +169,7 @@ steps:
- tests/distributed/test_utils
- tests/distributed/test_pynccl
- tests/distributed/test_events
- tests/compile/test_basic_correctness
- tests/compile/fullgraph/test_basic_correctness.py
- examples/offline_inference/rlhf.py
- examples/offline_inference/rlhf_colocate.py
- tests/examples/offline_inference/data_parallel.py
@ -189,12 +194,13 @@ steps:
# test with internal dp
- python3 ../examples/offline_inference/data_parallel.py --enforce-eager
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/distributed/test_async_llm_dp.py
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/distributed/test_eagle_dp.py
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/distributed/test_external_lb_dp.py
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/distributed/test_internal_lb_dp.py
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/distributed/test_hybrid_lb_dp.py
- pytest -v -s v1/engine/test_engine_core_client.py::test_kv_cache_events_dp
- pytest -v -s distributed/test_utils.py
- pytest -v -s compile/test_basic_correctness.py
- pytest -v -s compile/fullgraph/test_basic_correctness.py
- pytest -v -s distributed/test_pynccl.py
- pytest -v -s distributed/test_events.py
- pytest -v -s distributed/test_symm_mem_allreduce.py
@ -232,8 +238,8 @@ steps:
commands:
- pytest -v -s distributed/test_eplb_algo.py
- label: EPLB Execution Test # 5min
timeout_in_minutes: 15
- label: EPLB Execution Test # 10min
timeout_in_minutes: 20
working_dir: "/vllm-workspace/tests"
num_gpus: 4
source_file_dependencies:
@ -241,6 +247,7 @@ steps:
- tests/distributed/test_eplb_execute.py
commands:
- pytest -v -s distributed/test_eplb_execute.py
- pytest -v -s distributed/test_eplb_spec_decode.py
- label: Metrics, Tracing Test # 12min
timeout_in_minutes: 20
@ -271,21 +278,18 @@ steps:
- pytest -v -s test_regression.py
working_dir: "/vllm-workspace/tests" # optional
- label: Engine Test # 25min
timeout_in_minutes: 40
- label: Engine Test # 9min
timeout_in_minutes: 15
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
- tests/engine
- tests/tokenization
- tests/test_sequence
- tests/test_config
- tests/test_logger
- tests/test_vllm_port
commands:
- pytest -v -s engine test_sequence.py test_config.py test_logger.py test_vllm_port.py
# OOM in the CI unless we run this separately
- pytest -v -s tokenization
- label: V1 Test e2e + engine # 30min
timeout_in_minutes: 45
@ -315,6 +319,7 @@ steps:
- vllm/
- tests/v1
commands:
- uv pip install --system -r /vllm-workspace/requirements/kv_connectors.txt
# split the test to avoid interference
- pytest -v -s -m 'not cpu_test' v1/core
- pytest -v -s v1/executor
@ -327,6 +332,7 @@ steps:
- pytest -v -s -m 'not cpu_test' v1/metrics
- pytest -v -s v1/test_oracle.py
- pytest -v -s v1/test_request.py
- pytest -v -s v1/test_outputs.py
# Integration test for streaming correctness (requires special branch).
- pip install -U git+https://github.com/robertgshaw2-redhat/lm-evaluation-harness.git@streaming-api
- pytest -v -s entrypoints/openai/correctness/test_lmeval.py::test_lm_eval_accuracy_v1_engine
@ -340,6 +346,27 @@ steps:
commands:
- pytest -v -s v1/attention
- label: Batch Invariance Tests (H100) # 10min
timeout_in_minutes: 25
gpu: h100
source_file_dependencies:
- vllm/
- tests/v1/determinism/
commands:
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pip install pytest-timeout pytest-forked
- pytest -v -s v1/determinism/test_batch_invariance.py
- pytest -v -s v1/determinism/test_rms_norm_batch_invariant.py
- label: V1 Test attention (B200) # 10min
timeout_in_minutes: 30
gpu: b200
source_file_dependencies:
- vllm/v1/attention
- tests/v1/attention
commands:
- VLLM_DISABLE_FLASHINFER_PREFILL=1 pytest -v -s v1/attention # TODO: FI prefill is bugged and causes incorrectness, fix this
- label: V1 Test others (CPU) # 5 mins
source_file_dependencies:
- vllm/
@ -417,7 +444,7 @@ steps:
--ignore=lora/test_llm_with_multi_loras.py \
--ignore=lora/test_olmoe_tp.py \
--ignore=lora/test_deepseekv2_tp.py \
--ignore=lora/test_gptoss.py \
--ignore=lora/test_gptoss_tp.py \
--ignore=lora/test_qwen3moe_tp.py
parallelism: 4
@ -430,15 +457,12 @@ steps:
- vllm/
- tests/compile
commands:
- pytest -v -s compile/test_pass_manager.py
- pytest -v -s compile/test_fusion.py
- pytest -v -s compile/test_fusion_attn.py
- pytest -v -s compile/test_functionalization.py
- pytest -v -s compile/test_silu_mul_quant_fusion.py
- pytest -v -s compile/test_fusion_all_reduce.py
- pytest -v -s compile/test_decorator.py
- pytest -v -s compile/test_noop_elimination.py
- pytest -v -s compile/test_aot_compile.py
# Run unit tests defined directly under compile/,
# not including subdirectories, which are usually heavier
# tests covered elsewhere.
# Use `find` to launch multiple instances of pytest so that
# they do not suffer from https://github.com/vllm-project/vllm/issues/28965
- "find compile/ -maxdepth 1 -name 'test_*.py' -exec pytest -s -v {} \\\\;"
- label: PyTorch Fullgraph Smoke Test # 15min
timeout_in_minutes: 30
@ -448,19 +472,25 @@ steps:
- vllm/
- tests/compile
commands:
- pytest -v -s compile/test_basic_correctness.py
- pytest -v -s compile/piecewise/
# Run smoke tests under fullgraph directory, except test_full_graph.py
# as it is a heavy test that is covered in other steps.
# Use `find` to launch multiple instances of pytest so that
# they do not suffer from https://github.com/vllm-project/vllm/issues/28965
- "find compile/fullgraph/ -name 'test_*.py' -not -name 'test_full_graph.py' -exec pytest -s -v {} \\\\;"
- label: PyTorch Fullgraph Test # 22min
timeout_in_minutes: 35
- label: PyTorch Fullgraph Test # 27min
timeout_in_minutes: 40
mirror_hardwares: [amdexperimental]
torch_nightly: true
source_file_dependencies:
- vllm/
- tests/compile
commands:
- pytest -v -s compile/test_full_graph.py
- pytest -v -s compile/test_fusions_e2e.py
# fp8 kv scales not supported on sm89, tested on Blackwell instead
- pytest -v -s compile/fullgraph/test_full_graph.py -k 'not test_fp8_kv_scale_compile'
# Limit to no custom ops to reduce running time
# Wrap with quotes to escape yaml and avoid starting -k string with a -
- "pytest -v -s compile/distributed/test_fusions_e2e.py -k 'TRITON and not +quant_fp8 and not Llama-4'"
- label: Cudagraph test
timeout_in_minutes: 20
@ -532,10 +562,32 @@ steps:
commands:
- pytest -v -s kernels/mamba
- label: Kernels DeepGEMM Test (H100)
timeout_in_minutes: 45
gpu: h100
num_gpus: 1
source_file_dependencies:
- tools/install_deepgemm.sh
- vllm/utils/deep_gemm.py
- vllm/model_executor/layers/fused_moe
- vllm/model_executor/layers/quantization
- tests/kernels/quantization/test_block_fp8.py
- tests/kernels/moe/test_deepgemm.py
- tests/kernels/moe/test_batched_deepgemm.py
- tests/kernels/attention/test_deepgemm_attention.py
commands:
- pytest -v -s kernels/quantization/test_block_fp8.py -k deep_gemm
- pytest -v -s kernels/moe/test_deepgemm.py
- pytest -v -s kernels/moe/test_batched_deepgemm.py
- pytest -v -s kernels/attention/test_deepgemm_attention.py
- label: Model Executor Test # 23min
timeout_in_minutes: 35
torch_nightly: true
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/engine/arg_utils.py
- vllm/config/model.py
- vllm/model_executor
- tests/model_executor
- tests/entrypoints/openai/test_tensorizer_entrypoint.py
@ -579,6 +631,7 @@ steps:
# we can only upgrade after this is resolved
# TODO(jerryzh168): resolve the above comment
- uv pip install --system torchao==0.13.0 --index-url https://download.pytorch.org/whl/cu129
- uv pip install --system conch-triton-kernels
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization/ --ignore quantization/test_blackwell_moe.py
- label: LM Eval Small Models # 53min
@ -587,6 +640,7 @@ steps:
source_file_dependencies:
- csrc/
- vllm/model_executor/layers/quantization
autorun_on_main: true
commands:
- pytest -s -v evals/gsm8k/test_gsm8k_correctness.py --config-list-file=configs/models-small.txt --tp-size=1
@ -638,6 +692,7 @@ steps:
torch_nightly: true
source_file_dependencies:
- vllm/model_executor/models/
- vllm/transformers_utils/
- tests/models/test_initialization.py
commands:
# Only when vLLM model source is modified - test initialization of a large
@ -764,14 +819,24 @@ steps:
commands:
- pytest -v -s models/language/pooling_mteb_test
- label: Multi-Modal Processor Test # 44min
- label: Multi-Modal Processor Test (CPU)
timeout_in_minutes: 60
source_file_dependencies:
- vllm/
- tests/models/multimodal
no_gpu: true
commands:
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
- pytest -v -s models/multimodal/processing --ignore models/multimodal/processing/test_tensor_schema.py
- label: Multi-Modal Processor Test
timeout_in_minutes: 60
source_file_dependencies:
- vllm/
- tests/models/multimodal
commands:
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
- pytest -v -s models/multimodal/processing
- pytest -v -s models/multimodal/processing/test_tensor_schema.py
- label: Multi-Modal Models Test (Standard) # 60min
timeout_in_minutes: 80
@ -848,6 +913,7 @@ steps:
- label: Transformers Nightly Models Test
working_dir: "/vllm-workspace/"
optional: true
soft_fail: true
commands:
- pip install --upgrade git+https://github.com/huggingface/transformers
- pytest -v -s tests/models/test_initialization.py
@ -873,11 +939,16 @@ steps:
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py
- vllm/model_executor/layers/quantization/utils/flashinfer_utils.py
- vllm/v1/attention/backends/flashinfer.py
- vllm/v1/attention/backends/mla/cutlass_mla.py
- vllm/v1/attention/backends/mla/flashinfer_mla.py
- vllm/platforms/cuda.py
- vllm/attention/selector.py
commands:
- nvidia-smi
- python3 examples/offline_inference/basic/chat.py
# Attention
# num_heads2 broken by https://github.com/flashinfer-ai/flashinfer/issues/1353
- pytest -v -s tests/kernels/attention/test_attention_selector.py
- pytest -v -s tests/kernels/attention/test_flashinfer.py -k 'not num_heads2'
- pytest -v -s tests/kernels/attention/test_flashinfer_trtllm_attention.py
- pytest -v -s tests/kernels/attention/test_cutlass_mla_decode.py
@ -894,8 +965,9 @@ steps:
- pytest -v -s tests/kernels/moe/test_nvfp4_moe.py
- pytest -v -s tests/kernels/moe/test_ocp_mx_moe.py
- pytest -v -s tests/kernels/moe/test_flashinfer.py
- pytest -v -s tests/kernels/moe/test_cutedsl_moe.py
- label: Blackwell Fusion Tests # 30 min
- label: Blackwell Fusion and Compile Tests # 30 min
timeout_in_minutes: 40
working_dir: "/vllm-workspace/"
gpu: b200
@ -903,18 +975,50 @@ steps:
- csrc/quantization/fp4/
- vllm/model_executor/layers/quantization/utils/flashinfer_utils.py
- vllm/v1/attention/backends/flashinfer.py
- vllm/v1/worker/
- vllm/v1/cudagraph_dispatcher.py
- vllm/compilation/
# can affect pattern matching
- vllm/model_executor/layers/layernorm.py
- vllm/model_executor/layers/activation.py
- vllm/model_executor/layers/quantization/input_quant_fp8.py
- tests/compile/test_fusion_attn.py
- tests/compile/test_silu_mul_quant_fusion.py
- tests/compile/distributed/test_fusion_all_reduce.py
- tests/compile/distributed/test_fusions_e2e.py
- tests/compile/fullgraph/test_full_graph.py
commands:
- nvidia-smi
- pytest -v -s tests/compile/test_fusion_attn.py
- pytest -v -s tests/compile/test_silu_mul_quant_fusion.py
# this runner has 2 GPUs available even though num_gpus=2 is not set
- pytest -v -s tests/compile/distributed/test_fusion_all_reduce.py
# Limit to Inductor partition, no custom ops, and allreduce & attn fusion to reduce running time
# Wrap with quotes to escape yaml
- "pytest -v -s tests/compile/distributed/test_fusions_e2e.py::test_tp2_attn_quant_allreduce_rmsnorm -k 'True and not +quant_fp8 and not +rms_norm'"
# test_fp8_kv_scale_compile requires FlashAttention (not supported on default L4/L40)
- pytest -v -s tests/compile/fullgraph/test_full_graph.py::test_fp8_kv_scale_compile
- label: Blackwell Fusion E2E Tests # 30 min
timeout_in_minutes: 40
working_dir: "/vllm-workspace/"
gpu: b200
optional: true
num_gpus: 2
source_file_dependencies:
- csrc/quantization/fp4/
- vllm/model_executor/layers/quantization/utils/flashinfer_utils.py
- vllm/v1/attention/backends/flashinfer.py
- vllm/compilation/
# can affect pattern matching
- vllm/model_executor/layers/layernorm.py
- vllm/model_executor/layers/activation.py
- vllm/model_executor/layers/quantization/input_quant_fp8.py
- tests/compile/distributed/test_fusions_e2e.py
commands:
- nvidia-smi
- pytest -v -s tests/compile/test_fusion_attn.py
- pytest -v -s tests/compile/test_silu_mul_quant_fusion.py
# this runner has 2 GPUs available even though num_gpus=2 is not set
- pytest -v -s tests/compile/test_fusion_all_reduce.py
- pytest -v -s tests/compile/test_fusions_e2e.py
# Run all e2e fusion tests
- pytest -v -s tests/compile/distributed/test_fusions_e2e.py
- label: Blackwell GPT-OSS Eval
timeout_in_minutes: 60
@ -1012,7 +1116,7 @@ steps:
- vllm/worker/worker_base.py
- vllm/v1/engine/
- vllm/v1/worker/
- tests/compile/test_basic_correctness.py
- tests/compile/fullgraph/test_basic_correctness.py
- tests/compile/test_wrapper.py
- tests/distributed/
- tests/entrypoints/llm/test_collective_rpc.py
@ -1024,10 +1128,11 @@ steps:
# https://github.com/NVIDIA/nccl/issues/1838
- export NCCL_CUMEM_HOST_ENABLE=0
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/distributed/test_async_llm_dp.py
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/distributed/test_eagle_dp.py
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/distributed/test_external_lb_dp.py
- DP_SIZE=2 pytest -v -s v1/entrypoints/openai/test_multi_api_servers.py
- pytest -v -s entrypoints/llm/test_collective_rpc.py
- pytest -v -s ./compile/test_basic_correctness.py
- pytest -v -s ./compile/fullgraph/test_basic_correctness.py
- pytest -v -s ./compile/test_wrapper.py
- VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py | grep 'Same node test passed'
- VLLM_TEST_SAME_HOST=1 VLLM_TEST_WITH_DEFAULT_DEVICE_SET=1 torchrun --nproc-per-node=4 distributed/test_same_node.py | grep 'Same node test passed'
@ -1119,6 +1224,7 @@ steps:
- pytest -v -s -x lora/test_llama_tp.py
- pytest -v -s -x lora/test_llm_with_multi_loras.py
- pytest -v -s -x lora/test_olmoe_tp.py
- pytest -v -s -x lora/test_gptoss_tp.py
- label: Weight Loading Multiple GPU Test # 33min
@ -1186,6 +1292,19 @@ steps:
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-large.txt --tp-size=4
##### H100 test #####
- label: LM Eval Large Models (H100) # optional
gpu: h100
optional: true
num_gpus: 4
working_dir: "/vllm-workspace/.buildkite/lm-eval-harness"
source_file_dependencies:
- csrc/
- vllm/model_executor/layers/quantization
commands:
- export VLLM_USE_DEEP_GEMM=0 # We found Triton is faster than DeepGEMM for H100
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-large-hopper.txt --tp-size=4
##### H200 test #####
- label: Distributed Tests (H200) # optional
gpu: h200
@ -1193,12 +1312,14 @@ steps:
working_dir: "/vllm-workspace/"
num_gpus: 2
commands:
- pytest -v -s tests/compile/test_async_tp.py
- pytest -v -s tests/compile/test_sequence_parallelism.py
- pytest -v -s tests/compile/test_fusion_all_reduce.py
- pytest -v -s tests/compile/test_fusions_e2e.py::test_tp2_attn_quant_allreduce_rmsnorm
- VLLM_TEST_CLEAN_GPU_MEMORY=1 pytest -v -s tests/compile/distributed/test_async_tp.py
- pytest -v -s tests/compile/distributed/test_sequence_parallelism.py
- pytest -v -s tests/compile/distributed/test_fusion_all_reduce.py
- "VLLM_TEST_CLEAN_GPU_MEMORY=1 pytest -v -s tests/compile/distributed/test_fusions_e2e.py -k 'not Llama-4'"
- VLLM_TEST_CLEAN_GPU_MEMORY=1 pytest -v -s tests/distributed/test_sequence_parallel.py
- pytest -v -s tests/distributed/test_context_parallel.py
- CUDA_VISIBLE_DEVICES=1,2 VLLM_ALL2ALL_BACKEND=deepep_high_throughput VLLM_USE_DEEP_GEMM=1 VLLM_LOGGING_LEVEL=DEBUG python3 examples/offline_inference/data_parallel.py --model Qwen/Qwen1.5-MoE-A2.7B --tp-size=1 --dp-size=2 --max-model-len 2048
- pytest -v -s tests/v1/distributed/test_dbo.py
##### B200 test #####
- label: Distributed Tests (B200) # optional
@ -1209,6 +1330,7 @@ steps:
commands:
- pytest -v -s tests/distributed/test_context_parallel.py
- pytest -v -s tests/distributed/test_nccl_symm_mem_allreduce.py
- pytest -v -s tests/v1/distributed/test_dbo.py
##### RL Integration Tests #####
- label: Prime-RL Integration Test # 15min
@ -1221,3 +1343,30 @@ steps:
- .buildkite/scripts/run-prime-rl-test.sh
commands:
- bash .buildkite/scripts/run-prime-rl-test.sh
- label: DeepSeek V2-Lite Accuracy
timeout_in_minutes: 60
gpu: h100
optional: true
num_gpus: 4
working_dir: "/vllm-workspace"
commands:
- bash .buildkite/scripts/scheduled_integration_test/deepseek_v2_lite_ep_eplb.sh 0.25 200 8010
- label: Qwen3-30B-A3B-FP8-block Accuracy (H100)
timeout_in_minutes: 60
gpu: h100
optional: true
num_gpus: 4
working_dir: "/vllm-workspace"
commands:
- bash .buildkite/scripts/scheduled_integration_test/qwen30b_a3b_fp8_block_ep_eplb.sh 0.8 200 8020
- label: Qwen3-30B-A3B-FP8-block Accuracy (B200)
timeout_in_minutes: 60
gpu: b200
optional: true
num_gpus: 2
working_dir: "/vllm-workspace"
commands:
- bash .buildkite/scripts/scheduled_integration_test/qwen30b_a3b_fp8_block_ep_eplb.sh 0.8 200 8020 2 1

61
.github/CODEOWNERS vendored
View File

@ -3,13 +3,14 @@
# This lists cover the "core" components of vLLM that require careful review
/vllm/attention @LucasWilkinson
/vllm/attention/backends/abstract.py @WoosukKwon @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/executor/executor_base.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill @22quinn
/vllm/attention/backends/abstract.py @WoosukKwon @zhuohan123 @youkaichao @alexm-redhat @njhill
/vllm/executor/executor_base.py @zhuohan123 @youkaichao @alexm-redhat @njhill @22quinn
/vllm/model_executor/layers/fused_moe @mgoin @pavanimajety
/vllm/model_executor/layers/quantization @mgoin @robertgshaw2-redhat @tlrmchlsmth @yewentao256 @pavanimajety
/vllm/model_executor/layers/mamba @tdoublep
/vllm/model_executor/model_loader @22quinn
/vllm/multimodal @DarkLight1337 @ywang96 @NickLucche
/vllm/model_executor/layers/batch_invariant.py @yewentao256
/vllm/multimodal @DarkLight1337 @ywang96 @NickLucche @tjtanaa
/vllm/vllm_flash_attn @LucasWilkinson
/vllm/lora @jeejeelee
/vllm/reasoning @aarnphm @chaunceyjiang
@ -20,27 +21,30 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
# Any change to the VllmConfig changes can have a large user-facing impact,
# so spam a lot of people
/vllm/config @simon-mo @WoosukKwon @youkaichao @robertgshaw2-redhat @mgoin @tlrmchlsmth @houseroad @hmellor @yewentao256 @ProExpertProg
/vllm/config/cache.py @simon-mo @WoosukKwon @youkaichao @robertgshaw2-redhat @mgoin @tlrmchlsmth @houseroad @hmellor @yewentao256 @ProExpertProg @heheda12345
/vllm/config @WoosukKwon @youkaichao @robertgshaw2-redhat @mgoin @tlrmchlsmth @houseroad @hmellor @yewentao256 @ProExpertProg
/vllm/config/cache.py @WoosukKwon @youkaichao @robertgshaw2-redhat @mgoin @tlrmchlsmth @houseroad @hmellor @yewentao256 @ProExpertProg @heheda12345
# vLLM V1
/vllm/v1/attention @LucasWilkinson
/vllm/v1/attention/backends/mla @pavanimajety
/vllm/v1/attention/backends/flashinfer.py @mgoin @pavanimajety
/vllm/v1/attention/backends/triton_attn.py @tdoublep
/vllm/v1/core @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat @heheda12345 @ApostaC
/vllm/v1/core @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @alexm-redhat @heheda12345 @ApostaC
/vllm/v1/sample @22quinn @houseroad @njhill
/vllm/v1/spec_decode @benchislett @luccafong
/vllm/v1/structured_output @mgoin @russellb @aarnphm @benchislett
/vllm/v1/kv_cache_interface.py @heheda12345
/vllm/v1/offloading @ApostaC
# Model runner V2
/vllm/v1/worker/gpu @WoosukKwon
# Test ownership
/.buildkite/lm-eval-harness @mgoin @simon-mo
/.buildkite/lm-eval-harness @mgoin
/tests/distributed/test_multi_node_assignment.py @youkaichao
/tests/distributed/test_pipeline_parallel.py @youkaichao
/tests/distributed/test_same_node.py @youkaichao
/tests/entrypoints @DarkLight1337 @robertgshaw2-redhat @simon-mo @aarnphm @NickLucche
/tests/entrypoints @DarkLight1337 @robertgshaw2-redhat @aarnphm @NickLucche
/tests/evals @mgoin
/tests/kernels @mgoin @tlrmchlsmth @WoosukKwon @yewentao256
/tests/models @DarkLight1337 @ywang96
@ -49,18 +53,29 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
/tests/test_inputs.py @DarkLight1337 @ywang96
/tests/v1/entrypoints/llm/test_struct_output_generate.py @mgoin @russellb @aarnphm
/tests/v1/structured_output @mgoin @russellb @aarnphm
/tests/v1/core @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat @heheda12345 @ApostaC
/tests/v1/core @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @alexm-redhat @heheda12345 @ApostaC
/tests/weight_loading @mgoin @youkaichao @yewentao256
/tests/lora @jeejeelee
/tests/models/language/generation/test_hybrid.py @tdoublep
/tests/v1/kv_connector/nixl_integration @NickLucche
/tests/v1/kv_connector @ApostaC
/tests/v1/offloading @ApostaC
/tests/v1/determinism @yewentao256
# Transformers backend
# Transformers modeling backend
/vllm/model_executor/models/transformers @hmellor
/tests/models/test_transformers.py @hmellor
# Observability
/vllm/config/observability.py @markmc
/vllm/v1/metrics @markmc
/tests/v1/metrics @markmc
/vllm/tracing.py @markmc
/tests/v1/tracing/test_tracing.py @markmc
/vllm/config/kv_events.py @markmc
/vllm/distributed/kv_events.py @markmc
/tests/distributed/test_events.py @markmc
# Docs
/docs/mkdocs @hmellor
/docs/**/*.yml @hmellor
@ -105,11 +120,21 @@ mkdocs.yaml @hmellor
/vllm/attention/ops/triton_unified_attention.py @tdoublep
# ROCm related: specify owner with write access to notify AMD folks for careful code review
/docker/Dockerfile.rocm* @gshtras
/vllm/v1/attention/backends/rocm*.py @gshtras
/vllm/v1/attention/backends/mla/rocm*.py @gshtras
/vllm/attention/ops/rocm*.py @gshtras
/vllm/model_executor/layers/fused_moe/rocm*.py @gshtras
/vllm/**/*rocm* @tjtanaa
/docker/Dockerfile.rocm* @gshtras @tjtanaa
/vllm/v1/attention/backends/rocm*.py @gshtras @tjtanaa
/vllm/v1/attention/backends/mla/rocm*.py @gshtras @tjtanaa
/vllm/attention/ops/rocm*.py @gshtras @tjtanaa
/vllm/model_executor/layers/fused_moe/rocm*.py @gshtras @tjtanaa
/csrc/rocm @gshtras @tjtanaa
/requirements/*rocm* @tjtanaa
/tests/**/*rocm* @tjtanaa
/docs/**/*rocm* @tjtanaa
/vllm/**/*quark* @tjtanaa
/tests/**/*quark* @tjtanaa
/docs/**/*quark* @tjtanaa
/vllm/**/*aiter* @tjtanaa
/tests/**/*aiter* @tjtanaa
# TPU
/vllm/v1/worker/tpu* @NickLucche
@ -124,6 +149,12 @@ mkdocs.yaml @hmellor
/examples/*/pooling/ @noooop
/tests/models/*/pooling* @noooop
/tests/entrypoints/pooling @noooop
/vllm/entrypoints/pooling @aarnphm @chaunceyjiang @noooop
/vllm/config/pooler.py @noooop
/vllm/pooling_params.py @noooop
/vllm/model_executor/layers/pooler.py @noooop
# Security guide and policies
/docs/usage/security.md @russellb
/SECURITY.md @russellb
/docs/contributing/vulnerability_management.md @russellb

19
.github/mergify.yml vendored
View File

@ -108,7 +108,7 @@ pull_request_rules:
- files~=^benchmarks/
- files~=^vllm/benchmarks/
- files~=^tests/benchmarks/
- files~=^\.buildkite/nightly-benchmarks/
- files~=^\.buildkite/performance-benchmarks/
actions:
label:
add:
@ -151,6 +151,23 @@ pull_request_rules:
add:
- gpt-oss
- name: label-nvidia
description: Automatically apply nvidia label
conditions:
- label != stale
- or:
- files~=cuda
- files~=cutlass
- files~=flashinfer
- files~=trtllm
- title~=(?i)NVIDIA
- title~=(?i)CUDA
- title~=(?i)CUTLASS
actions:
label:
add:
- nvidia
- name: label-rocm
description: Automatically apply rocm label
conditions:

View File

@ -13,7 +13,7 @@ jobs:
steps:
- name: Checkout repository
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # v6.0.0
- name: Set up Python
uses: actions/setup-python@e797f83bcb11b83ae66e0230d6156d7c80228e7c # v6.0.0

View File

@ -105,6 +105,31 @@ jobs:
}
],
},
cpu: {
// Keyword search - matches whole words only (with word boundaries)
keywords: [
{
term: "CPU Backend",
searchIn: "title"
},
{
term: "x86",
searchIn: "title"
},
{
term: "ARM",
searchIn: "title"
},
{
term: "Apple Silicon",
searchIn: "title"
},
{
term: "IBM Z",
searchIn: "title"
},
],
},
// Add more label configurations here as needed
// example: {
// keywords: [...],

80
.github/workflows/macos-smoke-test.yml vendored Normal file
View File

@ -0,0 +1,80 @@
name: macOS Apple Silicon Smoke Test
on:
push:
branches:
- main
workflow_dispatch: # Manual trigger
jobs:
macos-m1-smoke-test:
runs-on: macos-latest
timeout-minutes: 30
steps:
- uses: actions/checkout@v6
- uses: astral-sh/setup-uv@v7
with:
enable-cache: true
cache-dependency-glob: |
requirements/**/*.txt
pyproject.toml
python-version: '3.12'
- name: Create virtual environment
run: |
uv venv
echo "$GITHUB_WORKSPACE/.venv/bin" >> "$GITHUB_PATH"
- name: Install dependencies and build vLLM
run: |
uv pip install -r requirements/cpu.txt --index-strategy unsafe-best-match
uv pip install -e .
env:
CMAKE_BUILD_PARALLEL_LEVEL: 4
- name: Verify installation
run: |
python -c "import vllm; print(f'vLLM version: {vllm.__version__}')"
- name: Smoke test vllm serve
run: |
# Start server in background
vllm serve Qwen/Qwen3-0.6B \
--max-model-len=2K \
--load-format=dummy \
--hf-overrides '{"num_hidden_layers": 2}' \
--enforce-eager \
--port 8000 &
SERVER_PID=$!
# Wait for server to start
for i in {1..30}; do
if curl -s http://localhost:8000/health > /dev/null; then
echo "Server started successfully"
break
fi
if [ "$i" -eq 30 ]; then
echo "Server failed to start"
kill "$SERVER_PID"
exit 1
fi
sleep 2
done
# Test health endpoint
curl -f http://localhost:8000/health
# Test completion
curl -f http://localhost:8000/v1/completions \
-H "Content-Type: application/json" \
-d '{
"model": "Qwen/Qwen3-0.6B",
"prompt": "Hello",
"max_tokens": 5
}'
# Cleanup
kill "$SERVER_PID"

View File

@ -16,7 +16,7 @@ jobs:
pre-commit:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
- uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # v6.0.0
- uses: actions/setup-python@e797f83bcb11b83ae66e0230d6156d7c80228e7c # v6.0.0
with:
python-version: "3.12"

6
.gitignore vendored
View File

@ -4,6 +4,9 @@
# vllm-flash-attn built from source
vllm/vllm_flash_attn/*
# OpenAI triton kernels copied from source
vllm/third_party/triton_kernels/*
# triton jit
.triton
@ -221,3 +224,6 @@ csrc/moe/marlin_moe_wna16/kernel_*
# Ignore ep_kernels_workspace folder
ep_kernels_workspace/
# Allow tracked library source folders under submodules (e.g., benchmarks/lib)
!vllm/benchmarks/lib/

View File

@ -3,10 +3,9 @@ MD007:
MD013: false
MD024:
siblings_only: true
MD031:
list_items: false
MD033: false
MD045: false
MD046: false
MD051: false
MD052: false
MD053: false
MD059: false

View File

@ -38,7 +38,7 @@ repos:
rev: 0.9.1
hooks:
- id: pip-compile
args: [requirements/test.in, -o, requirements/test.txt, --index-strategy, unsafe-best-match, --torch-backend, cu129, --python-platform, x86_64-manylinux_2_28]
args: [requirements/test.in, -o, requirements/test.txt, --index-strategy, unsafe-best-match, --torch-backend, cu129, --python-platform, x86_64-manylinux_2_28, --python-version, "3.12"]
files: ^requirements/test\.(in|txt)$
- repo: local
hooks:

View File

@ -39,6 +39,13 @@ set(PYTHON_SUPPORTED_VERSIONS "3.10" "3.11" "3.12" "3.13")
# Supported AMD GPU architectures.
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1101;gfx1200;gfx1201;gfx1150;gfx1151")
# ROCm installation prefix. Default to /opt/rocm but allow override via
# -DROCM_PATH=/your/rocm/path when invoking cmake.
if(NOT DEFINED ROCM_PATH)
set(ROCM_PATH "/opt/rocm" CACHE PATH "ROCm installation prefix")
else()
set(ROCM_PATH ${ROCM_PATH} CACHE PATH "ROCm installation prefix" FORCE)
endif()
#
# Supported/expected torch versions for CUDA/ROCm.
#
@ -129,7 +136,7 @@ elseif(HIP_FOUND)
# ROCm 5.X and 6.X
if (ROCM_VERSION_DEV_MAJOR GREATER_EQUAL 5 AND
NOT Torch_VERSION VERSION_EQUAL ${TORCH_SUPPORTED_VERSION_ROCM})
Torch_VERSION VERSION_LESS ${TORCH_SUPPORTED_VERSION_ROCM})
message(WARNING "Pytorch version >= ${TORCH_SUPPORTED_VERSION_ROCM} "
"expected for ROCm build, saw ${Torch_VERSION} instead.")
endif()
@ -237,11 +244,28 @@ set_gencode_flags_for_srcs(
SRCS "${VLLM_CUMEM_EXT_SRC}"
CUDA_ARCHS "${CUDA_ARCHS}")
if(VLLM_GPU_LANG STREQUAL "CUDA")
if(VLLM_GPU_LANG STREQUAL "CUDA" OR VLLM_GPU_LANG STREQUAL "HIP")
message(STATUS "Enabling cumem allocator extension.")
# link against cuda driver library
list(APPEND CUMEM_LIBS CUDA::cuda_driver)
define_gpu_extension_target(
if(VLLM_GPU_LANG STREQUAL "CUDA")
# link against cuda driver library
list(APPEND CUMEM_LIBS CUDA::cuda_driver)
else()
# link against rocm driver library. Prefer an absolute path to
# libamdhip64.so inside ${ROCM_PATH}/lib if available, otherwise fall
# back to linking by name "amdhip64".
find_library(AMDHIP64_LIB
NAMES amdhip64 libamdhip64.so
PATHS ${ROCM_PATH}/lib
NO_DEFAULT_PATH)
if(AMDHIP64_LIB)
message(STATUS "Found libamdhip64 at ${AMDHIP64_LIB}")
list(APPEND CUMEM_LIBS ${AMDHIP64_LIB})
else()
message(WARNING "libamdhip64 not found in ${ROCM_PATH}/lib; falling back to linking 'amdhip64' by name")
list(APPEND CUMEM_LIBS amdhip64)
endif()
endif()
define_extension_target(
cumem_allocator
DESTINATION vllm
LANGUAGE CXX
@ -265,6 +289,7 @@ set(VLLM_EXT_SRC
"csrc/pos_encoding_kernels.cu"
"csrc/activation_kernels.cu"
"csrc/layernorm_kernels.cu"
"csrc/fused_qknorm_rope_kernel.cu"
"csrc/layernorm_quant_kernels.cu"
"csrc/sampler.cu"
"csrc/cuda_view.cu"
@ -282,7 +307,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
SET(CUTLASS_ENABLE_HEADERS_ONLY ON CACHE BOOL "Enable only the header library")
# Set CUTLASS_REVISION. Used for FetchContent. Also fixes some bogus messages when building.
set(CUTLASS_REVISION "v4.2.1" CACHE STRING "CUTLASS revision to use")
set(CUTLASS_REVISION "v4.2.1")
# Use the specified CUTLASS source directory for compilation if VLLM_CUTLASS_SRC_DIR is provided
if (DEFINED ENV{VLLM_CUTLASS_SRC_DIR})
@ -329,8 +354,17 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# Only build Marlin kernels if we are building for at least some compatible archs.
# Keep building Marlin for 9.0 as there are some group sizes and shapes that
# are not supported by Machete yet.
# 9.0 for latest bf16 atomicAdd PTX
cuda_archs_loose_intersection(MARLIN_ARCHS "8.0;8.7;9.0+PTX" "${CUDA_ARCHS}")
# marlin arches for fp16 output
cuda_archs_loose_intersection(MARLIN_ARCHS "8.0+PTX" "${CUDA_ARCHS}")
# marlin arches for bf16 output (we need 9.0 for bf16 atomicAdd PTX)
cuda_archs_loose_intersection(MARLIN_BF16_ARCHS "8.0+PTX;9.0+PTX" "${CUDA_ARCHS}")
# marlin arches for fp8 input
# - sm80 doesn't support fp8 computation
# - sm90 and sm100 don't support QMMA.16832.F32.E4M3.E4M3 SAAS instruction
# so we only enable fp8 computation for SM89 (e.g. RTX 40x0) and 12.0 (e.g. RTX 50x0)
cuda_archs_loose_intersection(MARLIN_FP8_ARCHS "8.9;12.0" "${CUDA_ARCHS}")
if (MARLIN_ARCHS)
#
@ -340,16 +374,18 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
set(MARLIN_GEN_SCRIPT
${CMAKE_CURRENT_SOURCE_DIR}/csrc/quantization/gptq_marlin/generate_kernels.py)
file(MD5 ${MARLIN_GEN_SCRIPT} MARLIN_GEN_SCRIPT_HASH)
list(JOIN CUDA_ARCHS "," CUDA_ARCHS_STR)
set(MARLIN_GEN_SCRIPT_HASH_AND_ARCH "${MARLIN_GEN_SCRIPT_HASH}(ARCH:${CUDA_ARCHS_STR})")
message(STATUS "Marlin generation script hash: ${MARLIN_GEN_SCRIPT_HASH}")
message(STATUS "Last run Marlin generate script hash: $CACHE{MARLIN_GEN_SCRIPT_HASH}")
message(STATUS "Marlin generation script hash: ${MARLIN_GEN_SCRIPT_HASH_AND_ARCH}")
message(STATUS "Last run Marlin generate script hash: $CACHE{MARLIN_GEN_SCRIPT_HASH_AND_ARCH}")
if (NOT DEFINED CACHE{MARLIN_GEN_SCRIPT_HASH}
OR NOT $CACHE{MARLIN_GEN_SCRIPT_HASH} STREQUAL ${MARLIN_GEN_SCRIPT_HASH})
if (NOT DEFINED CACHE{MARLIN_GEN_SCRIPT_HASH_AND_ARCH}
OR NOT $CACHE{MARLIN_GEN_SCRIPT_HASH_AND_ARCH} STREQUAL ${MARLIN_GEN_SCRIPT_HASH_AND_ARCH})
execute_process(
COMMAND ${CMAKE_COMMAND} -E env
PYTHONPATH=$PYTHONPATH
${Python_EXECUTABLE} ${MARLIN_GEN_SCRIPT}
${Python_EXECUTABLE} ${MARLIN_GEN_SCRIPT} ${CUDA_ARCHS_STR}
RESULT_VARIABLE marlin_generation_result
OUTPUT_VARIABLE marlin_generation_result
OUTPUT_FILE ${CMAKE_CURRENT_BINARY_DIR}/marlin_generation.log
@ -362,15 +398,15 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
"\nCheck the log for details: "
"${CMAKE_CURRENT_BINARY_DIR}/marlin_generation.log")
else()
set(MARLIN_GEN_SCRIPT_HASH ${MARLIN_GEN_SCRIPT_HASH}
CACHE STRING "Last run Marlin generate script hash" FORCE)
set(MARLIN_GEN_SCRIPT_HASH_AND_ARCH ${MARLIN_GEN_SCRIPT_HASH_AND_ARCH}
CACHE STRING "Last run Marlin generate script hash and arch" FORCE)
message(STATUS "Marlin generation completed successfully.")
endif()
else()
message(STATUS "Marlin generation script has not changed, skipping generation.")
endif()
file(GLOB MARLIN_TEMPLATE_KERNEL_SRC "csrc/quantization/gptq_marlin/kernel_*.cu")
file(GLOB MARLIN_TEMPLATE_KERNEL_SRC "csrc/quantization/gptq_marlin/sm80_kernel_*_float16.cu")
set_gencode_flags_for_srcs(
SRCS "${MARLIN_TEMPLATE_KERNEL_SRC}"
CUDA_ARCHS "${MARLIN_ARCHS}")
@ -378,12 +414,34 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
set_source_files_properties(${MARLIN_TEMPLATE_KERNEL_SRC}
PROPERTIES COMPILE_FLAGS "-static-global-template-stub=false")
endif()
list(APPEND VLLM_EXT_SRC ${MARLIN_TEMPLATE_KERNEL_SRC})
file(GLOB MARLIN_TEMPLATE_BF16_KERNEL_SRC "csrc/quantization/gptq_marlin/sm80_kernel_*_bfloat16.cu")
set_gencode_flags_for_srcs(
SRCS "${MARLIN_TEMPLATE_BF16_KERNEL_SRC}"
CUDA_ARCHS "${MARLIN_BF16_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8)
set_source_files_properties(${MARLIN_TEMPLATE_BF16_KERNEL_SRC}
PROPERTIES COMPILE_FLAGS "-static-global-template-stub=false")
endif()
list(APPEND VLLM_EXT_SRC ${MARLIN_TEMPLATE_BF16_KERNEL_SRC})
if (MARLIN_FP8_ARCHS)
file(GLOB MARLIN_TEMPLATE_FP8_KERNEL_SRC "csrc/quantization/gptq_marlin/sm89_kernel_*.cu")
set_gencode_flags_for_srcs(
SRCS "${MARLIN_TEMPLATE_FP8_KERNEL_SRC}"
CUDA_ARCHS "${MARLIN_FP8_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8)
set_source_files_properties(${MARLIN_TEMPLATE_FP8_KERNEL_SRC}
PROPERTIES COMPILE_FLAGS "-static-global-template-stub=false")
endif()
list(APPEND VLLM_EXT_SRC ${MARLIN_TEMPLATE_FP8_KERNEL_SRC})
endif()
set(MARLIN_SRCS
"csrc/quantization/marlin/sparse/marlin_24_cuda_kernel.cu"
"csrc/quantization/gptq_marlin/gptq_marlin.cu"
"csrc/quantization/gptq_marlin/marlin_int4_fp8_preprocess.cu"
"csrc/quantization/gptq_marlin/gptq_marlin_repack.cu"
"csrc/quantization/gptq_marlin/awq_marlin_repack.cu")
set_gencode_flags_for_srcs(
@ -487,9 +545,9 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# The cutlass_scaled_mm kernels for Blackwell SM100 (c3x, i.e. CUTLASS 3.x)
# require CUDA 12.8 or later
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0f;11.0f;12.0f" "${CUDA_ARCHS}")
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0f;11.0f" "${CUDA_ARCHS}")
else()
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a;10.1a;10.3a;12.0a;12.1a" "${CUDA_ARCHS}")
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a;10.1a;10.3a" "${CUDA_ARCHS}")
endif()
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
set(SRCS
@ -579,12 +637,15 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
set(SRCS
"csrc/quantization/fp4/nvfp4_quant_kernels.cu"
"csrc/quantization/fp4/activation_nvfp4_quant_fusion_kernels.cu"
"csrc/quantization/fp4/nvfp4_scaled_mm_sm120_kernels.cu")
"csrc/quantization/fp4/nvfp4_experts_quant.cu"
"csrc/quantization/fp4/nvfp4_scaled_mm_sm120_kernels.cu"
"csrc/quantization/fp4/nvfp4_blockwise_moe_kernel.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${FP4_ARCHS}")
list(APPEND VLLM_EXT_SRC "${SRCS}")
list(APPEND VLLM_GPU_FLAGS "-DENABLE_NVFP4_SM120=1")
list(APPEND VLLM_GPU_FLAGS "-DENABLE_CUTLASS_MOE_SM120=1")
message(STATUS "Building NVFP4 for archs: ${FP4_ARCHS}")
else()
message(STATUS "Not building NVFP4 as no compatible archs were found.")
@ -594,9 +655,9 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# FP4 Archs and flags
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
cuda_archs_loose_intersection(FP4_ARCHS "10.0f;11.0f;12.0f" "${CUDA_ARCHS}")
cuda_archs_loose_intersection(FP4_ARCHS "10.0f;11.0f" "${CUDA_ARCHS}")
else()
cuda_archs_loose_intersection(FP4_ARCHS "10.0a;10.1a;12.0a;12.1a" "${CUDA_ARCHS}")
cuda_archs_loose_intersection(FP4_ARCHS "10.0a;10.1a;10.3a" "${CUDA_ARCHS}")
endif()
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND FP4_ARCHS)
set(SRCS
@ -670,7 +731,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0f;11.0f" "${CUDA_ARCHS}")
else()
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a" "${CUDA_ARCHS}")
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a;10.1a;10.3a" "${CUDA_ARCHS}")
endif()
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
set(SRCS "csrc/quantization/w8a8/cutlass/moe/grouped_mm_c3x_sm100.cu")
@ -716,9 +777,9 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
endif()
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0f;11.0f;12.0f" "${CUDA_ARCHS}")
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0f;11.0f" "${CUDA_ARCHS}")
else()
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a;10.1a;10.3a;12.0a;12.1a" "${CUDA_ARCHS}")
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a;10.1a;10.3a" "${CUDA_ARCHS}")
endif()
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
set(SRCS "csrc/quantization/w8a8/cutlass/moe/blockwise_scaled_group_mm_sm100.cu")
@ -836,7 +897,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
endif()
# Hadacore kernels
cuda_archs_loose_intersection(HADACORE_ARCHS "8.0;8.9;9.0" "${CUDA_ARCHS}")
cuda_archs_loose_intersection(HADACORE_ARCHS "8.0+PTX;9.0+PTX" "${CUDA_ARCHS}")
if(HADACORE_ARCHS)
set(SRCS "csrc/quantization/hadamard/hadacore/hadamard_transform_cuda.cu")
set_gencode_flags_for_srcs(
@ -858,7 +919,7 @@ if (VLLM_GPU_LANG STREQUAL "HIP")
endif()
message(STATUS "Enabling C extension.")
define_gpu_extension_target(
define_extension_target(
_C
DESTINATION vllm
LANGUAGE ${VLLM_GPU_LANG}
@ -913,8 +974,15 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
CUDA_ARCHS "${CUDA_ARCHS}")
list(APPEND VLLM_MOE_EXT_SRC "${VLLM_MOE_WNA16_SRC}")
# 9.0 for latest bf16 atomicAdd PTX
cuda_archs_loose_intersection(MARLIN_MOE_ARCHS "8.0;8.7;9.0+PTX" "${CUDA_ARCHS}")
# moe marlin arches
# note that we always set `use_atomic_add=False` for moe marlin now,
# so we don't need 9.0 for bf16 atomicAdd PTX
cuda_archs_loose_intersection(MARLIN_MOE_ARCHS "8.0+PTX" "${CUDA_ARCHS}")
# moe marlin arches for fp8 input
# - sm80 doesn't support fp8 computation
# - sm90 and sm100 don't support QMMA.16832.F32.E4M3.E4M3 SAAS instruction
# so we only enable fp8 computation for SM89 (e.g. RTX 40x0) and 12.0 (e.g. RTX 50x0)
cuda_archs_loose_intersection(MARLIN_MOE_FP8_ARCHS "8.9;12.0" "${CUDA_ARCHS}")
if (MARLIN_MOE_ARCHS)
#
@ -924,16 +992,18 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
set(MOE_MARLIN_GEN_SCRIPT
${CMAKE_CURRENT_SOURCE_DIR}/csrc/moe/marlin_moe_wna16/generate_kernels.py)
file(MD5 ${MOE_MARLIN_GEN_SCRIPT} MOE_MARLIN_GEN_SCRIPT_HASH)
list(JOIN CUDA_ARCHS "," CUDA_ARCHS_STR)
set(MOE_MARLIN_GEN_SCRIPT_HASH_AND_ARCH "${MOE_MARLIN_GEN_SCRIPT_HASH}(ARCH:${CUDA_ARCHS_STR})")
message(STATUS "Marlin MOE generation script hash: ${MOE_MARLIN_GEN_SCRIPT_HASH}")
message(STATUS "Last run Marlin MOE generate script hash: $CACHE{MOE_MARLIN_GEN_SCRIPT_HASH}")
message(STATUS "Marlin MOE generation script hash with arch: ${MOE_MARLIN_GEN_SCRIPT_HASH_AND_ARCH}")
message(STATUS "Last run Marlin MOE generate script hash with arch: $CACHE{MOE_MARLIN_GEN_SCRIPT_HASH_AND_ARCH}")
if (NOT DEFINED CACHE{MOE_MARLIN_GEN_SCRIPT_HASH}
OR NOT $CACHE{MOE_MARLIN_GEN_SCRIPT_HASH} STREQUAL ${MOE_MARLIN_GEN_SCRIPT_HASH})
if (NOT DEFINED CACHE{MOE_MARLIN_GEN_SCRIPT_HASH_AND_ARCH}
OR NOT $CACHE{MOE_MARLIN_GEN_SCRIPT_HASH_AND_ARCH} STREQUAL ${MOE_MARLIN_GEN_SCRIPT_HASH_AND_ARCH})
execute_process(
COMMAND ${CMAKE_COMMAND} -E env
PYTHONPATH=$PYTHONPATH
${Python_EXECUTABLE} ${MOE_MARLIN_GEN_SCRIPT}
${Python_EXECUTABLE} ${MOE_MARLIN_GEN_SCRIPT} ${CUDA_ARCHS_STR}
RESULT_VARIABLE moe_marlin_generation_result
OUTPUT_VARIABLE moe_marlin_generation_output
OUTPUT_FILE ${CMAKE_CURRENT_BINARY_DIR}/moe_marlin_generation.log
@ -946,7 +1016,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
"\nCheck the log for details: "
"${CMAKE_CURRENT_BINARY_DIR}/moe_marlin_generation.log")
else()
set(MOE_MARLIN_GEN_SCRIPT_HASH ${MOE_MARLIN_GEN_SCRIPT_HASH}
set(MOE_MARLIN_GEN_SCRIPT_HASH_AND_ARCH ${MOE_MARLIN_GEN_SCRIPT_HASH_AND_ARCH}
CACHE STRING "Last run Marlin MOE generate script hash" FORCE)
message(STATUS "Marlin MOE generation completed successfully.")
endif()
@ -954,16 +1024,28 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
message(STATUS "Marlin MOE generation script has not changed, skipping generation.")
endif()
file(GLOB MOE_WNAA16_MARLIN_SRC "csrc/moe/marlin_moe_wna16/*.cu")
file(GLOB MARLIN_MOE_SRC "csrc/moe/marlin_moe_wna16/sm80_kernel_*.cu")
list(APPEND MARLIN_MOE_SRC "csrc/moe/marlin_moe_wna16/ops.cu")
set_gencode_flags_for_srcs(
SRCS "${MOE_WNAA16_MARLIN_SRC}"
SRCS "${MARLIN_MOE_SRC}"
CUDA_ARCHS "${MARLIN_MOE_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8)
set_source_files_properties(${MOE_WNAA16_MARLIN_SRC}
set_source_files_properties(${MARLIN_MOE_SRC}
PROPERTIES COMPILE_FLAGS "-static-global-template-stub=false")
endif()
list(APPEND VLLM_MOE_EXT_SRC ${MARLIN_MOE_SRC})
list(APPEND VLLM_MOE_EXT_SRC ${MOE_WNAA16_MARLIN_SRC})
if (MARLIN_MOE_FP8_ARCHS)
file(GLOB MARLIN_MOE_FP8_SRC "csrc/moe/marlin_moe_wna16/sm89_kernel_*.cu")
set_gencode_flags_for_srcs(
SRCS "${MARLIN_MOE_FP8_SRC}"
CUDA_ARCHS "${MARLIN_MOE_FP8_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8)
set_source_files_properties(${MARLIN_MOE_FP8_SRC}
PROPERTIES COMPILE_FLAGS "-static-global-template-stub=false")
endif()
list(APPEND VLLM_MOE_EXT_SRC ${MARLIN_MOE_FP8_SRC})
endif()
message(STATUS "Building Marlin MOE kernels for archs: ${MARLIN_MOE_ARCHS}")
else()
@ -973,7 +1055,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
endif()
message(STATUS "Enabling moe extension.")
define_gpu_extension_target(
define_extension_target(
_moe_C
DESTINATION vllm
LANGUAGE ${VLLM_GPU_LANG}
@ -994,7 +1076,7 @@ if(VLLM_GPU_LANG STREQUAL "HIP")
"csrc/rocm/skinny_gemms.cu"
"csrc/rocm/attention.cu")
define_gpu_extension_target(
define_extension_target(
_rocm_C
DESTINATION vllm
LANGUAGE ${VLLM_GPU_LANG}
@ -1005,6 +1087,11 @@ if(VLLM_GPU_LANG STREQUAL "HIP")
WITH_SOABI)
endif()
# For CUDA and HIP builds also build the triton_kernels external package.
if(VLLM_GPU_LANG STREQUAL "CUDA" OR VLLM_GPU_LANG STREQUAL "HIP")
include(cmake/external_projects/triton_kernels.cmake)
endif()
# For CUDA we also build and ship some external projects.
if (VLLM_GPU_LANG STREQUAL "CUDA")
include(cmake/external_projects/flashmla.cmake)

View File

@ -21,6 +21,10 @@ Join us at the [PyTorch Conference, October 22-23](https://events.linuxfoundatio
*Latest News* 🔥
- [2025/11] We hosted [vLLM Bangkok Meetup](https://luma.com/v0f647nv). We explored vLLM and LMCache inference and low-resource language adaptation with speakers from Embedded LLM, AMD, and Red Hat. Please find the meetup slides [here](https://drive.google.com/drive/folders/1H0DS57F8HQ5q3kSOSoRmucPJWL3E0A_X?usp=sharing).
- [2025/11] We hosted [the first vLLM Europe Meetup in Zurich](https://luma.com/0gls27kb) focused on quantization, distributed inference, and reinforcement learning at scale with speakers from Mistral, IBM, and Red Hat. Please find the meetup slides [here](https://docs.google.com/presentation/d/1UC9PTLCHYXQpOmJDSFg6Sljra3iVXzc09DeEI7dnxMc/edit?usp=sharing) and recording [here](https://www.youtube.com/watch?v=6m6ZE6yVEDI)
- [2025/11] We hosted [vLLM Beijing Meetup](https://mp.weixin.qq.com/s/xSrYXjNgr1HbCP4ExYNG1w) focusing on distributed inference and diverse accelerator support with vLLM! Please find the meetup slides [here](https://drive.google.com/drive/folders/1nQJ8ZkLSjKxvu36sSHaceVXtttbLvvu-?usp=drive_link).
- [2025/10] We hosted [vLLM Shanghai Meetup](https://mp.weixin.qq.com/s/__xb4OyOsImz-9eAVrdlcg) focused on hands-on vLLM inference optimization! Please find the meetup slides [here](https://drive.google.com/drive/folders/1KqwjsFJLfEsC8wlDugnrR61zsWHt94Q6).
- [2025/09] We hosted [vLLM Toronto Meetup](https://luma.com/e80e0ymm) focused on tackling inference at scale and speculative decoding with speakers from NVIDIA and Red Hat! Please find the meetup slides [here](https://docs.google.com/presentation/d/1IYJYmJcu9fLpID5N5RbW_vO0XLo0CGOR14IXOjB61V8/edit?usp=sharing).
- [2025/08] We hosted [vLLM Shenzhen Meetup](https://mp.weixin.qq.com/s/k8ZBO1u2_2odgiKWH_GVTQ) focusing on the ecosystem around vLLM! Please find the meetup slides [here](https://drive.google.com/drive/folders/1Ua2SVKVSu-wp5vou_6ElraDt2bnKhiEA).
- [2025/08] We hosted [vLLM Singapore Meetup](https://www.sginnovate.com/event/vllm-sg-meet). We shared V1 updates, disaggregated serving and MLLM speedups with speakers from Embedded LLM, AMD, WekaIO, and A*STAR. Please find the meetup slides [here](https://drive.google.com/drive/folders/1ncf3GyqLdqFaB6IeB834E5TZJPLAOiXZ?usp=sharing).
@ -82,7 +86,7 @@ vLLM is flexible and easy to use with:
- Tensor, pipeline, data and expert parallelism support for distributed inference
- Streaming outputs
- OpenAI-compatible API server
- Support for NVIDIA GPUs, AMD CPUs and GPUs, Intel CPUs and GPUs, PowerPC CPUs, and TPU. Additionally, support for diverse hardware plugins such as Intel Gaudi, IBM Spyre and Huawei Ascend.
- Support for NVIDIA GPUs, AMD CPUs and GPUs, Intel CPUs and GPUs, PowerPC CPUs, Arm CPUs, and TPU. Additionally, support for diverse hardware plugins such as Intel Gaudi, IBM Spyre and Huawei Ascend.
- Prefix caching support
- Multi-LoRA support

View File

@ -83,7 +83,7 @@ MIN_CACHE_HIT_PCT=0
MAX_LATENCY_ALLOWED_MS=100000000000 # A very large number
```
#### 2. Maximize Throughput with a Latency Requirement
### 2. Maximize Throughput with a Latency Requirement
- **Goal**: Find the best server parameters when P99 end-to-end latency must be below 500ms.
- **Configuration**:
@ -96,7 +96,7 @@ MIN_CACHE_HIT_PCT=0
MAX_LATENCY_ALLOWED_MS=500
```
#### 3. Maximize Throughput with Prefix Caching and Latency Requirements
### 3. Maximize Throughput with Prefix Caching and Latency Requirements
- **Goal**: Find the best server parameters assuming a 60% prefix cache hit rate and a latency requirement of 500ms.
- **Configuration**:

View File

@ -620,7 +620,7 @@ def get_tokenizer(
kwargs["use_fast"] = False
if tokenizer_mode == "mistral":
try:
from vllm.transformers_utils.tokenizer import MistralTokenizer
from vllm.tokenizers import MistralTokenizer
except ImportError as e:
raise ImportError(
"MistralTokenizer requires vllm package.\n"

View File

@ -0,0 +1,380 @@
#!/usr/bin/env python3
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
Benchmark to measure the performance overhead of VLLM_BATCH_INVARIANT mode.
This benchmark runs the same workload twice:
1. With VLLM_BATCH_INVARIANT=0 (baseline)
2. With VLLM_BATCH_INVARIANT=1 (batch invariant mode)
And reports the timing and throughput metrics for comparison.
Environment variables:
VLLM_BENCH_MODEL: Model to benchmark (default: "Qwen/Qwen3-1.7B")
VLLM_BENCH_TP_SIZE: Tensor parallel size (default: 1, use 8 for deepseek)
VLLM_BENCH_BATCH_SIZE: Max batch size (default: 128)
VLLM_BENCH_NUM_TRIALS: Number of trials to run (default: 5)
VLLM_BENCH_MIN_PROMPT: Min prompt length in words (default: 1024)
VLLM_BENCH_MAX_PROMPT: Max prompt length in words (default: 2048)
VLLM_BENCH_MAX_TOKENS: Max tokens to generate (default: 128)
VLLM_BENCH_TEMPERATURE: Temperature for sampling (default: 0.0)
VLLM_BENCH_GPU_MEMORY_UTILIZATION: GPU memory utilization (default: 0.4)
VLLM_BENCH_MAX_MODEL_LEN: Max model length (default: 5120)
VLLM_BENCH_BACKEND: Attention backend (default: FLASH_ATTN)
Example usage:
# Benchmark qwen3 (default)
python benchmarks/benchmark_batch_invariance.py
# Benchmark deepseek with 8 GPUs
VLLM_BENCH_MODEL="deepseek-ai/DeepSeek-V3" VLLM_BENCH_TP_SIZE=8 \\
python benchmarks/benchmark_batch_invariance.py
# Quick test with fewer trials
VLLM_BENCH_NUM_TRIALS=2 VLLM_BENCH_BATCH_SIZE=32 \\
python benchmarks/benchmark_batch_invariance.py
"""
import contextlib
import os
import random
import time
from vllm import LLM, SamplingParams
from vllm.platforms import current_platform
def _random_prompt(min_words: int = 1024, max_words: int = 1024 * 2) -> str:
"""Generate a random prompt for benchmarking."""
prompt_templates = [
"Question: What is the capital of France?\nAnswer: The capital of France is",
"Q: How does photosynthesis work?\nA: Photosynthesis is the process by which",
"User: Can you explain quantum mechanics?\nAssistant: Quantum mechanics is",
"Once upon a time in a distant galaxy, there lived",
"The old man walked slowly down the street, remembering",
"In the year 2157, humanity finally discovered",
"To implement a binary search tree in Python, first we need to",
"The algorithm works by iterating through the array and",
"Here's how to optimize database queries using indexing:",
"The Renaissance was a period in European history that",
"Climate change is caused by several factors including",
"The human brain contains approximately 86 billion neurons which",
"I've been thinking about getting a new laptop because",
"Yesterday I went to the store and bought",
"My favorite thing about summer is definitely",
]
base_prompt = random.choice(prompt_templates)
if max_words < min_words:
max_words = min_words
target_words = random.randint(min_words, max_words)
if target_words > 50:
padding_text = (
" This is an interesting topic that deserves more explanation. "
* (target_words // 50)
)
base_prompt = base_prompt + padding_text
return base_prompt
def run_benchmark_with_batch_invariant(
model: str,
tp_size: int,
max_batch_size: int,
num_trials: int,
min_prompt: int,
max_prompt: int,
max_tokens: int,
temperature: float,
gpu_mem_util: float,
max_model_len: int,
backend: str,
batch_invariant: bool,
seed: int = 12345,
) -> dict:
"""
Run the benchmark with the specified configuration.
Returns a dict with timing and throughput metrics.
"""
random.seed(seed)
# Set environment variables
os.environ["VLLM_ATTENTION_BACKEND"] = backend
if batch_invariant:
os.environ["VLLM_BATCH_INVARIANT"] = "1"
else:
os.environ["VLLM_BATCH_INVARIANT"] = "0"
print(f"\n{'=' * 80}")
print(f"BENCHMARK: VLLM_BATCH_INVARIANT={int(batch_invariant)}")
print(f" Model: {model}")
print(f" TP Size: {tp_size}")
print(f" Backend: {backend}")
print(f" Max Batch Size: {max_batch_size}")
print(f" Trials: {num_trials}")
print(f" Max Tokens: {max_tokens}")
print(f"{'=' * 80}\n")
sampling = SamplingParams(
temperature=temperature,
top_p=0.95,
max_tokens=max_tokens,
seed=20240919,
)
needle_prompt = "There once was a "
llm = None
try:
# Create LLM engine
start_init = time.perf_counter()
llm = LLM(
model=model,
max_num_seqs=max_batch_size,
gpu_memory_utilization=gpu_mem_util,
max_model_len=max_model_len,
dtype="bfloat16",
tensor_parallel_size=tp_size,
enable_prefix_caching=False,
)
init_time = time.perf_counter() - start_init
print(f"Engine initialization time: {init_time:.2f}s\n")
# Generate baseline
print("Generating baseline (warmup)...")
baseline_out = llm.generate([needle_prompt], sampling)
assert len(baseline_out) == 1
baseline_text = baseline_out[0].outputs[0].text
print(f"Baseline output: '{baseline_text[:50]}...'\n")
# Run trials and measure timing
trial_times: list[float] = []
total_tokens = 0
total_prompts = 0
for trial in range(num_trials):
# Create a batch
prompts: list[str] = []
batch_size = random.randint(max_batch_size // 2, max_batch_size)
needle_pos = random.randint(0, batch_size - 1)
for i in range(batch_size):
if i == needle_pos:
prompts.append(needle_prompt)
else:
prompts.append(_random_prompt(min_prompt, max_prompt))
# Measure time for this trial
start_time = time.perf_counter()
outputs = llm.generate(prompts, sampling)
trial_time = time.perf_counter() - start_time
trial_times.append(trial_time)
total_prompts += len(prompts)
# Count tokens
for output in outputs:
if output.outputs:
total_tokens += len(output.outputs[0].token_ids)
print(
f"Trial {trial + 1}/{num_trials}: "
f"batch_size={batch_size}, "
f"time={trial_time:.2f}s"
)
# Verify needle output still matches
needle_output = outputs[needle_pos]
assert needle_output.prompt == needle_prompt
# Compute statistics
avg_time = sum(trial_times) / len(trial_times)
min_time = min(trial_times)
max_time = max(trial_times)
throughput = total_tokens / sum(trial_times)
prompts_per_sec = total_prompts / sum(trial_times)
print(f"\n{'=' * 80}")
print("RESULTS:")
print(f" Average time per trial: {avg_time:.2f}s")
print(f" Min time: {min_time:.2f}s")
print(f" Max time: {max_time:.2f}s")
print(f" Total tokens generated: {total_tokens}")
print(f" Total prompts processed: {total_prompts}")
print(f" Throughput: {throughput:.2f} tokens/s")
print(f" Prompts/s: {prompts_per_sec:.2f}")
print(f"{'=' * 80}\n")
return {
"init_time": init_time,
"avg_time": avg_time,
"min_time": min_time,
"max_time": max_time,
"total_tokens": total_tokens,
"total_prompts": total_prompts,
"throughput": throughput,
"prompts_per_sec": prompts_per_sec,
"trial_times": trial_times,
}
finally:
# Cleanup
if llm is not None:
with contextlib.suppress(Exception):
llm.shutdown()
def main():
# Check platform support
if not (current_platform.is_cuda() and current_platform.has_device_capability(90)):
print("ERROR: Requires CUDA and >= Hopper (SM90)")
print(f"Current platform: {current_platform.device_type}")
if current_platform.is_cuda():
print(f"Device capability: {current_platform.get_device_capability()}")
return 1
# Read configuration from environment
model = os.getenv("VLLM_BENCH_MODEL", "Qwen/Qwen3-1.7B")
tp_size = int(os.getenv("VLLM_BENCH_TP_SIZE", "1"))
max_batch_size = int(os.getenv("VLLM_BENCH_BATCH_SIZE", "128"))
num_trials = int(os.getenv("VLLM_BENCH_NUM_TRIALS", "5"))
min_prompt = int(os.getenv("VLLM_BENCH_MIN_PROMPT", "1024"))
max_prompt = int(os.getenv("VLLM_BENCH_MAX_PROMPT", "2048"))
max_tokens = int(os.getenv("VLLM_BENCH_MAX_TOKENS", "128"))
temperature = float(os.getenv("VLLM_BENCH_TEMPERATURE", "0.0"))
gpu_mem_util = float(os.getenv("VLLM_BENCH_GPU_MEMORY_UTILIZATION", "0.4"))
max_model_len = int(os.getenv("VLLM_BENCH_MAX_MODEL_LEN", "5120"))
backend = os.getenv("VLLM_BENCH_BACKEND", "FLASH_ATTN")
print("\n" + "=" * 80)
print("VLLM BATCH INVARIANCE BENCHMARK")
print("=" * 80)
print("\nConfiguration:")
print(f" Model: {model}")
print(f" Tensor Parallel Size: {tp_size}")
print(f" Attention Backend: {backend}")
print(f" Max Batch Size: {max_batch_size}")
print(f" Number of Trials: {num_trials}")
print(f" Prompt Length Range: {min_prompt}-{max_prompt} words")
print(f" Max Tokens to Generate: {max_tokens}")
print(f" Temperature: {temperature}")
print(f" GPU Memory Utilization: {gpu_mem_util}")
print(f" Max Model Length: {max_model_len}")
print("=" * 80)
# Run benchmark WITHOUT batch invariance (baseline)
print("\n" + "=" * 80)
print("PHASE 1: Running WITHOUT batch invariance (baseline)")
print("=" * 80)
baseline_results = run_benchmark_with_batch_invariant(
model=model,
tp_size=tp_size,
max_batch_size=max_batch_size,
num_trials=num_trials,
min_prompt=min_prompt,
max_prompt=max_prompt,
max_tokens=max_tokens,
temperature=temperature,
gpu_mem_util=gpu_mem_util,
max_model_len=max_model_len,
backend=backend,
batch_invariant=False,
)
# Run benchmark WITH batch invariance
print("\n" + "=" * 80)
print("PHASE 2: Running WITH batch invariance")
print("=" * 80)
batch_inv_results = run_benchmark_with_batch_invariant(
model=model,
tp_size=tp_size,
max_batch_size=max_batch_size,
num_trials=num_trials,
min_prompt=min_prompt,
max_prompt=max_prompt,
max_tokens=max_tokens,
temperature=temperature,
gpu_mem_util=gpu_mem_util,
max_model_len=max_model_len,
backend=backend,
batch_invariant=True,
)
# Compare results
print("\n" + "=" * 80)
print("COMPARISON: Batch Invariance vs Baseline")
print("=" * 80)
init_overhead_pct = (
(batch_inv_results["init_time"] - baseline_results["init_time"])
/ baseline_results["init_time"]
* 100
)
time_overhead_pct = (
(batch_inv_results["avg_time"] - baseline_results["avg_time"])
/ baseline_results["avg_time"]
* 100
)
throughput_change_pct = (
(batch_inv_results["throughput"] - baseline_results["throughput"])
/ baseline_results["throughput"]
* 100
)
print("\nInitialization Time:")
print(f" Baseline: {baseline_results['init_time']:.2f}s")
print(f" Batch Invariant: {batch_inv_results['init_time']:.2f}s")
print(f" Overhead: {init_overhead_pct:+.2f}%")
print("\nAverage Trial Time:")
print(f" Baseline: {baseline_results['avg_time']:.2f}s")
print(f" Batch Invariant: {batch_inv_results['avg_time']:.2f}s")
print(f" Overhead: {time_overhead_pct:+.2f}%")
print("\nThroughput (tokens/s):")
print(f" Baseline: {baseline_results['throughput']:.2f}")
print(f" Batch Invariant: {batch_inv_results['throughput']:.2f}")
print(f" Change: {throughput_change_pct:+.2f}%")
print("\nPrompts/s:")
print(f" Baseline: {baseline_results['prompts_per_sec']:.2f}")
print(f" Batch Invariant: {batch_inv_results['prompts_per_sec']:.2f}")
print("\n" + "=" * 80)
print("SUMMARY")
print("=" * 80)
if time_overhead_pct > 0:
print(
f"Batch invariance mode adds approximately {time_overhead_pct:.1f}% "
"overhead"
)
else:
print(
f"Batch invariance mode is approximately {-time_overhead_pct:.1f}% "
"faster (unexpected!)"
)
if abs(throughput_change_pct) < 1.0:
print("Throughput difference is negligible (< 1%)")
elif throughput_change_pct < 0:
print(
f"Throughput decreased by {-throughput_change_pct:.1f}% "
"with batch invariance"
)
else:
print(
f"Throughput increased by {throughput_change_pct:.1f}% "
"with batch invariance (unexpected!)"
)
print("=" * 80 + "\n")
return 0
if __name__ == "__main__":
exit(main())

View File

@ -69,7 +69,7 @@ def sample_tokens(tokenizer: PreTrainedTokenizerBase, length: int) -> list[int]:
# Remove the special tokens.
return random.choices(
[v for k, v in vocab.items() if k not in all_special_ids],
[v for v in vocab.values() if v not in all_special_ids],
k=length,
)

View File

@ -5,11 +5,12 @@ import argparse
import asyncio
import logging
import os
import time
import uuid
from urllib.parse import urlparse
import aiohttp
from quart import Quart, Response, make_response, request
from rate_limiter import RateLimiter
from request_queue import RequestQueue
# Configure logging
logging.basicConfig(level=logging.INFO)
@ -24,26 +25,8 @@ def parse_args():
parser.add_argument(
"--timeout",
type=float,
default=300,
help="Timeout for backend service requests in seconds (default: 300)",
)
parser.add_argument(
"--max-concurrent",
type=int,
default=100,
help="Maximum concurrent requests to backend services (default: 100)",
)
parser.add_argument(
"--queue-size",
type=int,
default=500,
help="Maximum number of requests in the queue (default: 500)",
)
parser.add_argument(
"--rate-limit",
type=int,
default=40,
help="Maximum requests per second (default: 40)",
default=6 * 60 * 60,
help="Timeout for backend service requests in seconds (default: 21600)",
)
parser.add_argument(
"--port",
@ -54,14 +37,32 @@ def parse_args():
parser.add_argument(
"--prefill-url",
type=str,
default="http://localhost:8100/v1/completions",
help="Prefill service endpoint URL",
default="http://localhost:8100",
help="Prefill service base URL (protocol + host[:port])",
)
parser.add_argument(
"--decode-url",
type=str,
default="http://localhost:8200/v1/completions",
help="Decode service endpoint URL",
default="http://localhost:8200",
help="Decode service base URL (protocol + host[:port])",
)
parser.add_argument(
"--kv-host",
type=str,
default="localhost",
help="Hostname or IP used by KV transfer (default: localhost)",
)
parser.add_argument(
"--prefill-kv-port",
type=int,
default=14579,
help="Prefill KV port (default: 14579)",
)
parser.add_argument(
"--decode-kv-port",
type=int,
default=14580,
help="Decode KV port (default: 14580)",
)
return parser.parse_args()
@ -73,70 +74,129 @@ def main():
# Initialize configuration using command line parameters
AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=args.timeout)
MAX_CONCURRENT_REQUESTS = args.max_concurrent
REQUEST_QUEUE_SIZE = args.queue_size
RATE_LIMIT = args.rate_limit
PREFILL_SERVICE_URL = args.prefill_url
DECODE_SERVICE_URL = args.decode_url
PORT = args.port
PREFILL_KV_ADDR = f"{args.kv_host}:{args.prefill_kv_port}"
DECODE_KV_ADDR = f"{args.kv_host}:{args.decode_kv_port}"
logger.info(
"Proxy resolved KV addresses -> prefill: %s, decode: %s",
PREFILL_KV_ADDR,
DECODE_KV_ADDR,
)
app = Quart(__name__)
# Initialize the rate limiter and request queue
rate_limiter = RateLimiter(RATE_LIMIT)
request_queue = RequestQueue(MAX_CONCURRENT_REQUESTS, REQUEST_QUEUE_SIZE)
# Attach the configuration object to the application instance
# Attach the configuration object to the application instance so helper
# coroutines can read the resolved backend URLs and timeouts without using
# globals.
app.config.update(
{
"AIOHTTP_TIMEOUT": AIOHTTP_TIMEOUT,
"rate_limiter": rate_limiter,
"request_queue": request_queue,
"PREFILL_SERVICE_URL": PREFILL_SERVICE_URL,
"DECODE_SERVICE_URL": DECODE_SERVICE_URL,
"PREFILL_KV_ADDR": PREFILL_KV_ADDR,
"DECODE_KV_ADDR": DECODE_KV_ADDR,
}
)
# Start queue processing on app startup
@app.before_serving
async def startup():
"""Start request processing task when app starts serving"""
asyncio.create_task(request_queue.process())
def _normalize_base_url(url: str) -> str:
"""Remove any trailing slash so path joins behave predictably."""
return url.rstrip("/")
async def forward_request(url, data):
"""Forward request to backend service with rate limiting and error handling"""
headers = {"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"}
def _get_host_port(url: str) -> str:
"""Return the hostname:port portion for logging and KV headers."""
parsed = urlparse(url)
host = parsed.hostname or "localhost"
port = parsed.port
if port is None:
port = 80 if parsed.scheme == "http" else 443
return f"{host}:{port}"
# Use rate limiter as context manager
async with (
rate_limiter,
aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session,
):
try:
async with session.post(
url=url, json=data, headers=headers
) as response:
if response.status == 200:
# Stream response chunks
async for chunk_bytes in response.content.iter_chunked(1024):
yield chunk_bytes
else:
# Handle backend service errors
error_text = await response.text()
logger.error(
"Backend service error: %s - %s",
response.status,
error_text,
)
yield b'{"error": "Backend service error"}'
except aiohttp.ClientError as e:
# Handle connection errors
logger.error("Connection error to %s: %s", url, str(e))
yield b'{"error": "Service unavailable"}'
except asyncio.TimeoutError:
# Handle timeout errors
logger.error("Timeout connecting to %s", url)
yield b'{"error": "Service timeout"}'
PREFILL_BASE = _normalize_base_url(PREFILL_SERVICE_URL)
DECODE_BASE = _normalize_base_url(DECODE_SERVICE_URL)
KV_TARGET = _get_host_port(DECODE_SERVICE_URL)
def _build_headers(request_id: str) -> dict[str, str]:
"""Construct the headers expected by vLLM's P2P disagg connector."""
headers: dict[str, str] = {"X-Request-Id": request_id, "X-KV-Target": KV_TARGET}
api_key = os.environ.get("OPENAI_API_KEY")
if api_key:
headers["Authorization"] = f"Bearer {api_key}"
return headers
async def _run_prefill(
request_path: str,
payload: dict,
headers: dict[str, str],
request_id: str,
):
url = f"{PREFILL_BASE}{request_path}"
start_ts = time.perf_counter()
logger.info("[prefill] start request_id=%s url=%s", request_id, url)
try:
async with (
aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session,
session.post(url=url, json=payload, headers=headers) as resp,
):
if resp.status != 200:
error_text = await resp.text()
raise RuntimeError(
f"Prefill backend error {resp.status}: {error_text}"
)
await resp.read()
logger.info(
"[prefill] done request_id=%s status=%s elapsed=%.2fs",
request_id,
resp.status,
time.perf_counter() - start_ts,
)
except asyncio.TimeoutError as exc:
raise RuntimeError(f"Prefill service timeout at {url}") from exc
except aiohttp.ClientError as exc:
raise RuntimeError(f"Prefill service unavailable at {url}") from exc
async def _stream_decode(
request_path: str,
payload: dict,
headers: dict[str, str],
request_id: str,
):
url = f"{DECODE_BASE}{request_path}"
# Stream tokens from the decode service once the prefill stage has
# materialized KV caches on the target workers.
logger.info("[decode] start request_id=%s url=%s", request_id, url)
try:
async with (
aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session,
session.post(url=url, json=payload, headers=headers) as resp,
):
if resp.status != 200:
error_text = await resp.text()
logger.error(
"Decode backend error %s - %s", resp.status, error_text
)
err_msg = (
'{"error": "Decode backend error ' + str(resp.status) + '"}'
)
yield err_msg.encode()
return
logger.info(
"[decode] streaming response request_id=%s status=%s",
request_id,
resp.status,
)
async for chunk_bytes in resp.content.iter_chunked(1024):
yield chunk_bytes
logger.info("[decode] finished streaming request_id=%s", request_id)
except asyncio.TimeoutError:
logger.error("Decode service timeout at %s", url)
yield b'{"error": "Decode service timeout"}'
except aiohttp.ClientError as exc:
logger.error("Decode service error at %s: %s", url, exc)
yield b'{"error": "Decode service unavailable"}'
async def process_request():
"""Process a single request through prefill and decode stages"""
@ -146,13 +206,27 @@ def main():
# Create prefill request (max_tokens=1)
prefill_request = original_request_data.copy()
prefill_request["max_tokens"] = 1
if "max_completion_tokens" in prefill_request:
prefill_request["max_completion_tokens"] = 1
# Execute prefill stage
async for _ in forward_request(PREFILL_SERVICE_URL, prefill_request):
continue
# The request id encodes both KV socket addresses so the backend can
# shuttle tensors directly via NCCL once the prefill response
# completes.
request_id = (
f"___prefill_addr_{PREFILL_KV_ADDR}___decode_addr_"
f"{DECODE_KV_ADDR}_{uuid.uuid4().hex}"
)
headers = _build_headers(request_id)
await _run_prefill(request.path, prefill_request, headers, request_id)
# Execute decode stage and stream response
generator = forward_request(DECODE_SERVICE_URL, original_request_data)
# Pass the unmodified user request so the decode phase can continue
# sampling with the already-populated KV cache.
generator = _stream_decode(
request.path, original_request_data, headers, request_id
)
response = await make_response(generator)
response.timeout = None # Disable timeout for streaming response
return response
@ -168,23 +242,10 @@ def main():
@app.route("/v1/completions", methods=["POST"])
async def handle_request():
"""Handle incoming API requests with concurrency and rate limiting"""
# Create task for request processing
task = asyncio.create_task(process_request())
# Enqueue request or reject if queue is full
if not await request_queue.enqueue(task):
return Response(
response=b'{"error": "Server busy, try again later"}',
status=503,
content_type="application/json",
)
try:
# Return the response from the processing task
return await task
return await process_request()
except asyncio.CancelledError:
# Handle task cancellation (timeout or queue full)
logger.warning("Request cancelled due to timeout or queue full")
logger.warning("Request cancelled")
return Response(
response=b'{"error": "Request cancelled"}',
status=503,

View File

@ -1,10 +1,18 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import os
# Disable DeepGEMM for this benchmark to use CUTLASS
os.environ["VLLM_USE_DEEP_GEMM"] = "0"
import torch
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
apply_w8a8_block_fp8_linear,
W8A8BlockFp8LinearOp,
)
from vllm.model_executor.layers.quantization.utils.quant_utils import (
GroupShape,
)
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
CUTLASS_BLOCK_FP8_SUPPORTED,
@ -39,13 +47,14 @@ def build_w8a8_block_fp8_runner(M, N, K, block_size, device, use_cutlass):
fp8_info = torch.finfo(torch.float8_e4m3fn)
fp8_max, fp8_min = fp8_info.max, fp8_info.min
# Create random FP8 tensors
# Create random input tensor (bfloat16, will be quantized by W8A8BlockFp8LinearOp)
A_ref = (torch.rand(M, K, dtype=torch.bfloat16, device=device) - 0.5) * 2 * fp8_max
# Create quantized weight tensor
B_ref = (torch.rand(N, K, dtype=torch.bfloat16, device=device) - 0.5) * 2 * fp8_max
B = B_ref.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
# Create scales
# Create weight scales
block_n, block_k = block_size[0], block_size[1]
n_tiles = (N + block_n - 1) // block_n
k_tiles = (K + block_k - 1) // block_k
@ -55,19 +64,25 @@ def build_w8a8_block_fp8_runner(M, N, K, block_size, device, use_cutlass):
* factor_for_scale
)
# SM90 CUTLASS requires row-major format for scales
if use_cutlass and current_platform.is_device_capability(90):
Bs = Bs.T.contiguous()
# Create W8A8BlockFp8LinearOp instance
weight_group_shape = GroupShape(block_n, block_k)
act_quant_group_shape = GroupShape(1, block_k) # Per-token, per-group quantization
linear_op = W8A8BlockFp8LinearOp(
weight_group_shape=weight_group_shape,
act_quant_group_shape=act_quant_group_shape,
cutlass_block_fp8_supported=use_cutlass,
use_aiter_and_is_supported=False,
)
def run():
if use_cutlass:
return apply_w8a8_block_fp8_linear(
A_ref, B, block_size, Bs, cutlass_block_fp8_supported=True
)
else:
return apply_w8a8_block_fp8_linear(
A_ref, B, block_size, Bs, cutlass_block_fp8_supported=False
)
return linear_op.apply(
input=A_ref,
weight=B,
weight_scale=Bs,
input_scale=None,
bias=None,
)
return run

View File

@ -255,8 +255,8 @@ def bench_run(
torch.cuda.synchronize()
# Timing
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
start_event = torch.Event(enable_timing=True)
end_event = torch.Event(enable_timing=True)
latencies = []
for _ in range(num_iters):

File diff suppressed because it is too large Load Diff

View File

@ -16,8 +16,8 @@ from vllm.model_executor.layers.fused_moe.fused_moe import (
from vllm.utils.argparse_utils import FlexibleArgumentParser
DEFAULT_MODELS = [
"nm-testing/Mixtral-8x7B-Instruct-v0.1",
"nm-testing/deepseekv2-lite",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"deepseek-ai/DeepSeek-V2-Lite",
"ibm-granite/granite-3.0-1b-a400m",
"ibm-granite/granite-3.0-3b-a800m",
]

View File

@ -19,13 +19,24 @@ from torch.utils.benchmark import Measurement as TMeasurement
from utils import ArgPool, Bench, CudaGraphBenchParams
from weight_shapes import WEIGHT_SHAPES
from vllm.triton_utils import HAS_TRITON
from vllm.lora.ops.triton_ops.utils import get_lora_op_configs
from vllm.triton_utils import HAS_TRITON, triton
if HAS_TRITON:
from vllm.lora.ops.triton_ops import LoRAKernelMeta, lora_expand, lora_shrink
from vllm.lora.ops.triton_ops import ( ## added fused_moe_lora
LoRAKernelMeta,
fused_moe_lora_expand,
fused_moe_lora_shrink,
lora_expand,
lora_shrink,
)
from vllm.lora.ops.triton_ops.fused_moe_lora_op import (
_LORA_PTR_DICT, ## added _LORA_PTR_DICT for fused_moe_lora
)
from vllm.lora.ops.triton_ops.utils import _LORA_A_PTR_DICT, _LORA_B_PTR_DICT
from vllm import _custom_ops as ops
from vllm.utils.argparse_utils import FlexibleArgumentParser
from vllm.utils.math_utils import round_up
DEFAULT_MODELS = list(WEIGHT_SHAPES.keys())
DEFAULT_TP_SIZES = [1]
@ -59,6 +70,8 @@ DEFAULT_NUM_LORAS = [1, 2, 3, 4]
DEFAULT_SORT_BY_LORA_IDS = [False, True]
DEFAULT_SEQ_LENGTHS = [1]
DEFAULT_EXPAND_FN_ADD_INPUTS = [True, False]
DEFAULT_TOP_K_NUMS = [1] # Added for MoE LoRA top_k
DEFAULT_NUM_EXPERTS = [8] # Added for MoE LoRA num_experts
# Utilities
@ -191,6 +204,11 @@ class OpType(Enum):
LORA_SHRINK = auto()
LORA_EXPAND = auto()
## Adding support for fused moe lora
FUSED_MOE_LORA_GATE_UP_SHRINK = auto() ## Gate/Up projection variant with shrink
FUSED_MOE_LORA_GATE_UP_EXPAND = auto() ## Gate/Up projection variant with expand
FUSED_MOE_LORA_DOWN_SHRINK = auto() ## Down projection variant with shrink
FUSED_MOE_LORA_DOWN_EXPAND = auto() ## Down projection variant with expand
@staticmethod
def from_str(s: str) -> "OpType":
@ -198,6 +216,15 @@ class OpType(Enum):
return OpType.LORA_SHRINK
if s.lower() == "lora_expand":
return OpType.LORA_EXPAND
# Adding support for fused moe lora, both in gate_up and down
if s.lower() == "fused_moe_lora_gate_up_shrink": ## Gate/Up variant with shrink
return OpType.FUSED_MOE_LORA_GATE_UP_SHRINK
if s.lower() == "fused_moe_lora_gate_up_expand": ## Gate/Up variant with expand
return OpType.FUSED_MOE_LORA_GATE_UP_EXPAND
if s.lower() == "fused_moe_lora_down_shrink": ## Down variant with shrink
return OpType.FUSED_MOE_LORA_DOWN_SHRINK
if s.lower() == "fused_moe_lora_down_expand": ## Down variant with expand
return OpType.FUSED_MOE_LORA_DOWN_EXPAND
raise ValueError(f"Unrecognized str {s} to convert to OpType")
def is_shrink_fn(self) -> bool:
@ -206,19 +233,56 @@ class OpType(Enum):
def is_expand_fn(self) -> bool:
return self in [OpType.LORA_EXPAND]
def is_fused_moe_lora_fn(self) -> bool: ## adding for fused MoE LoRA
return self in [
OpType.FUSED_MOE_LORA_GATE_UP_SHRINK,
OpType.FUSED_MOE_LORA_DOWN_SHRINK,
OpType.FUSED_MOE_LORA_GATE_UP_EXPAND,
OpType.FUSED_MOE_LORA_DOWN_EXPAND,
]
def is_fused_moe_lora_gate_up_fn(
self,
) -> bool: ## adding for fused MoE LoRA Gate/Up
return self in [
OpType.FUSED_MOE_LORA_GATE_UP_SHRINK,
OpType.FUSED_MOE_LORA_GATE_UP_EXPAND,
]
def is_fused_moe_lora_down_fn(self) -> bool: ## adding for fused MoE LoRA Down
return self in [
OpType.FUSED_MOE_LORA_DOWN_SHRINK,
OpType.FUSED_MOE_LORA_DOWN_EXPAND,
]
def is_fused_moe_lora_shrink_fn(self) -> bool:
return self in [
OpType.FUSED_MOE_LORA_GATE_UP_SHRINK,
OpType.FUSED_MOE_LORA_DOWN_SHRINK,
]
def is_fused_moe_lora_expand_fn(self) -> bool:
return self in [
OpType.FUSED_MOE_LORA_GATE_UP_EXPAND,
OpType.FUSED_MOE_LORA_DOWN_EXPAND,
]
def num_slices(self) -> list[int]:
if self.is_fused_moe_lora_gate_up_fn():
return [2]
elif self.is_fused_moe_lora_down_fn():
return [1]
return [1, 2, 3]
def mkn(
self, batch_size: int, seq_length: int, hidden_size: int, lora_rank: int
) -> tuple[int, int, int]:
num_tokens = batch_size * seq_length
if self.is_shrink_fn():
if self.is_shrink_fn() or self.is_fused_moe_lora_fn():
m = num_tokens
k = hidden_size
n = lora_rank
else:
assert self.is_expand_fn()
elif self.is_expand_fn():
m = num_tokens
k = lora_rank
n = hidden_size
@ -232,9 +296,36 @@ class OpType(Enum):
"""
if self.is_shrink_fn():
return op_dtype, op_dtype, torch.float32
else:
assert self.is_expand_fn()
elif self.is_expand_fn():
return torch.float32, op_dtype, op_dtype
else:
assert self.is_fused_moe_lora_fn()
return op_dtype, op_dtype, op_dtype
def matmul_shapes_fused_moe_lora(
self,
m: int,
n: int,
k: int,
num_loras: int,
num_slices: int,
top_k_num: int,
num_experts: int,
) -> tuple[tuple[int], tuple[int], tuple[int], tuple[int]]:
if self.is_fused_moe_lora_shrink_fn():
input_shape = (
(m * top_k_num, n)
if self in [OpType.FUSED_MOE_LORA_DOWN_SHRINK]
else (m, n)
)
output_shape = (num_slices, m, top_k_num, k)
weight_shape = (num_loras, num_experts, k, n)
else:
assert self.is_fused_moe_lora_expand_fn()
input_shape = (num_slices, m, top_k_num, k)
output_shape = (m, top_k_num, n * num_slices)
weight_shape = (num_loras, num_experts, n, k)
return (input_shape, weight_shape, output_shape)
def matmul_shapes(
self,
@ -244,6 +335,8 @@ class OpType(Enum):
lora_rank: int,
num_loras: int,
num_slices: int,
top_k_num: int | None = None,
num_experts: int | None = None,
) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...]]:
"""
Given num_slices, return the shapes of the A, B, and C matrices
@ -258,6 +351,16 @@ class OpType(Enum):
if self in [OpType.LORA_EXPAND]:
# LoRA expand kernels support num_slices inherently in the kernel
return ((num_slices, m, k), b_shape, (m, n * num_slices))
if self.is_fused_moe_lora_fn():
return self.matmul_shapes_fused_moe_lora(
m,
k,
n,
num_loras,
num_slices,
top_k_num,
num_experts,
)
raise ValueError(f"Unrecognized op_type {self}")
def bench_fn(self) -> Callable:
@ -265,6 +368,16 @@ class OpType(Enum):
return lora_shrink
if self == OpType.LORA_EXPAND:
return lora_expand
if self in [
OpType.FUSED_MOE_LORA_GATE_UP_SHRINK,
OpType.FUSED_MOE_LORA_DOWN_SHRINK,
]:
return fused_moe_lora_shrink
if self in [
OpType.FUSED_MOE_LORA_GATE_UP_EXPAND,
OpType.FUSED_MOE_LORA_DOWN_EXPAND,
]:
return fused_moe_lora_expand
raise ValueError(f"Unrecognized optype {self}")
@ -318,6 +431,8 @@ class BenchmarkContext:
sort_by_lora_id: bool
dtype: torch.dtype
seq_length: int | None = None
num_experts: int | None = None # num_experts for MoE based ops
top_k_num: int | None = None # top_k for MoE based ops
num_slices: int | None = None # num_slices for slice based ops
def with_seq_length(self, seq_length: int) -> "BenchmarkContext":
@ -373,6 +488,11 @@ class BenchmarkTensors:
f"{dtype_to_str(self.output.dtype)}"
)
def get_num_tokens(self, size: int, top_k_num: int, op_type: OpType):
return (
size * top_k_num if op_type in [OpType.FUSED_MOE_LORA_DOWN_SHRINK] else size
)
@staticmethod
def make(
ctx: BenchmarkContext, op_type: OpType, device: str = "cuda"
@ -385,6 +505,8 @@ class BenchmarkTensors:
ctx.lora_rank,
ctx.num_loras,
ctx.num_slices,
ctx.top_k_num,
ctx.num_experts,
)
a_type, b_type, c_type = op_type.matmul_dtypes(ctx.dtype)
input_tensor, lora_weights, output_tensor = make_rand_tensors(
@ -432,17 +554,27 @@ class BenchmarkTensors:
prompt_lora_indices_tensor,
)
def sanity_check(self) -> None:
def sanity_check(self, ctx: BenchmarkContext, op_type: OpType) -> None:
"""
Fails asserts when non-conformality is detected.
"""
num_tokens = self.input.shape[-2]
num_tokens = (
self.input.shape[1]
if op_type.is_fused_moe_lora_expand_fn()
else self.input.shape[-2]
)
# check metadata tensors
assert torch.sum(self.seq_lens) == num_tokens
## In down shrink case, each token is repeated top_k_num times
assert num_tokens == self.get_num_tokens(
torch.sum(self.seq_lens), ctx.top_k_num, op_type
), f"Expected {num_tokens} tokens, but got {torch.sum(self.seq_lens)}"
num_seqs = self.seq_lens.shape[0]
# assert self.seq_start_loc.shape[0] == num_seqs
## In down shrink case, each prompt corresponds to top_k_num sequences
assert self.prompt_lora_mapping.shape[0] == num_seqs
assert self.lora_kernel_meta.token_lora_mapping.shape[0] == num_tokens
assert self.get_num_tokens(
self.lora_kernel_meta.token_lora_mapping.shape[0], ctx.top_k_num, op_type
)
def to_device(self, device: str):
"""
@ -471,21 +603,111 @@ class BenchmarkTensors:
to_device(field) if field_name != "no_lora_flag_cpu" else field,
)
def metadata(self) -> tuple[int, int, int]:
def metadata(self, ctx: BenchmarkContext, op_type: OpType) -> tuple[int, int, int]:
"""
Return num_seqs, num_tokens and max_seq_len
"""
num_seqs = self.seq_lens.shape[0]
num_tokens = self.lora_kernel_meta.token_lora_mapping.shape[0]
num_tokens = self.get_num_tokens(
self.lora_kernel_meta.token_lora_mapping.shape[0], ctx.top_k_num, op_type
)
max_seq_len = torch.max(self.seq_lens).item()
num_slices = len(self.lora_weights_lst)
return num_seqs, num_tokens, max_seq_len, num_slices
def as_lora_shrink_kwargs(self) -> dict[str, Any]:
self.sanity_check()
def fused_moe_lora_data_prepare(
self,
block_size: int,
token_lora_mapping: torch.Tensor,
ctx: BenchmarkContext,
):
def moe_lora_align_block_size(
topk_ids: torch.Tensor,
token_lora_mapping: torch.Tensor,
block_size: int,
num_experts: int,
max_loras: int,
expert_map: torch.Tensor | None = None,
pad_sorted_ids: bool = False,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Aligns tokens and experts into block-sized chunks for LoRA-based
mixture-of-experts (MoE) execution.
"""
max_num_tokens_padded = topk_ids.numel() + num_experts * (block_size - 1)
if pad_sorted_ids:
max_num_tokens_padded = round_up(max_num_tokens_padded, block_size)
sorted_ids = torch.empty(
(max_loras * max_num_tokens_padded,),
dtype=torch.int32,
device=topk_ids.device,
)
max_num_m_blocks = triton.cdiv(max_num_tokens_padded, block_size)
# Expert ids must be set default to -1 to prevent a blank block
expert_ids = torch.empty(
(max_loras * max_num_m_blocks,),
dtype=torch.int32,
device=topk_ids.device,
)
num_tokens_post_pad = torch.empty(
(max_loras), dtype=torch.int32, device=topk_ids.device
)
ops.moe_lora_align_block_size(
topk_ids,
token_lora_mapping,
num_experts,
block_size,
max_loras,
max_num_tokens_padded,
max_num_m_blocks,
sorted_ids,
expert_ids,
num_tokens_post_pad,
)
if expert_map is not None:
expert_ids = expert_map[expert_ids]
return sorted_ids, expert_ids, num_tokens_post_pad
num_tokens = ctx.batch_size
curr_topk_ids = torch.randint(
0,
ctx.num_experts,
(num_tokens, ctx.top_k_num),
device="cuda",
dtype=torch.int32,
)
topk_weights = torch.randint(
0,
ctx.num_experts,
(num_tokens, ctx.top_k_num),
device="cuda",
dtype=torch.int32,
)
(sorted_token_ids_lora, expert_ids_lora, num_tokens_post_padded_lora) = (
moe_lora_align_block_size(
topk_ids=curr_topk_ids,
token_lora_mapping=token_lora_mapping,
block_size=block_size,
num_experts=ctx.num_experts,
max_loras=ctx.num_loras,
)
)
sorted_token_ids = sorted_token_ids_lora.view(ctx.num_loras, -1)
expert_ids = expert_ids_lora.view(ctx.num_loras, -1)
num_tokens_post_padded = num_tokens_post_padded_lora
return (topk_weights, sorted_token_ids, expert_ids, num_tokens_post_padded)
def as_lora_shrink_kwargs(
self, ctx: BenchmarkContext, op_type: OpType
) -> dict[str, Any]:
self.sanity_check(ctx, op_type)
self.to_device(self.input.device)
_, num_tokens, _, num_slices = self.metadata()
_, num_tokens, _, num_slices = self.metadata(ctx, op_type)
# Sanity check matrix shapes.
i_shape, lw_shape, o_shape = (
@ -520,11 +742,13 @@ class BenchmarkTensors:
"no_lora_flag_cpu": self.lora_kernel_meta.no_lora_flag_cpu,
}
def as_lora_expand_kwargs(self, add_inputs: bool) -> dict[str, Any]:
self.sanity_check()
def as_lora_expand_kwargs(
self, ctx: BenchmarkContext, op_type: OpType, add_inputs: bool
) -> dict[str, Any]:
self.sanity_check(ctx, op_type)
self.to_device(self.input.device)
_, num_tokens, _, num_slices = self.metadata()
_, num_tokens, _, num_slices = self.metadata(ctx, op_type)
# Sanity check matrix shapes.
i_shape, lw_shape, o_shape = (
@ -561,18 +785,173 @@ class BenchmarkTensors:
"no_lora_flag_cpu": self.lora_kernel_meta.no_lora_flag_cpu,
}
def bench_fn_kwargs(
self, op_type: OpType, add_inputs: bool | None = None
def as_fused_moe_lora_shrink_kwargs(
self, ctx: BenchmarkContext, op_type: OpType
) -> dict[str, Any]:
if op_type.is_shrink_fn():
self.sanity_check(ctx, op_type)
self.to_device(self.input.device)
_, num_tokens, _, num_slices = self.metadata(ctx, op_type)
# Sanity check matrix shapes.
i_shape, lw_shape, o_shape = (
self.input.shape,
self.lora_weights_lst[0].shape,
self.output.shape,
)
# Expected input shape : [num_tokens, hidden_size] for gate_up
# Expected input shape : [top_k_num * num_tokens, hidden_size] for down
assert len(i_shape) == 2
assert i_shape[0] == num_tokens
hidden_size = i_shape[1]
# Expected lora weight shape [max_lora, num_experts, lora_rank, hidden_size]
assert len(lw_shape) == 4
assert lw_shape[-1] == hidden_size
lora_rank = lw_shape[-2]
# Expected output shape : [num_slices, num_tokens, top_k_num, lora_rank]
assert len(o_shape) == 4
assert (
o_shape
== (num_slices, num_tokens // ctx.top_k_num, ctx.top_k_num, lora_rank)
if op_type in [OpType.FUSED_MOE_LORA_DOWN_SHRINK]
else o_shape == (num_slices, num_tokens, ctx.top_k_num, lora_rank)
)
kernel_config = get_lora_op_configs(
op_type.name.lower(),
max_loras=lw_shape[0],
batch=num_tokens,
hidden_size=hidden_size,
rank=lora_rank,
num_slices=num_slices,
add_inputs=False,
)
(topk_weights, sorted_token_ids, expert_ids, num_tokens_post_padded) = (
self.fused_moe_lora_data_prepare(
block_size=kernel_config["BLOCK_SIZE_M"],
token_lora_mapping=self.lora_kernel_meta.token_lora_mapping,
ctx=ctx,
)
)
return {
"qcurr_hidden_states": self.input,
"lora_a_stacked": self.lora_weights_lst,
"a_intermediate_cache1": self.output,
"topk_weights": topk_weights,
"sorted_token_ids": sorted_token_ids,
"expert_ids": expert_ids,
"num_tokens_post_padded": num_tokens_post_padded,
"top_k_num": ctx.top_k_num,
"device": self.input.device,
"N": lora_rank,
"M": topk_weights.shape[0],
"EM": sorted_token_ids.shape[1],
"K": self.input.shape[1],
"num_tokens": num_tokens,
"num_experts": ctx.num_experts,
"num_slices": num_slices,
"shrink_block_size_m": kernel_config["BLOCK_SIZE_M"],
"shrink_block_size_n": kernel_config["BLOCK_SIZE_N"],
"shrink_block_size_k": kernel_config["BLOCK_SIZE_K"],
"shrink_group_size_m": kernel_config["GROUP_SIZE_M"],
"shrink_num_warps": kernel_config["NUM_WARPS"],
"shrink_num_stages": kernel_config["NUM_STAGES"],
"shrink_split_k": kernel_config.get("SPLIT_K", 1),
"mul_routed_weight": op_type.is_fused_moe_lora_down_fn(),
}
def as_fused_moe_lora_expand_kwargs(
self, ctx: BenchmarkContext, op_type: OpType
) -> dict[str, Any]:
self.sanity_check(ctx, op_type)
self.to_device(self.input.device)
_, num_tokens, _, num_slices = self.metadata(ctx, op_type)
# Sanity check matrix shapes.
i_shape, lw_shape, o_shape = (
self.input.shape,
self.lora_weights_lst[0].shape,
self.output.shape,
)
# Expected input shape : [num_slices, num_tokens, top_k_num, lora_rank]
assert len(i_shape) == 4
assert i_shape[0] == num_slices
assert i_shape[1] == num_tokens
lora_rank = i_shape[-1]
# Expected lora weight shape : [num_loras, num_experts, hidden_size, lora_rank]
assert len(lw_shape) == 4
assert lw_shape[-1] == lora_rank
hidden_size = lw_shape[-2]
# Expected output shape : [num_tokens, top_k_num, hidden_size * num_slices]
assert len(o_shape) == 3
assert o_shape == (num_tokens, ctx.top_k_num, hidden_size * num_slices)
kernel_config = get_lora_op_configs(
op_type.name.lower(),
max_loras=lw_shape[0],
batch=num_tokens,
hidden_size=hidden_size,
rank=lora_rank,
num_slices=num_slices,
add_inputs=False,
)
(topk_weights, sorted_token_ids, expert_ids, num_tokens_post_padded) = (
self.fused_moe_lora_data_prepare(
block_size=kernel_config["BLOCK_SIZE_M"],
token_lora_mapping=self.lora_kernel_meta.token_lora_mapping,
ctx=ctx,
)
)
return {
"a_intermediate_cache1": self.input,
"lora_b_stacked": self.lora_weights_lst,
"output": self.output,
"topk_weights": topk_weights,
"sorted_token_ids": sorted_token_ids,
"expert_ids": expert_ids,
"num_tokens_post_padded": num_tokens_post_padded,
"top_k_num": ctx.top_k_num,
"device": self.input.device,
"N": lora_rank,
"M": topk_weights.shape[0],
"EM": sorted_token_ids.shape[1],
"K": self.input.shape[1],
"num_tokens": num_tokens,
"num_experts": ctx.num_experts,
"num_slices": num_slices,
"max_lora_rank": lora_rank,
"w1_output_dim_size": lw_shape[2],
"expand_block_size_m": kernel_config["BLOCK_SIZE_M"],
"expand_block_size_n": kernel_config["BLOCK_SIZE_N"],
"expand_block_size_k": kernel_config["BLOCK_SIZE_K"],
"expand_group_size_m": kernel_config["GROUP_SIZE_M"],
"expand_num_warps": kernel_config["NUM_WARPS"],
"expand_num_stages": kernel_config["NUM_STAGES"],
"expand_split_k": kernel_config.get("SPLIT_K", 1),
"mul_routed_weight": op_type.is_fused_moe_lora_down_fn(),
}
def bench_fn_kwargs(
self, ctx: BenchmarkContext, op_type: OpType, add_inputs: bool | None = None
) -> dict[str, Any]:
if op_type.is_shrink_fn() or op_type.is_fused_moe_lora_fn():
assert add_inputs is None
else:
assert add_inputs is not None
if op_type == OpType.LORA_SHRINK:
return self.as_lora_shrink_kwargs()
return self.as_lora_shrink_kwargs(ctx, op_type)
if op_type == OpType.LORA_EXPAND:
return self.as_lora_expand_kwargs(add_inputs)
return self.as_lora_expand_kwargs(ctx, op_type, add_inputs)
if op_type.is_fused_moe_lora_shrink_fn():
return self.as_fused_moe_lora_shrink_kwargs(ctx, op_type)
if op_type.is_fused_moe_lora_expand_fn():
return self.as_fused_moe_lora_expand_kwargs(ctx, op_type)
raise ValueError(f"Unrecognized optype {self}")
def test_correctness(
@ -617,7 +996,7 @@ def bench_optype(
test_correctness: bool = False,
) -> TMeasurement:
assert arg_pool_size >= 1
if op_type.is_shrink_fn():
if op_type.is_shrink_fn() or op_type.is_fused_moe_lora_fn():
assert expand_fn_add_inputs is None
else:
assert expand_fn_add_inputs is not None
@ -627,23 +1006,30 @@ def bench_optype(
BenchmarkTensors.make(ctx, op_type) for _ in range(arg_pool_size)
]
for bt in bench_tensors:
bt.sanity_check()
bt.sanity_check(ctx, op_type)
# Test correctness of our implementation.
if test_correctness:
assert op_type in [OpType.LORA_SHRINK, OpType.LORA_EXPAND], (
f"Correctness testing is not supported for {op_type.name}."
)
assert all(
[bt.test_correctness(op_type, expand_fn_add_inputs) for bt in bench_tensors]
[
bt.test_correctness(ctx, op_type, expand_fn_add_inputs)
for bt in bench_tensors
]
)
# BenchmarkTensors -> dict (kwargs)
kwargs_list = [
bt.bench_fn_kwargs(op_type, add_inputs=expand_fn_add_inputs)
bt.bench_fn_kwargs(ctx, op_type, add_inputs=expand_fn_add_inputs)
for bt in bench_tensors
]
# Clear LoRA optimization hash-maps.
_LORA_A_PTR_DICT.clear()
_LORA_B_PTR_DICT.clear()
_LORA_PTR_DICT.clear()
# Run bench function so that _LORA_A_PTR_DICT and _LORA_B_PTR_DICT are set up
for kwargs in kwargs_list:
op_type.bench_fn()(**kwargs)
@ -793,7 +1179,9 @@ def run(args: argparse.Namespace, bench_ctxs: list[BenchmarkContext]):
# Benchmark bench_op
expand_fn_add_inputs = (
[None] if bench_op.is_shrink_fn() else args.expand_fn_add_inputs
[None]
if bench_op.is_shrink_fn() or bench_op.is_fused_moe_lora_fn()
else args.expand_fn_add_inputs
)
for add_input_arg in expand_fn_add_inputs:
seq_len_timers.append(
@ -831,12 +1219,22 @@ def as_benchmark_contexts(
hidden_sizes: list[int], lora_ranks: list[int], args: argparse.Namespace
) -> list[BenchmarkContext]:
ctxs: list[BenchmarkContext] = []
for batch_size, hidden_size, lora_rank, num_loras, sort_by_lora_id in product( # noqa
for (
batch_size,
hidden_size,
lora_rank,
num_loras,
sort_by_lora_id,
top_k_num,
num_experts,
) in product( # noqa
args.batch_sizes,
list(hidden_sizes),
lora_ranks,
args.num_loras,
args.sort_by_lora_id,
args.top_k_nums,
args.num_experts,
):
ctxs.append(
BenchmarkContext(
@ -851,6 +1249,8 @@ def as_benchmark_contexts(
seq_length=None,
sort_by_lora_id=sort_by_lora_id,
dtype=args.dtype,
top_k_num=top_k_num,
num_experts=num_experts,
# To be filled based on the OpType to benchmark
num_slices=None,
)
@ -1012,6 +1412,22 @@ if __name__ == "__main__":
),
)
p.add_argument(
"--top-k-nums",
nargs="+",
type=int,
default=DEFAULT_TOP_K_NUMS,
help="Top-K values for MoE LoRA operations",
)
p.add_argument(
"--num-experts",
nargs="+",
type=int,
default=DEFAULT_NUM_EXPERTS,
help="Number of experts for MoE LoRA operations",
)
parser = FlexibleArgumentParser(
description=f"""
Benchmark LoRA kernels:

View File

@ -237,6 +237,7 @@ def marlin_create_bench_fn(bt: BenchmarkTensors) -> Callable:
b_q_weight=w_q,
b_bias=None,
b_scales=w_s,
a_scales=None,
global_scale=None,
b_zeros=w_zp,
g_idx=g_idx,

View File

@ -263,7 +263,7 @@ def bench_run(
results.append(
benchmark.Timer(
stmt="output = gptq_marlin_gemm(a, None, marlin_q_w, marlin_s, marlin_s2, marlin_zp, marlin_g_idx, marlin_sort_indices, marlin_workspace.scratch, quant_type, size_m, size_n, size_k, is_k_full, False, False, False)", # noqa: E501
stmt="output = gptq_marlin_gemm(a, None, marlin_q_w, marlin_s, None, marlin_s2, marlin_zp, marlin_g_idx, marlin_sort_indices, marlin_workspace.scratch, quant_type, size_m, size_n, size_k, is_k_full, False, False, False)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,
@ -273,7 +273,7 @@ def bench_run(
results.append(
benchmark.Timer(
stmt="output = gptq_marlin_gemm(a, None, marlin_q_w, marlin_s, marlin_s2, marlin_zp, marlin_g_idx, marlin_sort_indices, marlin_workspace.scratch, quant_type, size_m, size_n, size_k, is_k_full, False, True, False)", # noqa: E501
stmt="output = gptq_marlin_gemm(a, None, marlin_q_w, marlin_s, None, marlin_s2, marlin_zp, marlin_g_idx, marlin_sort_indices, marlin_workspace.scratch, quant_type, size_m, size_n, size_k, is_k_full, False, True, False)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,

View File

@ -185,8 +185,8 @@ def benchmark_config(
graph.replay()
torch.cuda.synchronize()
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
start_event = torch.Event(enable_timing=True)
end_event = torch.Event(enable_timing=True)
latencies: list[float] = []
for i in range(num_iters):
@ -211,7 +211,7 @@ def get_rocm_tuning_space(use_fp16):
num_warps_range = [1, 2, 4, 8]
group_m_range = [1, 4, 8, 16, 32]
num_stage_range = [2]
waves_per_eu_range = [0]
waves_per_eu_range = [0, 1, 2, 4]
matrix_instr_nonkdim_range = [16, 32] if use_fp16 else []
kpack_range = [1, 2] if use_fp16 else []
@ -590,6 +590,7 @@ def main(args: argparse.Namespace):
"DeepseekV3ForCausalLM",
"DeepseekV32ForCausalLM",
"Glm4MoeForCausalLM",
"NemotronHForCausalLM",
):
E = config.n_routed_experts
topk = config.num_experts_per_tok
@ -615,6 +616,11 @@ def main(args: argparse.Namespace):
topk = config.moe_topk[0]
intermediate_size = config.moe_intermediate_size[0]
hidden_size = config.hidden_size
elif config.architectures[0] in ["Qwen3OmniMoeForConditionalGeneration"]:
E = config.thinker_config.text_config.num_experts
topk = config.thinker_config.text_config.num_experts_per_tok
intermediate_size = config.thinker_config.text_config.moe_intermediate_size
hidden_size = config.thinker_config.text_config.hidden_size
else:
# Support for llama4
config = config.get_text_config()

View File

@ -105,8 +105,8 @@ def benchmark_permute(
graph.replay()
torch.cuda.synchronize()
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
start_event = torch.Event(enable_timing=True)
end_event = torch.Event(enable_timing=True)
latencies: list[float] = []
for i in range(num_iters):
@ -241,8 +241,8 @@ def benchmark_unpermute(
graph.replay()
torch.cuda.synchronize()
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
start_event = torch.Event(enable_timing=True)
end_event = torch.Event(enable_timing=True)
latencies: list[float] = []
for i in range(num_iters):

View File

@ -6,7 +6,7 @@
#
# The CSV file (named with current date/time) contains these columns:
# model_name, tp_size, num_tokens, num_heads, num_kv_heads, head_dim, max_position,
# rope_theta, is_neox_style, rope_scaling, dtype, torch_mean, torch_median, torch_p99,
# is_neox_style, rope_parameters, dtype, torch_mean, torch_median, torch_p99,
# torch_min, torch_max, triton_mean, triton_median, triton_p99, triton_min, triton_max,
# speedup
#
@ -86,9 +86,8 @@ def benchmark_mrope(
num_heads: int,
num_kv_heads: int,
max_position: int = 8192,
rope_theta: float = 10000,
is_neox_style: bool = True,
rope_scaling: dict[str, Any] = None,
rope_parameters: dict[str, Any] | None = None,
dtype: torch.dtype = torch.bfloat16,
seed: int = 0,
warmup_iter: int = 10,
@ -102,9 +101,8 @@ def benchmark_mrope(
head_size=head_dim,
rotary_dim=head_dim,
max_position=max_position,
base=rope_theta,
is_neox_style=is_neox_style,
rope_scaling=rope_scaling,
rope_parameters=rope_parameters,
dtype=dtype,
).to(device=device)
@ -203,9 +201,8 @@ def benchmark_mrope(
num_kv_heads,
head_dim,
max_position,
rope_theta,
is_neox_style,
str(rope_scaling),
str(rope_parameters),
str(dtype).split(".")[-1],
torch_stats["mean"],
torch_stats["median"],
@ -255,9 +252,8 @@ if __name__ == "__main__":
"num_kv_heads",
"head_dim",
"max_position",
"rope_theta",
"is_neox_style",
"rope_scaling",
"rope_parameters",
"dtype",
"torch_mean",
"torch_median",
@ -303,7 +299,7 @@ if __name__ == "__main__":
q_size = num_heads * head_dim
kv_size = num_kv_heads * head_dim
is_neox_style = True
rope_theta = config.rope_theta
rope_parameters = config.rope_parameters
max_position = config.max_position_embeddings
for num_tokens in num_tokens_list:
@ -315,9 +311,8 @@ if __name__ == "__main__":
num_heads=num_heads,
num_kv_heads=num_kv_heads,
max_position=max_position,
rope_theta=rope_theta,
is_neox_style=is_neox_style,
rope_scaling=config.rope_scaling,
rope_parameters=rope_parameters,
dtype=getattr(torch, args.dtype),
seed=args.seed,
warmup_iter=args.warmup_iter,

View File

@ -30,8 +30,8 @@ def _time_cuda(
fn()
torch.cuda.synchronize()
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
start = torch.Event(enable_timing=True)
end = torch.Event(enable_timing=True)
start.record()
for _ in range(bench_iters):

View File

@ -1,97 +1,76 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from itertools import accumulate
import itertools
import nvtx
import torch
from vllm.model_executor.layers.rotary_embedding import RotaryEmbedding, get_rope
from vllm.platforms import current_platform
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.triton_utils import triton
from vllm.utils.argparse_utils import FlexibleArgumentParser
batch_size_range = [2**i for i in range(0, 8, 2)]
seq_len_range = [2**i for i in range(6, 10, 1)]
num_heads_range = [32, 48]
configs = list(itertools.product(batch_size_range, seq_len_range, num_heads_range))
def benchmark_rope_kernels_multi_lora(
is_neox_style: bool,
batch_size: int,
seq_len: int,
num_heads: int,
head_size: int,
rotary_dim: int | None,
dtype: torch.dtype,
seed: int,
device: str,
max_position: int = 8192,
base: float = 10000,
) -> None:
current_platform.seed_everything(seed)
torch.set_default_device(device)
if rotary_dim is None:
rotary_dim = head_size
# silulating serving 4 LoRAs
scaling_factors = [1, 2, 4, 8]
# batched RoPE can take multiple scaling factors
batched_rope = get_rope(
head_size,
rotary_dim,
max_position,
base,
is_neox_style,
{"rope_type": "linear", "factor": tuple(scaling_factors)},
)
# non-batched RoPE takes only one scaling factor, we create multiple
# instances to simulate the same behavior
non_batched_ropes: list[RotaryEmbedding] = []
for scaling_factor in scaling_factors:
non_batched_ropes.append(
get_rope(
head_size,
rotary_dim,
max_position,
base,
is_neox_style,
{"rope_type": "linear", "factor": (scaling_factor,)},
)
)
positions = torch.randint(0, max_position, (batch_size, seq_len))
query = torch.randn(batch_size, seq_len, num_heads * head_size, dtype=dtype)
key = torch.randn_like(query)
# create query offsets for batched RoPE, we concat multiple kv cache
# together and each query needs to find the right kv cache of its type
offset_map = torch.tensor(
list(
accumulate(
[0]
+ [
max_position * scaling_factor * 2
for scaling_factor in scaling_factors[:-1]
]
)
def get_benchmark(head_size, rotary_dim, is_neox_style, device):
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=["batch_size", "seq_len", "num_heads"],
x_vals=[list(_) for _ in configs],
line_arg="provider",
line_vals=["torch", "flashinfer", "vllm"],
line_names=["PyTorch", "FlashInfer", "vLLM"],
styles=[("blue", "-"), ("green", "-"), ("red", "-")],
ylabel="us",
plot_name=f"rope-perf{'-neox-style' if is_neox_style else ''}",
args={},
)
)
query_types = torch.randint(
0, len(scaling_factors), (batch_size, seq_len), device=device
)
# map query types to offsets
query_offsets = offset_map[query_types]
# the kernel takes flattened offsets
flatten_offsets = query_offsets.flatten()
def benchmark(batch_size, seq_len, num_heads, provider):
dtype = torch.bfloat16
max_position = 8192
base = 10000
rope = get_rope(head_size, rotary_dim, max_position, base, is_neox_style)
rope = rope.to(dtype=dtype, device=device)
cos_sin_cache = rope.cos_sin_cache.to(dtype=torch.float, device=device)
# batched queries of the same type together for non-batched RoPE
queries = [query[query_types == i] for i in range(len(scaling_factors))]
keys = [key[query_types == i] for i in range(len(scaling_factors))]
packed_qkr = zip(queries, keys, non_batched_ropes)
# synchronize before start timing
torch.cuda.synchronize()
with nvtx.annotate("non-batched", color="yellow"):
for q, k, r in packed_qkr:
r.forward(positions, q, k)
torch.cuda.synchronize()
with nvtx.annotate("batched", color="green"):
batched_rope.forward(positions, query, key, flatten_offsets)
torch.cuda.synchronize()
positions = torch.randint(0, max_position, (batch_size, seq_len), device=device)
query = torch.randn(
(batch_size, seq_len, num_heads * head_size), dtype=dtype, device=device
)
key = torch.randn_like(query)
quantiles = [0.5, 0.2, 0.8]
if provider == "torch":
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: rope.forward_native(positions, query.clone(), key.clone()),
quantiles=quantiles,
)
elif provider == "flashinfer":
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: torch.ops.vllm.flashinfer_rotary_embedding(
positions,
query.clone(),
key.clone(),
head_size,
cos_sin_cache,
is_neox_style,
),
quantiles=quantiles,
)
else:
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: rope.forward_cuda(positions, query.clone(), key.clone()),
quantiles=quantiles,
)
return 1000 * ms, 1000 * max_ms, 1000 * min_ms
return benchmark
if __name__ == "__main__":
@ -116,17 +95,12 @@ if __name__ == "__main__":
parser.add_argument(
"--device", type=str, choices=["cuda:0", "cuda:1"], default="cuda:0"
)
parser.add_argument("--save-path", type=str, default="./configs/rope/")
args = parser.parse_args()
print(args)
benchmark_rope_kernels_multi_lora(
is_neox_style=args.is_neox_style,
batch_size=args.batch_size,
seq_len=args.seq_len,
num_heads=args.num_heads,
head_size=args.head_size,
rotary_dim=args.rotary_dim,
dtype=getattr(torch, args.dtype),
seed=args.seed,
device=args.device,
# Get the benchmark function
benchmark = get_benchmark(
args.head_size, args.rotary_dim, args.is_neox_style, args.device
)
# Run performance benchmark
benchmark.run(print_data=True, save_path=args.save_path)

View File

@ -78,11 +78,11 @@ WEIGHT_SHAPES = {
}
WEIGHT_SHAPES_MOE = {
"nm-testing/Mixtral-8x7B-Instruct-v0.1": [
"mistralai/Mixtral-8x7B-Instruct-v0.1": [
[8, 2, 4096, 28672],
[8, 2, 14336, 4096],
],
"nm-testing/deepseekv2-lite": [
"deepseek-ai/DeepSeek-V2-Lite": [
[64, 6, 2048, 1408],
],
"ibm-granite/granite-3.0-1b-a400m": [

View File

@ -253,8 +253,8 @@ def benchmark(
)
torch.cuda.synchronize()
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
start_event = torch.Event(enable_timing=True)
end_event = torch.Event(enable_timing=True)
# Benchmark
latencies: list[float] = []

View File

@ -127,8 +127,8 @@ def benchmark_decode(
def time_fn(fn, warmup=10, trials=20):
torch.cuda.synchronize()
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
start = torch.Event(enable_timing=True)
end = torch.Event(enable_timing=True)
times = []
for i in range(warmup):
fn()

View File

@ -139,8 +139,8 @@ def benchmark_prefill(
def time_fn(fn, warmup=10, trials=20):
torch.cuda.synchronize()
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
start = torch.Event(enable_timing=True)
end = torch.Event(enable_timing=True)
times = []
for i in range(warmup):
fn()

View File

@ -183,8 +183,8 @@ def benchmark_config(
run()
torch.cuda.synchronize()
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
start_event = torch.Event(enable_timing=True)
end_event = torch.Event(enable_timing=True)
latencies: list[float] = []
for i in range(num_iters):

View File

@ -2,7 +2,7 @@
This directory includes benchmarks between DeepSeek's DeepGEMM block fp8 kernels against vLLM's existing triton and CUTLASS-based kernels.
Currently this just includes dense GEMMs and only works on Hopper GPUs.
Currently, this just includes dense GEMMs and only works on Hopper GPUs.
## Setup

View File

@ -55,6 +55,10 @@ output_num_chunks 166.0 99.01 11.80 79.00 90.00 98.00 108.75
----------------------------------------------------------------------------------------------------
```
If you run with `--warmup-step`, the summary will also include `warmup_runtime_sec`
and `total_runtime_incl_warmup_sec` (while `runtime_sec` continues to reflect the
benchmark-only runtime so the reported throughput stays comparable).
### JSON configuration file for synthetic conversations generation
The input flag `--input-file` is used to determine the input conversations for the benchmark.<br/>

View File

@ -11,6 +11,7 @@ from bench_utils import (
Color,
logger,
)
from tqdm import tqdm
from transformers import AutoTokenizer # type: ignore
# Conversation ID is a string (e.g: "UzTK34D")
@ -417,6 +418,10 @@ def generate_conversations(
data = file.read()
tokens_in_file = tokenizer.encode(data, add_special_tokens=False)
list_of_tokens.extend(tokens_in_file)
logger.info(
f"Loaded {len(tokens_in_file)} tokens from file {filename}, "
f"total tokens so far: {len(list_of_tokens)}"
)
conversations: ConversationsMap = {}
conv_id = 0
@ -449,18 +454,25 @@ def generate_conversations(
)
base_offset += common_prefix_tokens
for conv_id in range(args.num_conversations):
for conv_id in tqdm(
range(args.num_conversations),
total=args.num_conversations,
desc="Generating conversations",
unit="conv",
):
# Generate a single conversation
messages: MessagesList = []
nturns = turn_count[conv_id]
# User prompt token count per turn (with lower limit)
input_token_count: np.ndarray = args.input_num_tokens.sample(nturns)
input_token_count: np.ndarray = args.input_num_tokens.sample(nturns).astype(int)
input_token_count = np.maximum(input_token_count, base_prompt_token_count)
# Assistant answer token count per turn (with lower limit)
output_token_count: np.ndarray = args.output_num_tokens.sample(nturns)
output_token_count: np.ndarray = args.output_num_tokens.sample(nturns).astype(
int
)
output_token_count = np.maximum(output_token_count, 1)
user_turn = True

View File

@ -55,6 +55,7 @@ class ClientArgs(NamedTuple):
verify_output: bool
conversation_sampling: ConversationSampling
request_rate: float
max_retries: int
class RequestArgs(NamedTuple):
@ -63,6 +64,7 @@ class RequestArgs(NamedTuple):
stream: bool
limit_min_tokens: int # Use negative value for no limit
limit_max_tokens: int # Use negative value for no limit
timeout_sec: int
class BenchmarkArgs(NamedTuple):
@ -214,6 +216,7 @@ async def send_request(
stream: bool = True,
min_tokens: int | None = None,
max_tokens: int | None = None,
timeout_sec: int = 120,
) -> ServerResponse:
payload = {
"model": model,
@ -235,10 +238,16 @@ async def send_request(
headers = {"Content-Type": "application/json"}
# Calculate the timeout for the request
timeout_sec = 120
if max_tokens is not None:
# Assume TPOT of 200ms and use max_tokens to determine timeout
timeout_sec = max(timeout_sec, int(max_tokens * 0.2))
token_based_timeout = int(max_tokens * 0.2)
if token_based_timeout > timeout_sec:
timeout_sec = token_based_timeout
logger.info(
"Using timeout of %ds based on max_tokens %d",
timeout_sec,
max_tokens,
)
timeout = aiohttp.ClientTimeout(total=timeout_sec)
valid_response = True
@ -409,6 +418,7 @@ async def send_turn(
req_args.stream,
min_tokens,
max_tokens,
req_args.timeout_sec,
)
if response.valid is False:
@ -518,6 +528,25 @@ async def poisson_sleep(request_rate: float, verbose: bool = False) -> None:
await asyncio.sleep(interval)
async def exponential_backoff_sleep(
attempt_cnt: int,
base_rate: float = 1.0,
backoff_factor: float = 2.0,
jitter_fraction: float = 0.10,
verbose: bool = False,
) -> None:
# Sleep with exponential backoff and jitter after a failed request.
backoff_delay = base_rate * (backoff_factor**attempt_cnt)
jittered_delay = backoff_delay * (
1 + np.random.uniform(-jitter_fraction, jitter_fraction)
)
if verbose:
logger.info(f"Backoff for {jittered_delay:.3f} seconds...")
await asyncio.sleep(jittered_delay)
async def client_main(
args: ClientArgs,
req_args: RequestArgs,
@ -532,8 +561,11 @@ async def client_main(
f"{Color.CYAN}Started client {client_id}: max_num_requests={args.max_num_requests}, max_active_conversations={args.max_active_conversations}{Color.RESET}" # noqa: E501
)
random.seed(args.seed)
np.random.seed(args.seed)
# Set unique seed per client (each client runs in its own process)
# Add 1 to ensure no client uses the same seed as the main process
client_seed = args.seed + client_id + 1
random.seed(client_seed)
np.random.seed(client_seed)
# Active conversations
active_convs: ConversationsMap = {}
@ -646,49 +678,62 @@ async def client_main(
)
time_of_last_turn[conv_id] = curr_time_sec
success = True
try:
result = await send_turn(
session,
client_id,
conv_id,
messages,
current_turn,
tokenizer,
req_args,
args.print_content,
args.verify_output,
)
if result is not None:
result_queue.put(result)
else:
# None means that the request failed,
# and should not be added to the statistics.
success = False
num_failures += 1
logger.warning(
f"{Color.YELLOW}Client {client_id} - Request rejected during conversation ID {conv_id} (turn: {current_turn}){Color.RESET}" # noqa: E501
success = False
for attempt_cnt in range(args.max_retries + 1):
try:
exception = False
result = await send_turn(
session,
client_id,
conv_id,
messages,
current_turn,
tokenizer,
req_args,
args.print_content,
args.verify_output,
)
if result is not None:
result_queue.put(result)
success = True
break
else:
logger.warning(
f"{Color.YELLOW}Client {client_id} - Request rejected during conversation ID {conv_id} (turn: {current_turn}){Color.RESET}" # noqa: E501
)
except asyncio.exceptions.TimeoutError:
exception = True
logger.error(
"%sClient %d - Timeout during conversation ID %s (turn: %d). "
"Base timeout is %ss (set with --request-timeout-sec), but the "
"effective timeout may be longer based on max_tokens. If this "
"is unexpected, consider increasing the timeout or checking "
"model performance.%s",
Color.RED,
client_id,
conv_id,
current_turn,
req_args.timeout_sec,
Color.RESET,
)
except Exception:
exception = True
logger.exception(
f"{Color.RED}Client {client_id} - Exception during conversation ID {conv_id} (turn: {current_turn}){Color.RESET}" # noqa: E501
)
# Remove the conversation (should not be used again)
active_convs.pop(conv_id)
# Sleep before retry if not last attempt
if not success and attempt_cnt < args.max_retries:
await exponential_backoff_sleep(attempt_cnt, verbose=args.verbose)
except asyncio.exceptions.TimeoutError:
if not success:
num_failures += 1
logger.exception(
f"{Color.RED}Client {client_id} - Timeout during conversation ID {conv_id} (turn: {current_turn}){Color.RESET}" # noqa: E501
)
break # Exit gracefully instead of raising an error
# Remove the conversation (should not be used again)
active_convs.pop(conv_id)
if exception:
break # Exit gracefully instead of raising an error
except Exception:
num_failures += 1
logger.exception(
f"{Color.RED}Client {client_id} - Exception during conversation ID {conv_id} (turn: {current_turn}){Color.RESET}" # noqa: E501
)
break # Exit gracefully instead of raising an error
if success:
else:
num_successes += 1
# Update the turns counter to include the LLM response
@ -803,6 +848,7 @@ def get_client_config(
verify_output=args.verify_output,
conversation_sampling=args.conversation_sampling,
request_rate=args.request_rate,
max_retries=args.max_retries,
)
if args.limit_min_tokens > 0 or args.limit_max_tokens > 0:
@ -815,6 +861,9 @@ def get_client_config(
"Invalid min/max tokens limits (min should not be larger than max)"
)
if args.request_timeout_sec <= 0:
raise ValueError("Request timeout must be a positive number")
# Arguments for API requests
chat_url = f"{args.url}/v1/chat/completions"
model_name = args.served_model_name if args.served_model_name else args.model
@ -825,6 +874,7 @@ def get_client_config(
stream=not args.no_stream,
limit_min_tokens=args.limit_min_tokens,
limit_max_tokens=args.limit_max_tokens,
timeout_sec=args.request_timeout_sec,
)
return client_args, req_args
@ -968,7 +1018,7 @@ async def main_mp(
f"(is alive: {client.is_alive()}){Color.RESET}"
)
client.join(timeout=120)
client.join(timeout=req_args.timeout_sec + 1)
if client.is_alive():
logger.warning(
@ -1026,6 +1076,7 @@ def process_statistics(
verbose: bool,
gen_conv_args: GenConvArgs | None = None,
excel_output: bool = False,
warmup_runtime_sec: float | None = None,
) -> None:
if len(client_metrics) == 0:
logger.info("No samples to process")
@ -1119,8 +1170,13 @@ def process_statistics(
# Convert milliseconds to seconds
runtime_sec = runtime_sec / 1000.0
requests_per_sec = float(len(df)) / runtime_sec
params = {"runtime_sec": runtime_sec, "requests_per_sec": requests_per_sec}
params = {
"runtime_sec": runtime_sec,
"requests_per_sec": requests_per_sec,
}
if warmup_runtime_sec is not None:
params["warmup_runtime_sec"] = warmup_runtime_sec
params["total_runtime_incl_warmup_sec"] = runtime_sec + warmup_runtime_sec
# Generate a summary of relevant metrics (and drop irrelevant data)
df = df.drop(columns=exclude).describe(percentiles=percentiles).transpose()
@ -1334,6 +1390,16 @@ async def main() -> None:
help="Expected request rate (Poisson process) per client in requests/sec."
"Set to 0 for no delay between requests.",
)
parser.add_argument(
"--max-retries",
type=int,
default=int(os.environ.get("MULTITURN_BENCH_MAX_RETRIES", "0")),
help="Maximum number of retry attempts for timed-out requests. "
"Default is 0 (no retries). "
"Set to higher values to retry failed requests and maintain "
"fair workload distribution. "
"Can also be set via MULTITURN_BENCH_MAX_RETRIES environment variable.",
)
parser.add_argument(
"--conversation-sampling",
type=ConversationSampling,
@ -1351,6 +1417,13 @@ async def main() -> None:
action="store_true",
help="Verify the LLM output (compare to the answers in the input JSON file)",
)
parser.add_argument(
"--request-timeout-sec",
type=int,
default=120,
help="Timeout in seconds for each API request (default: 120). "
"Automatically increased if max tokens imply longer decoding.",
)
parser.add_argument(
"--no-stream",
@ -1426,11 +1499,10 @@ async def main() -> None:
f"Invalid --warmup-percentage={args.warmup_percentage}"
) from None
# Set global seeds for main process
random.seed(args.seed)
np.random.seed(args.seed)
if not os.path.exists(args.model):
raise OSError(f"Path does not exist: {args.model}")
logger.info("Loading tokenizer")
tokenizer = AutoTokenizer.from_pretrained(args.model)
@ -1486,6 +1558,8 @@ async def main() -> None:
url=args.url, num_clients=args.num_clients, early_stop=not args.no_early_stop
)
warmup_runtime_sec: float | None = None
# Warm-up step
if args.warmup_step:
# Only send a single user prompt from every conversation.
@ -1500,26 +1574,56 @@ async def main() -> None:
# all clients should finish their work before exiting
warmup_bench_args = bench_args._replace(early_stop=False)
logger.info(f"{Color.PURPLE}Warmup start{Color.RESET}")
logger.info("%sWarmup start%s", Color.PURPLE, Color.RESET)
warmup_start_ns = time.perf_counter_ns()
conversations, _ = await main_mp(
warmup_client_args, req_args, warmup_bench_args, tokenizer, conversations
)
logger.info(f"{Color.PURPLE}Warmup done{Color.RESET}")
warmup_runtime_sec = nanosec_to_sec(time.perf_counter_ns() - warmup_start_ns)
logger.info(
"%sWarmup runtime: %.3f sec (%.3f ms)%s",
Color.PURPLE,
warmup_runtime_sec,
warmup_runtime_sec * 1000,
Color.RESET,
)
logger.info("%sWarmup done%s", Color.PURPLE, Color.RESET)
# Run the benchmark
start_time = time.perf_counter_ns()
benchmark_start_ns = time.perf_counter_ns()
client_convs, client_metrics = await main_mp(
client_args, req_args, bench_args, tokenizer, conversations
)
total_runtime_ms = nanosec_to_millisec(time.perf_counter_ns() - start_time)
benchmark_runtime_sec = nanosec_to_sec(time.perf_counter_ns() - benchmark_start_ns)
# Calculate requests per second
total_runtime_sec = total_runtime_ms / 1000.0
rps = len(client_metrics) / total_runtime_sec
requests_per_sec = len(client_metrics) / benchmark_runtime_sec
benchmark_runtime_ms = benchmark_runtime_sec * 1000.0
logger.info(
f"{Color.GREEN}All clients finished, total runtime: {total_runtime_sec:.3f} sec"
f" ({total_runtime_ms:.3f} ms), requests per second: {rps:.3f}{Color.RESET}"
"%sAll clients finished, benchmark runtime: %.3f sec (%.3f ms), "
"requests per second: %.3f%s",
Color.GREEN,
benchmark_runtime_sec,
benchmark_runtime_ms,
requests_per_sec,
Color.RESET,
)
if warmup_runtime_sec is not None:
total_runtime_sec = benchmark_runtime_sec + warmup_runtime_sec
logger.info(
"%sWarmup runtime: %.3f sec (%.3f ms)%s",
Color.GREEN,
warmup_runtime_sec,
warmup_runtime_sec * 1000,
Color.RESET,
)
logger.info(
"%sTotal runtime (including warmup): %.3f sec (%.3f ms)%s",
Color.GREEN,
total_runtime_sec,
total_runtime_sec * 1000,
Color.RESET,
)
# Benchmark parameters
params = {
@ -1544,6 +1648,7 @@ async def main() -> None:
verbose=args.verbose,
gen_conv_args=gen_conv_args,
excel_output=args.excel_output,
warmup_runtime_sec=warmup_runtime_sec,
)
if args.output_file is not None:

View File

@ -2,4 +2,5 @@ numpy>=1.24
pandas>=2.0.0
aiohttp>=3.10
transformers>=4.46
xlsxwriter>=3.2.1
xlsxwriter>=3.2.1
tqdm>=4.66

View File

@ -15,6 +15,7 @@ endif()
#
set(ENABLE_AVX512BF16 $ENV{VLLM_CPU_AVX512BF16})
set(ENABLE_AVX512VNNI $ENV{VLLM_CPU_AVX512VNNI})
set(ENABLE_AMXBF16 $ENV{VLLM_CPU_AMXBF16})
include_directories("${CMAKE_SOURCE_DIR}/csrc")
@ -140,6 +141,22 @@ if (AVX512_FOUND AND NOT AVX512_DISABLED)
set(ENABLE_AVX512VNNI OFF)
message(WARNING "Disable AVX512-VNNI ISA support, no avx512_vnni found in local CPU flags." " If cross-compilation is required, please set env VLLM_CPU_AVX512VNNI=1.")
endif()
find_isa(${CPUINFO} "amx_bf16" AMXBF16_FOUND)
if (AMXBF16_FOUND OR ENABLE_AMXBF16)
if (CMAKE_CXX_COMPILER_ID STREQUAL "GNU" AND
CMAKE_CXX_COMPILER_VERSION VERSION_GREATER_EQUAL 12.3)
list(APPEND CXX_COMPILE_FLAGS "-mamx-bf16" "-mamx-tile")
set(ENABLE_AMXBF16 ON)
add_compile_definitions(-DCPU_CAPABILITY_AMXBF16)
else()
set(ENABLE_AMXBF16 OFF)
message(WARNING "Disable AMX_BF16 ISA support, requires gcc/g++ >= 12.3")
endif()
else()
set(ENABLE_AMXBF16 OFF)
message(WARNING "Disable AMX_BF16 ISA support, no amx_bf16 found in local CPU flags." " If cross-compilation is required, please set env VLLM_CPU_AMXBF16=1.")
endif()
elseif (AVX2_FOUND)
list(APPEND CXX_COMPILE_FLAGS "-mavx2")
@ -193,7 +210,30 @@ endif()
if ((AVX512_FOUND AND NOT AVX512_DISABLED) OR (ASIMD_FOUND AND NOT APPLE_SILICON_FOUND) OR POWER9_FOUND OR POWER10_FOUND OR POWER11_FOUND)
# Fetch and build Arm Compute Library (ACL) as oneDNN's backend for AArch64
# TODO [fadara01]: remove this once ACL can be fetched and built automatically as a dependency of oneDNN
set(ONEDNN_AARCH64_USE_ACL OFF CACHE BOOL "")
if(ASIMD_FOUND)
# Set number of parallel build processes
include(ProcessorCount)
ProcessorCount(NPROC)
if(NOT NPROC)
set(NPROC 4)
endif()
# locate PyTorch's libgomp (e.g. site-packages/torch.libs/libgomp-947d5fa1.so.1.0.0)
# and create a local shim dir with it
vllm_prepare_torch_gomp_shim(VLLM_TORCH_GOMP_SHIM_DIR)
find_library(OPEN_MP
NAMES gomp
PATHS ${VLLM_TORCH_GOMP_SHIM_DIR}
NO_DEFAULT_PATH
REQUIRED
)
# Set LD_LIBRARY_PATH to include the shim dir at build time to use the same libgomp as PyTorch
if (OPEN_MP)
set(ENV{LD_LIBRARY_PATH} "${VLLM_TORCH_GOMP_SHIM_DIR}:$ENV{LD_LIBRARY_PATH}")
endif()
# Fetch and populate ACL
if(DEFINED ENV{ACL_ROOT_DIR} AND IS_DIRECTORY "$ENV{ACL_ROOT_DIR}")
message(STATUS "Using ACL from specified source directory: $ENV{ACL_ROOT_DIR}")
else()
@ -202,43 +242,58 @@ if ((AVX512_FOUND AND NOT AVX512_DISABLED) OR (ASIMD_FOUND AND NOT APPLE_SILICON
SUBBUILD_DIR "${FETCHCONTENT_BASE_DIR}/arm_compute-subbuild"
SOURCE_DIR "${FETCHCONTENT_BASE_DIR}/arm_compute-src"
GIT_REPOSITORY https://github.com/ARM-software/ComputeLibrary.git
GIT_TAG v52.2.0
GIT_TAG v52.6.0
GIT_SHALLOW TRUE
GIT_PROGRESS TRUE
)
set(ENV{ACL_ROOT_DIR} "${arm_compute_SOURCE_DIR}")
set(ACL_LIB_DIR "$ENV{ACL_ROOT_DIR}/build")
endif()
# Build ACL with scons
include(ProcessorCount)
ProcessorCount(_NPROC)
set(_scons_cmd
scons -j${_NPROC}
Werror=0 debug=0 neon=1 examples=0 embed_kernels=0 os=linux
arch=armv8.2-a build=native benchmark_examples=0 fixed_format_kernels=1
multi_isa=1 openmp=1 cppthreads=0
# Build ACL with CMake
set(ARM_COMPUTE_BUILD_SHARED_LIB "OFF")
set(CMAKE_BUILD_TYPE "Release")
set(ARM_COMPUTE_ARCH "armv8.2-a")
set(ARM_COMPUTE_ENABLE_ASSERTS "OFF")
set(ARM_COMPUTE_ENABLE_CPPTHREADS "OFF")
set(ONEDNN_ENABLE_PRIMITIVE "MATMUL;REORDER")
set(ARM_COMPUTE_ENABLE_OPENMP "ON")
set(ARM_COMPUTE_ENABLE_WERROR "OFF")
set(ARM_COMPUTE_BUILD_EXAMPLES "OFF")
set(ARM_COMPUTE_BUILD_TESTING "OFF")
set(_cmake_config_cmd
${CMAKE_COMMAND} -G Ninja -B build
-DARM_COMPUTE_BUILD_SHARED_LIB=OFF
-DCMAKE_BUILD_TYPE=Release
-DARM_COMPUTE_ARCH=armv8.2-a
-DARM_COMPUTE_ENABLE_ASSERTS=OFF
-DARM_COMPUTE_ENABLE_CPPTHREADS=OFF
-DARM_COMPUTE_ENABLE_OPENMP=ON
-DARM_COMPUTE_ENABLE_WERROR=OFF
-DARM_COMPUTE_BUILD_EXAMPLES=OFF
-DARM_COMPUTE_BUILD_TESTING=OFF)
set(_cmake_build_cmd
${CMAKE_COMMAND} --build build -- -j${NPROC}
)
# locate PyTorch's libgomp (e.g. site-packages/torch.libs/libgomp-947d5fa1.so.1.0.0)
# and create a local shim dir with it
include("${CMAKE_CURRENT_LIST_DIR}/utils.cmake")
vllm_prepare_torch_gomp_shim(VLLM_TORCH_GOMP_SHIM_DIR)
if(NOT VLLM_TORCH_GOMP_SHIM_DIR STREQUAL "")
list(APPEND _scons_cmd extra_link_flags=-L${VLLM_TORCH_GOMP_SHIM_DIR})
endif()
execute_process(
COMMAND ${_scons_cmd}
COMMAND ${_cmake_config_cmd}
WORKING_DIRECTORY "$ENV{ACL_ROOT_DIR}"
)
execute_process(
COMMAND ${_cmake_build_cmd}
WORKING_DIRECTORY "$ENV{ACL_ROOT_DIR}"
RESULT_VARIABLE _acl_rc
)
if(NOT _acl_rc EQUAL 0)
message(FATAL_ERROR "ACL SCons build failed (exit ${_acl_rc}).")
endif()
message(STATUS "Arm Compute Library (ACL) built successfully.")
set(ONEDNN_AARCH64_USE_ACL "ON")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wl,-rpath,$ENV{ACL_ROOT_DIR}/build/")
# VLLM/oneDNN settings for ACL
set(ONEDNN_AARCH64_USE_ACL ON CACHE BOOL "" FORCE)
add_compile_definitions(VLLM_USE_ACL)
endif()
@ -255,7 +310,7 @@ if ((AVX512_FOUND AND NOT AVX512_DISABLED) OR (ASIMD_FOUND AND NOT APPLE_SILICON
FetchContent_Declare(
oneDNN
GIT_REPOSITORY https://github.com/oneapi-src/oneDNN.git
GIT_TAG v3.9
GIT_TAG v3.10
GIT_PROGRESS TRUE
GIT_SHALLOW TRUE
)
@ -275,7 +330,10 @@ if ((AVX512_FOUND AND NOT AVX512_DISABLED) OR (ASIMD_FOUND AND NOT APPLE_SILICON
set(ONEDNN_VERBOSE "OFF")
set(CMAKE_POLICY_DEFAULT_CMP0077 NEW)
set(VLLM_BUILD_TYPE ${CMAKE_BUILD_TYPE})
set(CMAKE_BUILD_TYPE "Release") # remove oneDNN debug symbols to reduce size
FetchContent_MakeAvailable(oneDNN)
set(CMAKE_BUILD_TYPE ${VLLM_BUILD_TYPE})
add_library(dnnl_ext OBJECT "csrc/cpu/dnnl_helper.cpp")
target_include_directories(
dnnl_ext
@ -305,18 +363,19 @@ endif()
#
set(VLLM_EXT_SRC
"csrc/cpu/activation.cpp"
"csrc/cpu/attention.cpp"
"csrc/cpu/cache.cpp"
"csrc/cpu/utils.cpp"
"csrc/cpu/layernorm.cpp"
"csrc/cpu/mla_decode.cpp"
"csrc/cpu/pos_encoding.cpp"
"csrc/cpu/torch_bindings.cpp"
"csrc/moe/dynamic_4bit_int_moe_cpu.cpp")
"csrc/moe/dynamic_4bit_int_moe_cpu.cpp"
"csrc/cpu/cpu_attn.cpp"
"csrc/cpu/scratchpad_manager.cpp"
"csrc/cpu/torch_bindings.cpp")
if (AVX512_FOUND AND NOT AVX512_DISABLED)
set(VLLM_EXT_SRC
"csrc/cpu/shm.cpp"
"csrc/cpu/cpu_wna16.cpp"
${VLLM_EXT_SRC})
if (ENABLE_AVX512BF16 AND ENABLE_AVX512VNNI)
set(VLLM_EXT_SRC
@ -343,7 +402,7 @@ message(STATUS "CPU extension source files: ${VLLM_EXT_SRC}")
# Define extension targets
#
define_gpu_extension_target(
define_extension_target(
_C
DESTINATION vllm
LANGUAGE CXX
@ -354,4 +413,4 @@ define_gpu_extension_target(
WITH_SOABI
)
message(STATUS "Enabling C extension.")
message(STATUS "Enabling C extension.")

View File

@ -92,7 +92,7 @@ if(FLASH_MLA_ARCHS)
SRCS "${FlashMLA_Extension_SOURCES}"
CUDA_ARCHS "${FLASH_MLA_ARCHS}")
define_gpu_extension_target(
define_extension_target(
_flashmla_C
DESTINATION vllm
LANGUAGE ${VLLM_GPU_LANG}
@ -109,7 +109,7 @@ if(FLASH_MLA_ARCHS)
$<$<COMPILE_LANGUAGE:CUDA>:-UPy_LIMITED_API>
$<$<COMPILE_LANGUAGE:CXX>:-UPy_LIMITED_API>)
define_gpu_extension_target(
define_extension_target(
_flashmla_extension_C
DESTINATION vllm
LANGUAGE ${VLLM_GPU_LANG}

View File

@ -0,0 +1,53 @@
# Install OpenAI triton_kernels from https://github.com/triton-lang/triton/tree/main/python/triton_kernels
set(DEFAULT_TRITON_KERNELS_TAG "v3.5.0")
# Set TRITON_KERNELS_SRC_DIR for use with local development with vLLM. We expect TRITON_KERNELS_SRC_DIR to
# be directly set to the triton_kernels python directory.
if (DEFINED ENV{TRITON_KERNELS_SRC_DIR})
message(STATUS "[triton_kernels] Fetch from $ENV{TRITON_KERNELS_SRC_DIR}")
FetchContent_Declare(
triton_kernels
SOURCE_DIR $ENV{TRITON_KERNELS_SRC_DIR}
)
else()
set(TRITON_GIT "https://github.com/triton-lang/triton.git")
message (STATUS "[triton_kernels] Fetch from ${TRITON_GIT}:${DEFAULT_TRITON_KERNELS_TAG}")
FetchContent_Declare(
triton_kernels
# TODO (varun) : Fetch just the triton_kernels directory from Triton
GIT_REPOSITORY https://github.com/triton-lang/triton.git
GIT_TAG ${DEFAULT_TRITON_KERNELS_TAG}
GIT_PROGRESS TRUE
SOURCE_SUBDIR python/triton_kernels/triton_kernels
)
endif()
# Fetch content
FetchContent_MakeAvailable(triton_kernels)
if (NOT triton_kernels_SOURCE_DIR)
message (FATAL_ERROR "[triton_kernels] Cannot resolve triton_kernels_SOURCE_DIR")
endif()
if (DEFINED ENV{TRITON_KERNELS_SRC_DIR})
set(TRITON_KERNELS_PYTHON_DIR "${triton_kernels_SOURCE_DIR}/")
else()
set(TRITON_KERNELS_PYTHON_DIR "${triton_kernels_SOURCE_DIR}/python/triton_kernels/triton_kernels/")
endif()
message (STATUS "[triton_kernels] triton_kernels is available at ${TRITON_KERNELS_PYTHON_DIR}")
add_custom_target(triton_kernels)
# Ensure the vllm/third_party directory exists before installation
install(CODE "file(MAKE_DIRECTORY \"\${CMAKE_INSTALL_PREFIX}/vllm/third_party/triton_kernels\")")
## Copy .py files to install directory.
install(DIRECTORY
${TRITON_KERNELS_PYTHON_DIR}
DESTINATION
vllm/third_party/triton_kernels/
COMPONENT triton_kernels
FILES_MATCHING PATTERN "*.py")

View File

@ -38,7 +38,7 @@ else()
FetchContent_Declare(
vllm-flash-attn
GIT_REPOSITORY https://github.com/vllm-project/flash-attention.git
GIT_TAG a893712401d70362fbb299cd9c4b3476e8e9ed54
GIT_TAG 86f8f157cf82aa2342743752b97788922dd7de43
GIT_PROGRESS TRUE
# Don't share the vllm-flash-attn build between build types
BINARY_DIR ${CMAKE_BINARY_DIR}/vllm-flash-attn

View File

@ -453,21 +453,20 @@ macro(override_gpu_arches GPU_ARCHES GPU_LANG GPU_SUPPORTED_ARCHES)
endmacro()
#
# Define a target named `GPU_MOD_NAME` for a single extension. The
# Define a target named `MOD_NAME` for a single extension. The
# arguments are:
#
# DESTINATION <dest> - Module destination directory.
# LANGUAGE <lang> - The GPU language for this module, e.g CUDA, HIP,
# etc.
# LANGUAGE <lang> - The language for this module, e.g. CUDA, HIP,
# CXX, etc.
# SOURCES <sources> - List of source files relative to CMakeLists.txt
# directory.
#
# Optional arguments:
#
# ARCHITECTURES <arches> - A list of target GPU architectures in cmake
# format.
# Refer `CMAKE_CUDA_ARCHITECTURES` documentation
# and `CMAKE_HIP_ARCHITECTURES` for more info.
# ARCHITECTURES <arches> - A list of target architectures in cmake format.
# For GPU, refer to CMAKE_CUDA_ARCHITECTURES and
# CMAKE_HIP_ARCHITECTURES for more info.
# ARCHITECTURES will use cmake's defaults if
# not provided.
# COMPILE_FLAGS <flags> - Extra compiler flags passed to NVCC/hip.
@ -478,63 +477,67 @@ endmacro()
#
# Note: optimization level/debug info is set via cmake build type.
#
function (define_gpu_extension_target GPU_MOD_NAME)
function (define_extension_target MOD_NAME)
cmake_parse_arguments(PARSE_ARGV 1
GPU
ARG
"WITH_SOABI"
"DESTINATION;LANGUAGE;USE_SABI"
"SOURCES;ARCHITECTURES;COMPILE_FLAGS;INCLUDE_DIRECTORIES;LIBRARIES")
# Add hipify preprocessing step when building with HIP/ROCm.
if (GPU_LANGUAGE STREQUAL "HIP")
hipify_sources_target(GPU_SOURCES ${GPU_MOD_NAME} "${GPU_SOURCES}")
if (ARG_LANGUAGE STREQUAL "HIP")
hipify_sources_target(ARG_SOURCES ${MOD_NAME} "${ARG_SOURCES}")
endif()
if (GPU_WITH_SOABI)
set(GPU_WITH_SOABI WITH_SOABI)
if (ARG_WITH_SOABI)
set(SOABI_KEYWORD WITH_SOABI)
else()
set(GPU_WITH_SOABI)
set(SOABI_KEYWORD "")
endif()
if (GPU_USE_SABI)
Python_add_library(${GPU_MOD_NAME} MODULE USE_SABI ${GPU_USE_SABI} ${GPU_WITH_SOABI} "${GPU_SOURCES}")
run_python(IS_FREETHREADED_PYTHON
"import sysconfig; print(1 if sysconfig.get_config_var(\"Py_GIL_DISABLED\") else 0)"
"Failed to determine whether interpreter is free-threaded")
# Free-threaded Python doesn't yet support the stable ABI (see PEP 803/809),
# so avoid using the stable ABI under free-threading only.
if (ARG_USE_SABI AND NOT IS_FREETHREADED_PYTHON)
Python_add_library(${MOD_NAME} MODULE USE_SABI ${ARG_USE_SABI} ${SOABI_KEYWORD} "${ARG_SOURCES}")
else()
Python_add_library(${GPU_MOD_NAME} MODULE ${GPU_WITH_SOABI} "${GPU_SOURCES}")
Python_add_library(${MOD_NAME} MODULE ${SOABI_KEYWORD} "${ARG_SOURCES}")
endif()
if (GPU_LANGUAGE STREQUAL "HIP")
if (ARG_LANGUAGE STREQUAL "HIP")
# Make this target dependent on the hipify preprocessor step.
add_dependencies(${GPU_MOD_NAME} hipify${GPU_MOD_NAME})
add_dependencies(${MOD_NAME} hipify${MOD_NAME})
# Make sure we include the hipified versions of the headers, and avoid conflicts with the ones in the original source folder
target_include_directories(${GPU_MOD_NAME} PRIVATE ${CMAKE_CURRENT_BINARY_DIR}/csrc
${GPU_INCLUDE_DIRECTORIES})
target_include_directories(${MOD_NAME} PRIVATE ${CMAKE_CURRENT_BINARY_DIR}/csrc
${ARG_INCLUDE_DIRECTORIES})
else()
target_include_directories(${GPU_MOD_NAME} PRIVATE csrc
${GPU_INCLUDE_DIRECTORIES})
target_include_directories(${MOD_NAME} PRIVATE csrc
${ARG_INCLUDE_DIRECTORIES})
endif()
if (GPU_ARCHITECTURES)
set_target_properties(${GPU_MOD_NAME} PROPERTIES
${GPU_LANGUAGE}_ARCHITECTURES "${GPU_ARCHITECTURES}")
if (ARG_ARCHITECTURES)
set_target_properties(${MOD_NAME} PROPERTIES
${ARG_LANGUAGE}_ARCHITECTURES "${ARG_ARCHITECTURES}")
endif()
target_compile_options(${MOD_NAME} PRIVATE
$<$<COMPILE_LANGUAGE:${ARG_LANGUAGE}>:${ARG_COMPILE_FLAGS}>)
target_compile_options(${GPU_MOD_NAME} PRIVATE
$<$<COMPILE_LANGUAGE:${GPU_LANGUAGE}>:${GPU_COMPILE_FLAGS}>)
target_compile_definitions(${MOD_NAME} PRIVATE
"-DTORCH_EXTENSION_NAME=${MOD_NAME}")
target_compile_definitions(${GPU_MOD_NAME} PRIVATE
"-DTORCH_EXTENSION_NAME=${GPU_MOD_NAME}")
target_link_libraries(${GPU_MOD_NAME} PRIVATE torch ${GPU_LIBRARIES})
target_link_libraries(${MOD_NAME} PRIVATE torch ${ARG_LIBRARIES})
# Don't use `TORCH_LIBRARIES` for CUDA since it pulls in a bunch of
# dependencies that are not necessary and may not be installed.
if (GPU_LANGUAGE STREQUAL "CUDA")
target_link_libraries(${GPU_MOD_NAME} PRIVATE CUDA::cudart CUDA::cuda_driver)
if (ARG_LANGUAGE STREQUAL "CUDA")
target_link_libraries(${MOD_NAME} PRIVATE torch CUDA::cudart CUDA::cuda_driver ${ARG_LIBRARIES})
else()
target_link_libraries(${GPU_MOD_NAME} PRIVATE ${TORCH_LIBRARIES})
target_link_libraries(${MOD_NAME} PRIVATE torch ${TORCH_LIBRARIES} ${ARG_LIBRARIES})
endif()
install(TARGETS ${GPU_MOD_NAME} LIBRARY DESTINATION ${GPU_DESTINATION} COMPONENT ${GPU_MOD_NAME})
install(TARGETS ${MOD_NAME} LIBRARY DESTINATION ${ARG_DESTINATION} COMPONENT ${MOD_NAME})
endfunction()

View File

@ -16,7 +16,8 @@ __global__ void merge_attn_states_kernel(
scalar_t* output, float* output_lse, const scalar_t* prefix_output,
const float* prefix_lse, const scalar_t* suffix_output,
const float* suffix_lse, const uint num_tokens, const uint num_heads,
const uint head_size) {
const uint head_size, const uint prefix_head_stride,
const uint output_head_stride) {
using pack_128b_t = uint4;
const uint pack_size = 16 / sizeof(scalar_t);
const uint threads_per_head = head_size / pack_size;
@ -34,11 +35,13 @@ __global__ void merge_attn_states_kernel(
const uint head_idx = token_head_idx % num_heads;
const uint pack_offset = pack_idx * pack_size; // (0~15)*8, etc.
const uint head_offset =
token_idx * num_heads * head_size + head_idx * head_size;
const scalar_t* prefix_head_ptr = prefix_output + head_offset;
const scalar_t* suffix_head_ptr = suffix_output + head_offset;
scalar_t* output_head_ptr = output + head_offset;
const uint src_head_offset = token_idx * num_heads * prefix_head_stride +
head_idx * prefix_head_stride;
const uint dst_head_offset = token_idx * num_heads * output_head_stride +
head_idx * output_head_stride;
const scalar_t* prefix_head_ptr = prefix_output + src_head_offset;
const scalar_t* suffix_head_ptr = suffix_output + src_head_offset;
scalar_t* output_head_ptr = output + dst_head_offset;
float p_lse = prefix_lse[head_idx * num_tokens + token_idx];
float s_lse = suffix_lse[head_idx * num_tokens + token_idx];
@ -46,6 +49,32 @@ __global__ void merge_attn_states_kernel(
s_lse = std::isinf(s_lse) ? -std::numeric_limits<float>::infinity() : s_lse;
const float max_lse = fmaxf(p_lse, s_lse);
/* In certain edge cases, MLA can produce p_lse = s_lse = -inf;
continuing the pipeline then yields NaN. Root cause: with chunked prefill
a batch may be split into two chunks; if a request in that batch has no
prefix hit, every LSE entry for that requests position is -inf, and at
this moment we merge cross-attention at first. For now we simply emit
prefix_output (expected to be all zeros) and prefix_lse (-inf) to fix
this problem.
*/
if (std::isinf(max_lse)) {
if (pack_offset < head_size) {
// Pack 128b load
pack_128b_t p_out_pack = reinterpret_cast<const pack_128b_t*>(
prefix_head_ptr)[pack_offset / pack_size];
// Pack 128b storage
reinterpret_cast<pack_128b_t*>(output_head_ptr)[pack_offset / pack_size] =
p_out_pack;
}
// We only need to write to output_lse once per head.
if (output_lse != nullptr && pack_idx == 0) {
output_lse[head_idx * num_tokens + token_idx] = max_lse;
}
return;
}
p_lse = p_lse - max_lse;
s_lse = s_lse - max_lse;
const float p_se = expf(p_lse);
@ -114,7 +143,7 @@ __global__ void merge_attn_states_kernel(
reinterpret_cast<float*>(prefix_lse.data_ptr()), \
reinterpret_cast<scalar_t*>(suffix_output.data_ptr()), \
reinterpret_cast<float*>(suffix_lse.data_ptr()), num_tokens, \
num_heads, head_size); \
num_heads, head_size, prefix_head_stride, output_head_stride); \
}
/*@brief Merges the attention states from prefix and suffix
@ -140,17 +169,11 @@ void merge_attn_states_launcher(torch::Tensor& output,
const uint num_tokens = output.size(0);
const uint num_heads = output.size(1);
const uint head_size = output.size(2);
const uint prefix_head_stride = prefix_output.stride(1);
const uint output_head_stride = output.stride(1);
const uint pack_size = 16 / sizeof(scalar_t);
TORCH_CHECK(head_size % pack_size == 0,
"headsize must be multiple of pack_size:", pack_size);
TORCH_CHECK(output.stride(-2) == head_size && output.stride(-1) == 1,
"output heads must be contiguous in memory");
TORCH_CHECK(
prefix_output.stride(-2) == head_size && prefix_output.stride(-1) == 1,
"prefix_output heads must be contiguous in memory");
TORCH_CHECK(
suffix_output.stride(-2) == head_size && suffix_output.stride(-1) == 1,
"suffix_output heads must be contiguous in memory");
float* output_lse_ptr = nullptr;
if (output_lse.has_value()) {
output_lse_ptr = output_lse.value().data_ptr<float>();

View File

@ -41,11 +41,12 @@ void convert_fp8(torch::Tensor& dst_cache, torch::Tensor& src_cache,
const double scale, const std::string& kv_cache_dtype);
void gather_and_maybe_dequant_cache(
torch::Tensor const& src_cache, // [NUM_BLOCKS, BLOCK_SIZE, ENTRIES...]
torch::Tensor const& dst, // [TOT_TOKENS, ENTRIES...]
torch::Tensor const& block_table, // [BATCH, BLOCK_INDICES]
torch::Tensor const& cu_seq_lens, // [BATCH+1]
int64_t batch_size, const std::string& kv_cache_dtype,
torch::Tensor const& src_cache, // [NUM_BLOCKS, BLOCK_SIZE, ENTRIES...]
torch::Tensor const& dst, // [TOT_TOKENS, ENTRIES...]
torch::Tensor const& block_table, // [BATCH, BLOCK_INDICES]
torch::Tensor const& cu_seq_lens, // [BATCH+1]
torch::Tensor const& token_to_seq, // [MAX_TOKEN_ACROSS_CHUNKS]
int64_t num_tokens, const std::string& kv_cache_dtype,
torch::Tensor const& scale,
std::optional<torch::Tensor> seq_starts = std::nullopt);

View File

@ -552,7 +552,11 @@ __global__ void indexer_k_quant_and_cache_kernel(
#ifndef USE_ROCM
__syncwarp();
#endif
#if defined(__gfx942__)
float scale = fmaxf(amax, 1e-4) / 224.0f;
#else
float scale = fmaxf(amax, 1e-4) / 448.0f;
#endif
if (use_ue8m0) {
scale = exp2f(ceilf(log2f(scale)));
}
@ -901,87 +905,80 @@ void convert_fp8(torch::Tensor& dst_cache, torch::Tensor& src_cache,
namespace vllm {
// grid is launched with dimensions (batch, num_splits)
template <typename scalar_t, typename cache_t, Fp8KVCacheDataType kv_dt>
template <typename scalar_t, typename cache_t, Fp8KVCacheDataType kv_dt,
int ENTRY_SIZE, int CTA_SIZE>
__global__ void gather_and_maybe_dequant_cache(
const cache_t* __restrict__ src_cache, // [NUM_BLOCKS, BLOCK_SIZE,
// ENTRIES...]
scalar_t* __restrict__ dst, // [TOT_TOKENS, ENTRIES...]
const int32_t* __restrict__ block_table, // [BATCH, BLOCK_INDICES]
const int32_t* __restrict__ cu_seq_lens, // [BATCH+1]
const int32_t block_size, const int32_t entry_size,
const cache_t* __restrict__ src_cache, // [NUM_BLOCKS, BLOCK_SIZE,
// ENTRIES...]
scalar_t* __restrict__ dst, // [TOT_TOKENS, ENTRIES...]
const int32_t* __restrict__ block_table, // [BATCH, BLOCK_INDICES]
const int32_t* __restrict__ cu_seq_lens, // [BATCH+1]
const int32_t* __restrict__ token_to_seq, // [MAX_TOKEN_ACROSS_CHUNK]
const int32_t num_tokens, const int32_t block_size,
const int64_t block_table_stride, const int64_t cache_block_stride,
const int64_t cache_entry_stride, const int64_t dst_entry_stride,
const float* __restrict__ scale,
const int32_t* __restrict__ seq_starts) { // Optional: starting offsets per
// batch
constexpr int vec_size = sizeof(float4) / sizeof(scalar_t);
using ltype = vllm::vec_n_t<cache_t, vec_size>;
using stype = vllm::vec_n_t<scalar_t, vec_size>;
// We are adding this for code readability which will be optimized out when
// build in release.
assert(CTA_SIZE == blockDim.x);
const int64_t bid = blockIdx.x; // Batch ID
const int32_t num_splits = gridDim.y;
const int32_t split = blockIdx.y;
const int32_t seq_start = cu_seq_lens[bid];
const int32_t seq_end = cu_seq_lens[bid + 1];
const int32_t seq_len = seq_end - seq_start;
const int32_t tot_blocks = cuda_utils::ceil_div(seq_len, block_size);
const int32_t split_blocks = cuda_utils::ceil_div(tot_blocks, num_splits);
#pragma unroll
for (int token_id = blockIdx.x; token_id < num_tokens;
token_id += gridDim.x) {
int64_t batch_id = token_to_seq[token_id];
int64_t batch_start = cu_seq_lens[batch_id];
int64_t batch_end = cu_seq_lens[batch_id + 1];
int32_t batch_offset = token_id - batch_start;
const int32_t split_start = split * split_blocks;
const int32_t split_end = min((split + 1) * split_blocks, tot_blocks);
if (token_id >= batch_end) return;
int32_t offset = 0;
if (seq_starts != nullptr) {
offset = seq_starts[batch_id];
}
batch_offset += offset;
int32_t block_table_id = batch_offset / block_size;
int32_t slot_id = batch_offset % block_size;
int32_t block_table_offset = batch_id * block_table_stride + block_table_id;
int32_t block_id = block_table[block_table_offset];
int64_t cache_offset =
block_id * cache_block_stride + slot_id * cache_entry_stride;
constexpr int32_t vec_iter_cnt = ENTRY_SIZE / vec_size;
scalar_t* dst_ = dst + token_id * dst_entry_stride;
cache_t* src_ = const_cast<cache_t*>(src_cache) + cache_offset;
const bool is_active_split = (split_start < tot_blocks);
const bool is_last_split = (split_end == tot_blocks);
if (!is_active_split) return;
int32_t full_blocks_end = split_end;
int32_t partial_block_size = 0;
// Adjust the pointer for the block_table for this batch.
// If seq_starts is provided, compute an offset based on (seq_starts[bid] /
// page_size)
const int32_t batch_offset = bid * block_table_stride;
int32_t offset = 0;
if (seq_starts != nullptr) {
offset = seq_starts[bid] / block_size;
}
const int32_t* batch_block_table = block_table + batch_offset + offset;
// Adjust dst pointer based on the cumulative sequence lengths.
dst += seq_start * dst_entry_stride;
if (is_last_split) {
partial_block_size = seq_len % block_size;
if (partial_block_size) full_blocks_end -= 1;
}
auto copy_entry = [&](const cache_t* __restrict__ _src,
scalar_t* __restrict__ _dst) {
for (int i = threadIdx.x; i < entry_size; i += blockDim.x) {
#pragma unroll
for (int idx = threadIdx.x; idx < vec_iter_cnt; idx += CTA_SIZE) {
if constexpr (kv_dt == Fp8KVCacheDataType::kAuto) {
_dst[i] = static_cast<scalar_t>(_src[i]);
reinterpret_cast<stype*>(dst_)[idx] =
static_cast<stype>(reinterpret_cast<ltype*>(src_)[idx]);
} else {
_dst[i] =
fp8::scaled_convert<scalar_t, cache_t, kv_dt>(_src[i], *scale);
ltype loaded_val = reinterpret_cast<ltype*>(src_)[idx];
stype store_val;
#pragma unroll
for (int j = 0; j < vec_size; ++j) {
store_val.val[j] = fp8::scaled_convert<scalar_t, cache_t, kv_dt>(
loaded_val.val[j], *scale);
}
reinterpret_cast<stype*>(dst_)[idx] = store_val;
}
}
};
for (int pid = split_start; pid < full_blocks_end; ++pid) {
auto block_id = batch_block_table[pid];
auto block_start_ptr = src_cache + block_id * cache_block_stride;
auto block_dst_ptr = dst + pid * block_size * dst_entry_stride;
for (int eid = 0; eid < block_size; ++eid) {
copy_entry(block_start_ptr + eid * cache_entry_stride,
block_dst_ptr + eid * dst_entry_stride);
}
}
if (partial_block_size) {
auto block_id = batch_block_table[full_blocks_end];
auto block_start_ptr = src_cache + block_id * cache_block_stride;
auto block_dst_ptr = dst + full_blocks_end * block_size * dst_entry_stride;
for (int eid = 0; eid < partial_block_size; ++eid) {
copy_entry(block_start_ptr + eid * cache_entry_stride,
block_dst_ptr + eid * dst_entry_stride);
// process tail
constexpr int32_t tail_cnt = ENTRY_SIZE % vec_size;
dst_ = dst_ + ENTRY_SIZE - tail_cnt;
src_ = src_ + ENTRY_SIZE - tail_cnt;
#pragma unroll
for (int idx = threadIdx.x; idx < tail_cnt; idx += CTA_SIZE) {
if constexpr (kv_dt == Fp8KVCacheDataType::kAuto) {
dst_[idx] = static_cast<scalar_t>(src_[idx]);
} else {
dst_[idx] =
fp8::scaled_convert<scalar_t, cache_t, kv_dt>(src_[idx], *scale);
}
}
}
}
@ -992,34 +989,38 @@ __global__ void gather_and_maybe_dequant_cache(
// SCALAR_T is the data type of the destination tensor.
// CACHE_T is the stored data type of kv-cache.
// KV_DTYPE is the real data type of kv-cache.
#define CALL_GATHER_CACHE(SCALAR_T, CACHE_T, KV_DTYPE) \
vllm::gather_and_maybe_dequant_cache<SCALAR_T, CACHE_T, KV_DTYPE> \
<<<grid, block, 0, stream>>>( \
reinterpret_cast<CACHE_T*>(src_cache.data_ptr()), \
reinterpret_cast<SCALAR_T*>(dst.data_ptr()), \
block_table.data_ptr<int32_t>(), cu_seq_lens.data_ptr<int32_t>(), \
block_size, entry_size, block_table_stride, cache_block_stride, \
cache_entry_stride, dst_entry_stride, \
reinterpret_cast<const float*>(scale.data_ptr()), seq_starts_ptr);
#define CALL_GATHER_CACHE(SCALAR_T, CACHE_T, KV_DTYPE) \
vllm::gather_and_maybe_dequant_cache<SCALAR_T, CACHE_T, KV_DTYPE, 576, \
thread_block_size> \
<<<grid, block, 0, stream>>>( \
reinterpret_cast<CACHE_T*>(src_cache.data_ptr()), \
reinterpret_cast<SCALAR_T*>(dst.data_ptr()), \
block_table.data_ptr<int32_t>(), cu_seq_lens.data_ptr<int32_t>(), \
token_to_seq.data_ptr<int32_t>(), num_tokens, block_size, \
block_table_stride, cache_block_stride, cache_entry_stride, \
dst_entry_stride, reinterpret_cast<const float*>(scale.data_ptr()), \
seq_starts_ptr);
// Gather sequences from the cache into the destination tensor.
// - cu_seq_lens contains the cumulative sequence lengths for each batch
// - block_table contains the cache block indices for each sequence
// - token_to_seq contains the back mapping from token_id to batch_id
// - Optionally, seq_starts (if provided) offsets the starting block index by
// (seq_starts[bid] / page_size)
void gather_and_maybe_dequant_cache(
torch::Tensor const& src_cache, // [NUM_BLOCKS, BLOCK_SIZE, ENTRIES...]
torch::Tensor const& dst, // [TOT_TOKENS, ENTRIES...]
torch::Tensor const& block_table, // [BATCH, BLOCK_INDICES]
torch::Tensor const& cu_seq_lens, // [BATCH+1]
int64_t batch_size, const std::string& kv_cache_dtype,
torch::Tensor const& src_cache, // [NUM_BLOCKS, BLOCK_SIZE, ENTRIES...]
torch::Tensor const& dst, // [TOT_TOKENS, ENTRIES...]
torch::Tensor const& block_table, // [BATCH, BLOCK_INDICES]
torch::Tensor const& cu_seq_lens, // [BATCH+1]
torch::Tensor const& token_to_seq, // [MAX_TOKEN_ACROSS_CHUNKS]
int64_t num_tokens, const std::string& kv_cache_dtype,
torch::Tensor const& scale,
std::optional<torch::Tensor> seq_starts = std::nullopt) {
at::cuda::OptionalCUDAGuard device_guard(src_cache.device());
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
int32_t block_size = src_cache.size(1);
int32_t entry_size = src_cache.flatten(2, -1).size(2);
int32_t head_dim = dst.size(-1);
TORCH_CHECK(block_table.dtype() == torch::kInt32,
"block_table must be int32");
@ -1029,6 +1030,9 @@ void gather_and_maybe_dequant_cache(
TORCH_CHECK(seq_starts.value().dtype() == torch::kInt32,
"seq_starts must be int32");
}
TORCH_CHECK(head_dim == 576,
"gather_and_maybe_dequant_cache only support the head_dim to 576 "
"for better performance")
TORCH_CHECK(src_cache.device() == dst.device(),
"src_cache and dst must be on the same device");
@ -1046,10 +1050,9 @@ void gather_and_maybe_dequant_cache(
int64_t cache_entry_stride = src_cache.stride(1);
int64_t dst_entry_stride = dst.stride(0);
// Decide on the number of splits based on the batch size.
int num_splits = batch_size > 128 ? 2 : batch_size > 64 ? 4 : 16;
dim3 grid(batch_size, num_splits);
dim3 block(1024);
constexpr int32_t thread_block_size = 64;
dim3 grid(num_tokens);
dim3 block(thread_block_size);
const int32_t* seq_starts_ptr =
seq_starts.has_value() ? seq_starts.value().data_ptr<int32_t>() : nullptr;

View File

@ -1,798 +0,0 @@
#include "cpu_types.hpp"
namespace {
template <typename scalar_t>
struct KernelVecType {
using q_load_vec_type = void;
using q_vec_type = void;
using k_load_vec_type = void;
using k_vec_type = void;
using qk_acc_vec_type = void;
using v_load_vec_type = void;
};
template <>
struct KernelVecType<float> {
using q_load_vec_type = vec_op::FP32Vec4;
using q_vec_type = vec_op::FP32Vec16;
using k_load_vec_type = vec_op::FP32Vec16;
using k_vec_type = vec_op::FP32Vec16;
using qk_acc_vec_type = vec_op::FP32Vec16;
using v_load_vec_type = vec_op::FP32Vec16;
};
template <>
struct KernelVecType<c10::Half> {
#if defined(__powerpc64__) || defined(__s390x__)
// Power and s390x architecture-specific vector types
using q_load_vec_type = vec_op::FP32Vec8;
using k_load_vec_type = vec_op::FP32Vec16;
using v_load_vec_type = vec_op::FP32Vec16;
#else
// Fallback for other architectures, including x86
using q_load_vec_type = vec_op::FP16Vec8;
using k_load_vec_type = vec_op::FP16Vec16;
using v_load_vec_type = vec_op::FP16Vec16;
#endif
using q_vec_type = vec_op::FP32Vec16;
using k_vec_type = vec_op::FP32Vec16;
using qk_acc_vec_type = vec_op::FP32Vec16;
};
#ifdef __AVX512BF16__
template <>
struct KernelVecType<c10::BFloat16> {
using q_load_vec_type = vec_op::BF16Vec8;
using q_vec_type = vec_op::BF16Vec32;
using k_load_vec_type = vec_op::BF16Vec32;
using k_vec_type = vec_op::BF16Vec32;
using qk_acc_vec_type = vec_op::FP32Vec16;
using v_load_vec_type = vec_op::BF16Vec16;
};
#else
#ifdef __aarch64__
#ifndef ARM_BF16_SUPPORT
// pass
#else
template <>
struct KernelVecType<c10::BFloat16> {
using q_load_vec_type = vec_op::BF16Vec8;
using q_vec_type = vec_op::FP32Vec16;
using k_load_vec_type = vec_op::BF16Vec16;
using k_vec_type = vec_op::FP32Vec16;
using qk_acc_vec_type = vec_op::FP32Vec16;
using v_load_vec_type = vec_op::BF16Vec16;
};
#endif
#else
template <>
struct KernelVecType<c10::BFloat16> {
using q_load_vec_type = vec_op::BF16Vec8;
using q_vec_type = vec_op::FP32Vec16;
using k_load_vec_type = vec_op::BF16Vec16;
using k_vec_type = vec_op::FP32Vec16;
using qk_acc_vec_type = vec_op::FP32Vec16;
using v_load_vec_type = vec_op::BF16Vec16;
};
#endif
#endif
template <typename T>
FORCE_INLINE std::pair<T, T> reduceSoftmax(T* data, const int size,
const int capacity) {
T max = data[0];
for (int i = 1; i < size; ++i) {
max = max >= data[i] ? max : data[i];
}
T sum = 0;
for (int i = 0; i < size; ++i) {
data[i] = std::exp(data[i] - max);
sum += data[i];
}
int i = 0;
for (; i < size; ++i) {
data[i] /= sum;
}
for (; i < capacity; ++i) {
data[i] = 0;
}
return {max, sum};
}
template <typename T>
FORCE_INLINE std::pair<T, T> reduceSoftmaxAlibi(T* data, const int size,
const int capacity,
const float alibi_slope,
const int start_index,
const int seq_len) {
data[0] += alibi_slope * (start_index - seq_len + 1);
T max = data[0];
for (int i = 1; i < size; ++i) {
T qk = data[i] + alibi_slope * (start_index + i - seq_len + 1);
data[i] = qk;
max = max >= qk ? max : qk;
}
T sum = 0;
for (int i = 0; i < size; ++i) {
data[i] = std::exp(data[i] - max);
sum += data[i];
}
int i = 0;
for (; i < size; ++i) {
data[i] /= sum;
}
for (; i < capacity; ++i) {
data[i] = 0;
}
return {max, sum};
}
template <typename T>
FORCE_INLINE void reducePartitionSoftmax(const T* max_data, T* sum_data,
const int size) {
T max = max_data[0];
for (int i = 1; i < size; ++i) {
max = max >= max_data[i] ? max : max_data[i];
}
T rescaled_sum = 0;
for (int i = 0; i < size; ++i) {
T rescale_factor = std::exp(max_data[i] - max);
rescaled_sum += rescale_factor * sum_data[i];
sum_data[i] *= rescale_factor;
}
for (int i = 0; i < size; ++i) {
sum_data[i] /= rescaled_sum + 1e-8;
}
}
template <typename scalar_t, int HEAD_SIZE, int BLOCK_SIZE, int x>
struct reduceQKBlockKernel {
using q_load_vec_type = typename KernelVecType<scalar_t>::q_load_vec_type;
using q_vec_type = typename KernelVecType<scalar_t>::q_vec_type;
using k_load_vec_type = typename KernelVecType<scalar_t>::k_load_vec_type;
using k_vec_type = typename KernelVecType<scalar_t>::k_vec_type;
using qk_acc_vec_type = typename KernelVecType<scalar_t>::qk_acc_vec_type;
constexpr static int TOKEN_PER_GROUP = k_load_vec_type::get_elem_num() / x;
constexpr static int MAX_GROUP_NUM = 16 / TOKEN_PER_GROUP;
constexpr static int UNROLL_GROUP_NUM = MAX_GROUP_NUM / 4;
static_assert(MAX_GROUP_NUM == 8 || MAX_GROUP_NUM == 4);
static_assert(k_load_vec_type::get_elem_num() % x == 0);
static_assert(q_load_vec_type::get_elem_num() * sizeof(scalar_t) == 16);
FORCE_INLINE static void call(const scalar_t* __restrict__ q,
const scalar_t* __restrict__ k_block,
float* __restrict__ logits, float scale,
const int token_num) {
const int group_num = (token_num + TOKEN_PER_GROUP - 1) / TOKEN_PER_GROUP;
qk_acc_vec_type group_accums[MAX_GROUP_NUM];
if (token_num == BLOCK_SIZE) {
for (int q_offset = 0; q_offset < HEAD_SIZE;
q_offset += x, k_block += x * BLOCK_SIZE) {
q_load_vec_type q_load_group_vec(q + q_offset);
q_vec_type q_group_vec(q_load_group_vec);
vec_op::unroll_loop<int, MAX_GROUP_NUM>(
[k_block, &q_group_vec, &group_accums](int token_group_idx) {
k_load_vec_type k_load_group_vec(k_block + token_group_idx * x *
TOKEN_PER_GROUP);
k_vec_type k_group_vec(k_load_group_vec);
vec_op::fma(group_accums[token_group_idx], q_group_vec,
k_group_vec);
vec_op::prefetch(k_block + x * BLOCK_SIZE +
token_group_idx * x * TOKEN_PER_GROUP);
});
}
} else {
for (int q_offset = 0; q_offset < HEAD_SIZE;
q_offset += x, k_block += x * BLOCK_SIZE) {
q_load_vec_type q_load_group_vec(q + q_offset);
q_vec_type q_group_vec(q_load_group_vec);
for (int token_group_start = 0; token_group_start < group_num;
token_group_start += UNROLL_GROUP_NUM) {
vec_op::unroll_loop<int, UNROLL_GROUP_NUM>(
[token_group_start, k_block, &q_group_vec,
&group_accums](int token_group_idx) {
token_group_idx += token_group_start;
k_load_vec_type k_load_group_vec(k_block + token_group_idx * x *
TOKEN_PER_GROUP);
k_vec_type k_group_vec(k_load_group_vec);
vec_op::fma(group_accums[token_group_idx], q_group_vec,
k_group_vec);
vec_op::prefetch(k_block + x * BLOCK_SIZE +
token_group_idx * x * TOKEN_PER_GROUP);
});
}
}
}
for (int token_group_idx = 0; token_group_idx < group_num;
++token_group_idx) {
vec_op::unroll_loop<int, TOKEN_PER_GROUP>(
[&group_accums, logits, scale, token_group_idx](int token_idx) {
float dot_v =
group_accums[token_group_idx]
.template reduce_sub_sum<qk_acc_vec_type::get_elem_num() /
TOKEN_PER_GROUP>(token_idx);
logits[token_group_idx * TOKEN_PER_GROUP + token_idx] =
dot_v * scale;
});
}
}
};
template <typename scalar_t, int HEAD_SIZE, int BLOCK_SIZE,
int HEAD_PARTITION_SIZE, typename acc_t>
FORCE_INLINE void reduceValueBlock(const float* prob, const scalar_t* v_block,
acc_t&& acc) {
using v_load_vec_type = typename KernelVecType<scalar_t>::v_load_vec_type;
constexpr int ELEM_NUM = v_load_vec_type::get_elem_num();
static_assert(BLOCK_SIZE == ELEM_NUM);
vec_op::FP32Vec16 prob_vec(prob);
vec_op::unroll_loop<int, HEAD_PARTITION_SIZE>([&](int head_elem_idx) {
v_load_vec_type v_vec(v_block + BLOCK_SIZE * head_elem_idx);
vec_op::FP32Vec16 fp32_v_vec(v_vec);
acc[head_elem_idx] = acc[head_elem_idx] + prob_vec * fp32_v_vec;
});
}
}; // namespace
// Paged attention v1
namespace {
template <typename scalar_t, int HEAD_SIZE, int BLOCK_SIZE>
struct paged_attention_v1_impl {
static void call(
scalar_t* __restrict__ out, // [num_seqs, num_heads, head_size]
const scalar_t* __restrict__ q, // [num_seqs, num_heads, head_size]
const scalar_t* __restrict__ k_cache, // [num_blocks, num_kv_heads,
// head_size/x, block_size, x]
const scalar_t* __restrict__ v_cache, // [num_blocks, num_kv_heads,
// head_size, block_size]
const int num_kv_heads, const float scale,
const int* __restrict__ block_tables, // [num_seqs,
// max_num_blocks_per_seq]
const int* __restrict__ seq_lens, // [num_seqs]
const int max_num_blocks_per_seq,
const float* __restrict__ alibi_slopes, // [num_heads]
const int q_stride, const int kv_block_stride, const int kv_head_stride,
const int num_seqs, const int num_heads) {
constexpr int x = 16 / sizeof(scalar_t);
const int num_queries_per_kv = num_heads / num_kv_heads;
static_assert(BLOCK_SIZE == 16);
int max_seq_len = max_num_blocks_per_seq * BLOCK_SIZE;
int max_seq_len_padded = (max_seq_len + 15) & 0xFFFFFFF0;
TORCH_CHECK((max_seq_len_padded * sizeof(float)) % 64 == 0);
const int parallel_work_item_num = omp_get_max_threads();
size_t logits_bytes =
parallel_work_item_num * max_seq_len_padded * sizeof(float);
float* logits = (float*)std::aligned_alloc(
64, logits_bytes); // Cacheline alignment for each context token.
// [parallel_work_item_num, max_seq_len_padded]
#pragma omp parallel for collapse(2) schedule(dynamic, 1)
for (int seq_idx = 0; seq_idx < num_seqs; ++seq_idx) {
for (int head_idx = 0; head_idx < num_heads; ++head_idx) {
int seq_len = seq_lens[seq_idx];
const int* seq_block_table =
block_tables + max_num_blocks_per_seq * seq_idx;
const int block_num = (seq_len + BLOCK_SIZE - 1) / BLOCK_SIZE;
const int64_t kv_head_idx = head_idx / num_queries_per_kv;
const scalar_t* __restrict__ q_vec_ptr =
q + seq_idx * q_stride + head_idx * HEAD_SIZE;
const int last_block_token_num = seq_len - (block_num - 1) * BLOCK_SIZE;
float* __restrict__ thread_block_logits =
logits + omp_get_thread_num() * max_seq_len_padded;
// Compute logits
for (int block_idx = 0; block_idx < block_num; ++block_idx) {
const int64_t physical_block_idx = seq_block_table[block_idx];
const scalar_t* __restrict__ k_block_cache_ptr =
k_cache + physical_block_idx * kv_block_stride +
kv_head_idx * kv_head_stride;
float* __restrict__ head_block_logits =
thread_block_logits + block_idx * BLOCK_SIZE;
reduceQKBlockKernel<scalar_t, HEAD_SIZE, BLOCK_SIZE, x>::call(
q_vec_ptr, k_block_cache_ptr, head_block_logits, scale,
block_idx == block_num - 1 ? last_block_token_num : BLOCK_SIZE);
}
// Compute softmax
if (alibi_slopes) {
reduceSoftmaxAlibi(thread_block_logits, seq_len,
block_num * BLOCK_SIZE, alibi_slopes[head_idx], 0,
seq_len);
} else {
reduceSoftmax(thread_block_logits, seq_len, block_num * BLOCK_SIZE);
}
// Compute value
constexpr int head_elem_num_per_partition = 16;
constexpr int head_partition_num =
HEAD_SIZE / head_elem_num_per_partition;
for (int head_part_idx = 0; head_part_idx < head_partition_num;
++head_part_idx) {
vec_op::FP32Vec16 accums[head_elem_num_per_partition];
scalar_t* __restrict__ out_ptr =
out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE +
head_part_idx * head_elem_num_per_partition;
for (int block_idx = 0; block_idx < block_num; ++block_idx) {
const int64_t physical_block_idx = seq_block_table[block_idx];
const float* __restrict__ prob_vec_ptr =
thread_block_logits + block_idx * BLOCK_SIZE;
const scalar_t* __restrict__ v_block_cache_ptr =
v_cache + physical_block_idx * kv_block_stride +
kv_head_idx * kv_head_stride +
BLOCK_SIZE * head_part_idx * head_elem_num_per_partition;
reduceValueBlock<scalar_t, HEAD_SIZE, BLOCK_SIZE,
head_elem_num_per_partition>(
prob_vec_ptr, v_block_cache_ptr, accums);
if (block_idx != block_num - 1) {
const int64_t next_physical_block_idx =
seq_block_table[block_idx + 1];
const scalar_t* __restrict__ next_v_block_cache_ptr =
v_cache + next_physical_block_idx * kv_block_stride +
kv_head_idx * kv_head_stride +
BLOCK_SIZE * head_part_idx * head_elem_num_per_partition;
vec_op::unroll_loop<int, head_elem_num_per_partition>(
[&](int head_elem_idx) {
if (head_elem_idx % 2 == 0) {
vec_op::prefetch(next_v_block_cache_ptr +
BLOCK_SIZE * head_elem_idx);
}
});
}
}
vec_op::unroll_loop<int, head_elem_num_per_partition>(
[&](int head_elem_idx) {
float value = accums[head_elem_idx].reduce_sum();
vec_op::storeFP32(value, out_ptr + head_elem_idx);
});
}
}
}
std::free(logits);
}
};
#define LAUNCH_V1_ATTENTION_KERNEL(T, HEAD_SIZE, BLOCK_SIZE) \
paged_attention_v1_impl<T, HEAD_SIZE, BLOCK_SIZE>::call( \
out_ptr, query_ptr, key_cache_ptr, value_cache_ptr, num_kv_heads, scale, \
block_tables_ptr, seq_lens_ptr, max_num_blocks_per_seq, \
alibi_slopes_ptr, q_stride, kv_block_stride, kv_head_stride, num_seqs, \
num_heads);
template <typename T, int BLOCK_SIZE>
void paged_attention_v1_impl_launcher(
torch::Tensor& out, torch::Tensor& query, torch::Tensor& key_cache,
torch::Tensor& value_cache, int num_kv_heads, float scale,
torch::Tensor& block_tables, torch::Tensor& seq_lens, int max_seq_len,
const std::optional<torch::Tensor>& alibi_slopes) {
int num_seqs = query.size(0);
int num_heads = query.size(1);
int head_size = query.size(2);
int max_num_blocks_per_seq = block_tables.size(1);
int q_stride = query.stride(0);
int kv_block_stride = key_cache.stride(0);
int kv_head_stride = key_cache.stride(1);
// NOTE: alibi_slopes is optional.
const float* alibi_slopes_ptr =
alibi_slopes
? reinterpret_cast<const float*>(alibi_slopes.value().data_ptr())
: nullptr;
T* out_ptr = reinterpret_cast<T*>(out.data_ptr());
T* query_ptr = reinterpret_cast<T*>(query.data_ptr());
T* key_cache_ptr = reinterpret_cast<T*>(key_cache.data_ptr());
T* value_cache_ptr = reinterpret_cast<T*>(value_cache.data_ptr());
int* block_tables_ptr = block_tables.data_ptr<int>();
int* seq_lens_ptr = seq_lens.data_ptr<int>();
switch (head_size) {
case 32:
LAUNCH_V1_ATTENTION_KERNEL(T, 32, BLOCK_SIZE);
break;
case 64:
LAUNCH_V1_ATTENTION_KERNEL(T, 64, BLOCK_SIZE);
break;
case 80:
LAUNCH_V1_ATTENTION_KERNEL(T, 80, BLOCK_SIZE);
break;
case 96:
LAUNCH_V1_ATTENTION_KERNEL(T, 96, BLOCK_SIZE);
break;
case 112:
LAUNCH_V1_ATTENTION_KERNEL(T, 112, BLOCK_SIZE);
break;
case 128:
LAUNCH_V1_ATTENTION_KERNEL(T, 128, BLOCK_SIZE);
break;
case 192:
LAUNCH_V1_ATTENTION_KERNEL(T, 192, BLOCK_SIZE);
break;
case 256:
LAUNCH_V1_ATTENTION_KERNEL(T, 256, BLOCK_SIZE);
break;
default:
TORCH_CHECK(false, "Unsupported head size: ", head_size);
break;
}
}
#define CALL_V1_KERNEL_LAUNCHER(T, BLOCK_SIZE) \
paged_attention_v1_impl_launcher<T, BLOCK_SIZE>( \
out, query, key_cache, value_cache, num_kv_heads, scale, block_tables, \
seq_lens, max_seq_len, alibi_slopes);
#define CALL_V1_KERNEL_LAUNCHER_BLOCK_SIZE(T) \
switch (block_size) { \
case 16: \
CALL_V1_KERNEL_LAUNCHER(T, 16); \
break; \
default: \
TORCH_CHECK(false, "Unsupported block size: ", block_size); \
break; \
}
} // namespace
void paged_attention_v1(
torch::Tensor& out, torch::Tensor& query, torch::Tensor& key_cache,
torch::Tensor& value_cache, int64_t num_kv_heads, double scale,
torch::Tensor& block_tables, torch::Tensor& seq_lens, int64_t block_size,
int64_t max_seq_len, const std::optional<torch::Tensor>& alibi_slopes,
const std::string& kv_cache_dtype, torch::Tensor& k_scale,
torch::Tensor& v_scale, const int64_t tp_rank,
const int64_t blocksparse_local_blocks,
const int64_t blocksparse_vert_stride, const int64_t blocksparse_block_size,
const int64_t blocksparse_head_sliding_step) {
TORCH_CHECK(blocksparse_vert_stride <= 1,
"CPU backend does not support blocksparse attention yet.");
VLLM_DISPATCH_FLOATING_TYPES(query.scalar_type(), "paged_attention_v1_impl",
[&] {
CPU_KERNEL_GUARD_IN(paged_attention_v1_impl)
CALL_V1_KERNEL_LAUNCHER_BLOCK_SIZE(scalar_t);
CPU_KERNEL_GUARD_OUT(paged_attention_v1_impl)
});
}
// Paged attention v2
namespace {
template <typename scalar_t, int HEAD_SIZE, int BLOCK_SIZE, int PARTITION_SIZE>
struct paged_attention_v2_impl {
static void call(
scalar_t* __restrict__ out, // [num_seqs, num_heads, head_size]
float* __restrict__ exp_sums, // [num_seqs, num_heads,
// max_num_partitions]
float* __restrict__ max_logits, // [num_seqs, num_heads,
// max_num_partitions]
scalar_t* __restrict__ tmp_out, // [num_seqs, num_heads,
// max_num_partitions, head_size]
const scalar_t* __restrict__ q, // [num_seqs, num_heads, head_size]
const scalar_t* __restrict__ k_cache, // [num_blocks, num_kv_heads,
// head_size/x, block_size, x]
const scalar_t* __restrict__ v_cache, // [num_blocks, num_kv_heads,
// head_size, block_size]
const int num_kv_heads, const float scale,
const int* __restrict__ block_tables, // [num_seqs,
// max_num_blocks_per_seq]
const int* __restrict__ seq_lens, // [num_seqs]
const int max_num_blocks_per_seq,
const float* __restrict__ alibi_slopes, // [num_heads]
const int q_stride, const int kv_block_stride, const int kv_head_stride,
const int num_seqs, const int num_heads, const int max_num_partitions) {
constexpr int x = 16 / sizeof(scalar_t);
const int num_queries_per_kv = num_heads / num_kv_heads;
static_assert(BLOCK_SIZE == 16);
static_assert(PARTITION_SIZE * sizeof(float) % 64 == 0);
static_assert(PARTITION_SIZE % BLOCK_SIZE == 0);
#pragma omp parallel for collapse(3) schedule(static, 1)
for (int seq_idx = 0; seq_idx < num_seqs; ++seq_idx) {
for (int partition_idx = 0; partition_idx < max_num_partitions;
++partition_idx) {
for (int head_idx = 0; head_idx < num_heads; ++head_idx) {
const int seq_len = seq_lens[seq_idx];
const int start_token_idx = partition_idx * PARTITION_SIZE;
if (start_token_idx >= seq_len) continue;
const int partition_num =
(seq_len + PARTITION_SIZE - 1) / PARTITION_SIZE;
const bool no_reduce = (partition_num == 1);
const int token_num =
(std::min(seq_len, start_token_idx + PARTITION_SIZE) -
start_token_idx);
const int block_num = (token_num + BLOCK_SIZE - 1) / BLOCK_SIZE;
const int last_block_token_num =
token_num - (block_num - 1) * BLOCK_SIZE;
const int* seq_block_table = block_tables +
max_num_blocks_per_seq * seq_idx +
start_token_idx / BLOCK_SIZE;
const int64_t kv_head_idx = head_idx / num_queries_per_kv;
const scalar_t* __restrict__ q_vec_ptr =
q + seq_idx * q_stride + head_idx * HEAD_SIZE;
float logits[PARTITION_SIZE] __attribute__((aligned(64))) = {0};
// Compute logits
for (int block_idx = 0; block_idx < block_num; ++block_idx) {
const int64_t physical_block_idx = seq_block_table[block_idx];
const scalar_t* __restrict__ k_block_cache_ptr =
k_cache + physical_block_idx * kv_block_stride +
kv_head_idx * kv_head_stride;
float* __restrict__ head_block_logits =
logits + block_idx * BLOCK_SIZE;
reduceQKBlockKernel<scalar_t, HEAD_SIZE, BLOCK_SIZE, x>::call(
q_vec_ptr, k_block_cache_ptr, head_block_logits, scale,
block_idx == block_num - 1 ? last_block_token_num : BLOCK_SIZE);
}
std::pair<float, float> max_and_sum;
if (alibi_slopes) {
max_and_sum = reduceSoftmaxAlibi(
logits, token_num, block_num * BLOCK_SIZE,
alibi_slopes[head_idx], start_token_idx, seq_len);
} else {
max_and_sum =
reduceSoftmax(logits, token_num, block_num * BLOCK_SIZE);
}
auto&& [max_logit, exp_sum] = max_and_sum;
scalar_t* __restrict__ output_buffer = nullptr;
if (!no_reduce) {
auto idx = seq_idx * num_heads * max_num_partitions +
head_idx * max_num_partitions + partition_idx;
max_logits[idx] = max_logit;
exp_sums[idx] = exp_sum;
output_buffer =
tmp_out + seq_idx * num_heads * max_num_partitions * HEAD_SIZE +
head_idx * max_num_partitions * HEAD_SIZE +
partition_idx * HEAD_SIZE;
} else {
output_buffer =
out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE;
}
// Compute value
constexpr int head_elem_num_per_partition = 16;
constexpr int head_partition_num =
HEAD_SIZE / head_elem_num_per_partition;
for (int head_part_idx = 0; head_part_idx < head_partition_num;
++head_part_idx) {
vec_op::FP32Vec16 accums[head_elem_num_per_partition];
scalar_t* __restrict__ out_ptr =
output_buffer + head_part_idx * head_elem_num_per_partition;
for (int block_idx = 0; block_idx < block_num; ++block_idx) {
const int64_t physical_block_idx = seq_block_table[block_idx];
const float* __restrict__ prob_vec_ptr =
logits + block_idx * BLOCK_SIZE;
const scalar_t* __restrict__ v_block_cache_ptr =
v_cache + physical_block_idx * kv_block_stride +
kv_head_idx * kv_head_stride +
BLOCK_SIZE * head_part_idx * head_elem_num_per_partition;
reduceValueBlock<scalar_t, HEAD_SIZE, BLOCK_SIZE,
head_elem_num_per_partition>(
prob_vec_ptr, v_block_cache_ptr, accums);
if (block_idx != block_num - 1) {
const int64_t next_physical_block_idx =
seq_block_table[block_idx + 1];
const scalar_t* __restrict__ next_v_block_cache_ptr =
v_cache + next_physical_block_idx * kv_block_stride +
kv_head_idx * kv_head_stride +
BLOCK_SIZE * head_part_idx * head_elem_num_per_partition;
vec_op::unroll_loop<int, head_elem_num_per_partition>(
[&](int head_elem_idx) {
if (head_elem_idx % 2 == 0) {
vec_op::prefetch(next_v_block_cache_ptr +
BLOCK_SIZE * head_elem_idx);
}
});
}
}
vec_op::unroll_loop<int, head_elem_num_per_partition>(
[&](int head_elem_idx) {
float value = accums[head_elem_idx].reduce_sum();
vec_op::storeFP32(value, out_ptr + head_elem_idx);
});
}
}
}
}
// Rescale partition softmax and store the factors to exp_sums
#pragma omp parallel for collapse(2) schedule(static, 1)
for (int seq_idx = 0; seq_idx < num_seqs; ++seq_idx) {
for (int head_idx = 0; head_idx < num_heads; ++head_idx) {
const int seq_len = seq_lens[seq_idx];
const int partition_num =
(seq_len + PARTITION_SIZE - 1) / PARTITION_SIZE;
if (partition_num == 1) continue;
reducePartitionSoftmax(
max_logits + seq_idx * num_heads * max_num_partitions +
head_idx * max_num_partitions,
exp_sums + seq_idx * num_heads * max_num_partitions +
head_idx * max_num_partitions,
partition_num);
}
}
// Reduce values
using v_load_vec_type = typename KernelVecType<scalar_t>::v_load_vec_type;
static_assert(v_load_vec_type::get_elem_num() == BLOCK_SIZE);
constexpr int head_elem_num_per_group =
16; // Note: didn't align with the cacheline size, due to some
// HEAD_SIZE didn't align with 64 bytes
static_assert(HEAD_SIZE % head_elem_num_per_group == 0);
constexpr int head_group_num = HEAD_SIZE / head_elem_num_per_group;
const float* __restrict__ rescale_factors = exp_sums;
#pragma omp parallel for collapse(3) schedule(static, 1)
for (int seq_idx = 0; seq_idx < num_seqs; ++seq_idx) {
for (int head_idx = 0; head_idx < num_heads; ++head_idx) {
for (int group_idx = 0; group_idx < head_group_num; ++group_idx) {
const int seq_len = seq_lens[seq_idx];
const int partition_num =
(seq_len + PARTITION_SIZE - 1) / PARTITION_SIZE;
if (partition_num == 1) continue;
const float* __restrict__ seq_head_rescale_factors =
rescale_factors + seq_idx * num_heads * max_num_partitions +
head_idx * max_num_partitions;
const scalar_t* __restrict__ seq_head_tmp_out =
tmp_out + seq_idx * num_heads * max_num_partitions * HEAD_SIZE +
head_idx * max_num_partitions * HEAD_SIZE +
group_idx * head_elem_num_per_group;
scalar_t* __restrict__ seq_head_output =
out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE +
group_idx * head_elem_num_per_group;
vec_op::FP32Vec16 acc;
for (int i = 0; i < partition_num; ++i) {
vec_op::FP32Vec16 rescale_factor(seq_head_rescale_factors[i]);
v_load_vec_type value(seq_head_tmp_out + i * HEAD_SIZE);
vec_op::FP32Vec16 fp32_value(value);
acc = acc + fp32_value * rescale_factor;
}
v_load_vec_type cast_acc(acc);
cast_acc.save(seq_head_output);
}
}
}
}
};
#define LAUNCH_V2_ATTENTION_KERNEL(T, HEAD_SIZE, BLOCK_SIZE) \
paged_attention_v2_impl<T, HEAD_SIZE, BLOCK_SIZE, PARTITION_SIZE>::call( \
out_ptr, exp_sums_ptr, max_logits_ptr, tmp_out_ptr, query_ptr, \
key_cache_ptr, value_cache_ptr, num_kv_heads, scale, block_tables_ptr, \
seq_lens_ptr, max_num_blocks_per_seq, alibi_slopes_ptr, q_stride, \
kv_block_stride, kv_head_stride, num_seqs, num_heads, \
max_num_partitions);
template <typename T, int BLOCK_SIZE, int PARTITION_SIZE = 512>
void paged_attention_v2_impl_launcher(
torch::Tensor& out, torch::Tensor& exp_sums, torch::Tensor& max_logits,
torch::Tensor& tmp_out, torch::Tensor& query, torch::Tensor& key_cache,
torch::Tensor& value_cache, int num_kv_heads, float scale,
torch::Tensor& block_tables, torch::Tensor& seq_lens, int block_size,
int max_seq_len, const std::optional<torch::Tensor>& alibi_slopes) {
int num_seqs = query.size(0);
int num_heads = query.size(1);
int head_size = query.size(2);
int max_num_blocks_per_seq = block_tables.size(1);
int q_stride = query.stride(0);
int kv_block_stride = key_cache.stride(0);
int kv_head_stride = key_cache.stride(1);
int max_num_partitions = exp_sums.size(-1);
// NOTE: alibi_slopes is optional.
const float* alibi_slopes_ptr =
alibi_slopes
? reinterpret_cast<const float*>(alibi_slopes.value().data_ptr())
: nullptr;
T* out_ptr = reinterpret_cast<T*>(out.data_ptr());
float* exp_sums_ptr = reinterpret_cast<float*>(exp_sums.data_ptr());
float* max_logits_ptr = reinterpret_cast<float*>(max_logits.data_ptr());
T* tmp_out_ptr = reinterpret_cast<T*>(tmp_out.data_ptr());
T* query_ptr = reinterpret_cast<T*>(query.data_ptr());
T* key_cache_ptr = reinterpret_cast<T*>(key_cache.data_ptr());
T* value_cache_ptr = reinterpret_cast<T*>(value_cache.data_ptr());
int* block_tables_ptr = block_tables.data_ptr<int>();
int* seq_lens_ptr = seq_lens.data_ptr<int>();
switch (head_size) {
case 32:
LAUNCH_V2_ATTENTION_KERNEL(T, 32, BLOCK_SIZE);
break;
case 64:
LAUNCH_V2_ATTENTION_KERNEL(T, 64, BLOCK_SIZE);
break;
case 80:
LAUNCH_V2_ATTENTION_KERNEL(T, 80, BLOCK_SIZE);
break;
case 96:
LAUNCH_V2_ATTENTION_KERNEL(T, 96, BLOCK_SIZE);
break;
case 112:
LAUNCH_V2_ATTENTION_KERNEL(T, 112, BLOCK_SIZE);
break;
case 128:
LAUNCH_V2_ATTENTION_KERNEL(T, 128, BLOCK_SIZE);
break;
case 192:
LAUNCH_V2_ATTENTION_KERNEL(T, 192, BLOCK_SIZE);
break;
case 256:
LAUNCH_V2_ATTENTION_KERNEL(T, 256, BLOCK_SIZE);
break;
default:
TORCH_CHECK(false, "Unsupported head size: ", head_size);
break;
}
}
#define CALL_V2_KERNEL_LAUNCHER(T, BLOCK_SIZE) \
paged_attention_v2_impl_launcher<T, BLOCK_SIZE>( \
out, exp_sums, max_logits, tmp_out, query, key_cache, value_cache, \
num_kv_heads, scale, block_tables, seq_lens, block_size, max_seq_len, \
alibi_slopes);
#define CALL_V2_KERNEL_LAUNCHER_BLOCK_SIZE(T) \
switch (block_size) { \
case 16: \
CALL_V2_KERNEL_LAUNCHER(T, 16); \
break; \
default: \
TORCH_CHECK(false, "Unsupported block size: ", block_size); \
break; \
}
} // namespace
void paged_attention_v2(
torch::Tensor& out, torch::Tensor& exp_sums, torch::Tensor& max_logits,
torch::Tensor& tmp_out, torch::Tensor& query, torch::Tensor& key_cache,
torch::Tensor& value_cache, int64_t num_kv_heads, double scale,
torch::Tensor& block_tables, torch::Tensor& seq_lens, int64_t block_size,
int64_t max_seq_len, const std::optional<torch::Tensor>& alibi_slopes,
const std::string& kv_cache_dtype, torch::Tensor& k_scale,
torch::Tensor& v_scale, const int64_t tp_rank,
const int64_t blocksparse_local_blocks,
const int64_t blocksparse_vert_stride, const int64_t blocksparse_block_size,
const int64_t blocksparse_head_sliding_step) {
TORCH_CHECK(blocksparse_vert_stride <= 1,
"CPU backend does not support blocksparse attention yet.");
VLLM_DISPATCH_FLOATING_TYPES(query.scalar_type(), "paged_attention_v2_impl",
[&] {
CPU_KERNEL_GUARD_IN(paged_attention_v2_impl)
CALL_V2_KERNEL_LAUNCHER_BLOCK_SIZE(scalar_t);
CPU_KERNEL_GUARD_OUT(paged_attention_v2_impl)
});
}

View File

@ -1,214 +0,0 @@
#include <map>
#include <vector>
#include "cpu_types.hpp"
#if defined(__x86_64__)
#define DISPATCH_MACRO VLLM_DISPATCH_FLOATING_TYPES_WITH_E5M2
#else
#define DISPATCH_MACRO VLLM_DISPATCH_FLOATING_TYPES
#endif
namespace {
template <typename scalar_t>
void copy_blocks_cpu_impl(std::vector<torch::Tensor> const& key_caches,
std::vector<torch::Tensor> const& value_caches,
const torch::Tensor& mapping_pairs,
const int element_num_per_block,
const int layer_num) {
const size_t pair_num = mapping_pairs.size(0);
const size_t block_bytes = sizeof(scalar_t) * element_num_per_block;
#pragma omp parallel for collapse(2)
for (int layer = 0; layer < layer_num; ++layer) {
for (size_t pair = 0; pair < pair_num; ++pair) {
int64_t source_offset =
element_num_per_block * mapping_pairs[pair][0].item<int64_t>();
int64_t target_offset =
element_num_per_block * mapping_pairs[pair][1].item<int64_t>();
scalar_t* key_cache_ptr = key_caches[layer].data_ptr<scalar_t>();
scalar_t* source_ptr = key_cache_ptr + source_offset;
scalar_t* target_ptr = key_cache_ptr + target_offset;
std::memcpy(target_ptr, source_ptr, block_bytes);
scalar_t* value_cache_ptr = value_caches[layer].data_ptr<scalar_t>();
source_ptr = value_cache_ptr + source_offset;
target_ptr = value_cache_ptr + target_offset;
std::memcpy(target_ptr, source_ptr, block_bytes);
}
}
}
template <typename scalar_t>
void reshape_and_cache_cpu_impl(
const scalar_t* __restrict__ key, const scalar_t* __restrict__ value,
scalar_t* __restrict__ key_cache, scalar_t* __restrict__ value_cache,
const int64_t* __restrict__ slot_mapping, const int num_tokens,
const int key_stride, const int value_stride, const int num_heads,
const int head_size, const int block_size, const int x) {
const int block_elem_num = num_heads * head_size * block_size;
#pragma omp parallel for collapse(2)
for (int token_idx = 0; token_idx < num_tokens; ++token_idx) {
for (int head_idx = 0; head_idx < num_heads; ++head_idx) {
const int64_t slot_idx = slot_mapping[token_idx];
if (slot_idx >= 0) {
int src_key_head_idx = token_idx * key_stride + head_idx * head_size;
int src_value_head_idx =
token_idx * value_stride + head_idx * head_size;
const scalar_t* src_key_head_ptr = key + src_key_head_idx;
const scalar_t* src_value_head_ptr = value + src_value_head_idx;
const int64_t block_index = slot_idx / block_size;
const int64_t block_offset = slot_idx % block_size;
scalar_t* target_key_head_ptr = key_cache +
block_elem_num * block_index +
head_idx * block_size * head_size;
scalar_t* target_value_head_ptr = value_cache +
block_elem_num * block_index +
head_idx * block_size * head_size;
for (int src_key_idx = 0; src_key_idx < head_size; src_key_idx += x) {
const int64_t target_offset =
src_key_idx * block_size + block_offset * x;
for (int i = 0; i < x; ++i) {
target_key_head_ptr[target_offset + i] =
src_key_head_ptr[src_key_idx + i];
}
}
for (int src_value_idx = 0; src_value_idx < head_size;
++src_value_idx) {
const int64_t target_offset =
src_value_idx * block_size + block_offset;
target_value_head_ptr[target_offset] =
src_value_head_ptr[src_value_idx];
}
}
}
}
}
}; // namespace
template <typename scalar_t>
void concat_and_cache_mla_cpu_impl(
const scalar_t* __restrict__ kv_c, // [num_tokens, kv_lora_rank]
const scalar_t* __restrict__ k_pe, // [num_tokens, pe_dim]
scalar_t* __restrict__ kv_cache, // [num_blocks, block_size, (kv_lora_rank
// + pe_dim)]
const int64_t* __restrict__ slot_mapping, // [num_tokens]
const int num_tokens, //
const int block_stride, //
const int entry_stride, //
const int kv_c_stride, //
const int k_pe_stride, //
const int kv_lora_rank, //
const int pe_dim, //
const int block_size //
) {
#pragma omp parallel for
for (int token_idx = 0; token_idx < num_tokens; ++token_idx) {
const int64_t slot_idx = slot_mapping[token_idx];
// NOTE: slot_idx can be -1 if the token is padded
if (slot_idx < 0) {
continue;
}
const int64_t block_idx = slot_idx / block_size;
const int64_t block_offset = slot_idx % block_size;
auto copy = [&](const scalar_t* __restrict__ src,
scalar_t* __restrict__ dst, int src_stride, int dst_stride,
int size, int offset) {
for (int i = 0; i < size; i++) {
const int64_t src_idx = token_idx * src_stride + i;
const int64_t dst_idx =
block_idx * block_stride + block_offset * entry_stride + i + offset;
dst[dst_idx] = src[src_idx];
}
};
copy(kv_c, kv_cache, kv_c_stride, block_stride, kv_lora_rank, 0);
copy(k_pe, kv_cache, k_pe_stride, block_stride, pe_dim, kv_lora_rank);
}
}
// Note: the key_caches and value_caches vectors are constant but
// not the Tensors they contain. The vectors need to be const refs
// in order to satisfy pytorch's C++ operator registration code.
void copy_blocks(std::vector<torch::Tensor> const& key_caches,
std::vector<torch::Tensor> const& value_caches,
const torch::Tensor& block_mapping) {
unsigned num_layers = key_caches.size();
TORCH_CHECK(num_layers == value_caches.size());
if (num_layers == 0) {
return;
}
const int element_num_per_block = key_caches[0][0].numel();
DISPATCH_MACRO(key_caches[0].scalar_type(), "copy_blocks_cpu_impl", [&] {
CPU_KERNEL_GUARD_IN(copy_blocks_cpu_impl)
copy_blocks_cpu_impl<scalar_t>(key_caches, value_caches, block_mapping,
element_num_per_block, num_layers);
CPU_KERNEL_GUARD_OUT(copy_blocks_cpu_impl)
});
}
void reshape_and_cache(torch::Tensor& key, torch::Tensor& value,
torch::Tensor& key_cache, torch::Tensor& value_cache,
torch::Tensor& slot_mapping,
const std::string& kv_cache_dtype,
torch::Tensor& k_scale, torch::Tensor& v_scale) {
int num_tokens = key.size(0);
int num_heads = key.size(1);
int head_size = key.size(2);
int block_size = key_cache.size(3);
int x = key_cache.size(4);
int key_stride = key.stride(0);
int value_stride = value.stride(0);
DISPATCH_MACRO(key.scalar_type(), "reshape_and_cache_cpu_impl", [&] {
CPU_KERNEL_GUARD_IN(reshape_and_cache_cpu_impl)
reshape_and_cache_cpu_impl<scalar_t>(
key.data_ptr<scalar_t>(), value.data_ptr<scalar_t>(),
key_cache.data_ptr<scalar_t>(), value_cache.data_ptr<scalar_t>(),
slot_mapping.data_ptr<int64_t>(), num_tokens, key_stride, value_stride,
num_heads, head_size, block_size, x);
CPU_KERNEL_GUARD_OUT(reshape_and_cache_cpu_impl)
});
}
void concat_and_cache_mla(
torch::Tensor& kv_c, // [num_tokens, kv_lora_rank]
torch::Tensor& k_pe, // [num_tokens, pe_dim]
torch::Tensor& kv_cache, // [num_blocks, block_size, (kv_lora_rank +
// pe_dim)]
torch::Tensor& slot_mapping, // [num_tokens] or [num_actual_tokens]
const std::string& kv_cache_dtype, torch::Tensor& scale) {
int num_tokens = slot_mapping.size(0);
int kv_lora_rank = kv_c.size(1);
int pe_dim = k_pe.size(1);
int block_size = kv_cache.size(1);
TORCH_CHECK(kv_cache.size(2) == kv_lora_rank + pe_dim);
TORCH_CHECK(kv_cache_dtype != "fp8");
int kv_c_stride = kv_c.stride(0);
int k_pe_stride = k_pe.stride(0);
int block_stride = kv_cache.stride(0);
int entry_stride = kv_cache.stride(1);
VLLM_DISPATCH_FLOATING_TYPES(
kv_c.scalar_type(), "concat_and_cache_mla_cpu_impl", [&] {
CPU_KERNEL_GUARD_IN(concat_and_cache_mla_cpu_impl)
concat_and_cache_mla_cpu_impl<scalar_t>(
kv_c.data_ptr<scalar_t>(), k_pe.data_ptr<scalar_t>(),
kv_cache.data_ptr<scalar_t>(), slot_mapping.data_ptr<int64_t>(),
num_tokens, block_stride, entry_stride, kv_c_stride, k_pe_stride,
kv_lora_rank, pe_dim, block_size);
CPU_KERNEL_GUARD_OUT(concat_and_cache_mla_cpu_impl)
});
}
void swap_blocks(torch::Tensor& src, torch::Tensor& dst,
const torch::Tensor& block_mapping) {
TORCH_CHECK(false, "swap_blocks is unsupported on CPU.")
}

266
csrc/cpu/cpu_attn.cpp Normal file
View File

@ -0,0 +1,266 @@
#include "cpu_attn_vec.hpp"
#include "cpu_attn_vec16.hpp"
#ifdef CPU_CAPABILITY_AMXBF16
#include "cpu_attn_amx.hpp"
#define AMX_DISPATCH(...) \
case cpu_attention::ISA::AMX: { \
using attn_impl = cpu_attention::AttentionImpl<cpu_attention::ISA::AMX, \
scalar_t, head_dim>; \
return __VA_ARGS__(); \
}
#else
#define AMX_DISPATCH(...) case cpu_attention::ISA::AMX:
#endif
#ifdef __aarch64__
#include "cpu_attn_neon.hpp"
#define NEON_DISPATCH(...) \
case cpu_attention::ISA::NEON: { \
using attn_impl = cpu_attention::AttentionImpl<cpu_attention::ISA::NEON, \
scalar_t, head_dim>; \
return __VA_ARGS__(); \
}
#else
#define NEON_DISPATCH(...) case cpu_attention::ISA::NEON:
#endif // #ifdef __aarch64__
#define CPU_ATTN_DISPATCH_CASE(HEAD_DIM, ...) \
case HEAD_DIM: { \
constexpr size_t head_dim = HEAD_DIM; \
return __VA_ARGS__(); \
}
#define CPU_ATTN_DISPATCH_CASE_HEADDIM(HEAD_DIM, ...) \
[&] { \
switch (HEAD_DIM) { \
CPU_ATTN_DISPATCH_CASE(32, __VA_ARGS__) \
CPU_ATTN_DISPATCH_CASE(64, __VA_ARGS__) \
CPU_ATTN_DISPATCH_CASE(96, __VA_ARGS__) \
CPU_ATTN_DISPATCH_CASE(128, __VA_ARGS__) \
CPU_ATTN_DISPATCH_CASE(160, __VA_ARGS__) \
CPU_ATTN_DISPATCH_CASE(192, __VA_ARGS__) \
CPU_ATTN_DISPATCH_CASE(224, __VA_ARGS__) \
CPU_ATTN_DISPATCH_CASE(256, __VA_ARGS__) \
default: { \
TORCH_CHECK(false, "Invalid CPU attention head_dim: " + \
std::to_string(HEAD_DIM)); \
} \
} \
}()
#define CPU_ATTN_DISPATCH_IMPL(ISA_TYPE, ...) \
[&] { \
switch (ISA_TYPE) { \
AMX_DISPATCH(__VA_ARGS__) \
NEON_DISPATCH(__VA_ARGS__) \
case cpu_attention::ISA::VEC: { \
using attn_impl = \
cpu_attention::AttentionImpl<cpu_attention::ISA::VEC, scalar_t, \
head_dim>; \
return __VA_ARGS__(); \
} \
case cpu_attention::ISA::VEC16: { \
using attn_impl = \
cpu_attention::AttentionImpl<cpu_attention::ISA::VEC16, scalar_t, \
head_dim>; \
return __VA_ARGS__(); \
} \
default: { \
TORCH_CHECK(false, "Invalid CPU attention ISA type."); \
} \
} \
}()
torch::Tensor get_scheduler_metadata(
const int64_t num_req, const int64_t num_heads_q,
const int64_t num_heads_kv, const int64_t head_dim,
const torch::Tensor& seq_lens, at::ScalarType dtype,
const torch::Tensor& query_start_loc, const bool casual,
const int64_t window_size, const std::string& isa_hint,
const bool enable_kv_split) {
cpu_attention::ISA isa;
if (isa_hint == "amx") {
isa = cpu_attention::ISA::AMX;
} else if (isa_hint == "vec") {
isa = cpu_attention::ISA::VEC;
} else if (isa_hint == "vec16") {
isa = cpu_attention::ISA::VEC16;
} else if (isa_hint == "neon") {
isa = cpu_attention::ISA::NEON;
} else {
TORCH_CHECK(false, "Unsupported CPU attention ISA hint: " + isa_hint);
}
cpu_attention::AttentionScheduler::ScheduleInput input;
input.num_reqs = num_req;
input.num_heads_q = num_heads_q;
input.num_heads_kv = num_heads_kv;
input.head_dim = head_dim;
input.query_start_loc = query_start_loc.data_ptr<int32_t>();
input.seq_lens = seq_lens.data_ptr<int32_t>();
if (window_size != -1) {
input.left_sliding_window_size = window_size - 1;
if (casual) {
input.right_sliding_window_size = 0;
} else {
input.right_sliding_window_size = window_size - 1;
}
} else {
input.left_sliding_window_size = -1;
if (casual) {
input.right_sliding_window_size = 0;
} else {
input.right_sliding_window_size = -1;
}
}
input.casual = casual;
input.isa = isa;
input.enable_kv_split = enable_kv_split;
TORCH_CHECK(casual, "Only supports casual mask for now.");
VLLM_DISPATCH_FLOATING_TYPES(dtype, "get_scheduler_metadata", [&]() {
CPU_ATTN_DISPATCH_CASE_HEADDIM(head_dim, [&] {
CPU_ATTN_DISPATCH_IMPL(isa, [&]() {
input.elem_size = sizeof(scalar_t);
input.q_buffer_elem_size = sizeof(attn_impl::q_buffer_t);
input.logits_buffer_elem_size = sizeof(attn_impl::logits_buffer_t);
input.output_buffer_elem_size =
sizeof(attn_impl::partial_output_buffer_t);
input.max_num_q_per_iter = attn_impl::MaxQHeadNumPerIteration;
input.kv_block_alignment = attn_impl::BlockSizeAlignment;
});
});
});
cpu_attention::AttentionScheduler scheduler;
torch::Tensor metadata = scheduler.schedule(input);
return metadata;
}
void cpu_attn_reshape_and_cache(
const torch::Tensor& key, // [token_num, head_num, head_size]
const torch::Tensor& value, // [token_num, head_num, head_size]
torch::Tensor&
key_cache, // [num_blocks, num_kv_heads, block_size, head_size]
torch::Tensor&
value_cache, // [num_blocks, num_kv_heads, block_size, head_size]
const torch::Tensor& slot_mapping, const std::string& isa) {
TORCH_CHECK_EQ(key.dim(), 3);
TORCH_CHECK_EQ(value.dim(), 3);
TORCH_CHECK_EQ(key_cache.dim(), 4);
TORCH_CHECK_EQ(value_cache.dim(), 4);
TORCH_CHECK_EQ(key.stride(2), 1);
TORCH_CHECK_EQ(value.stride(2), 1);
const int64_t token_num = key.size(0);
const int64_t key_token_num_stride = key.stride(0);
const int64_t value_token_num_stride = value.stride(0);
const int64_t head_num = value.size(1);
const int64_t key_head_num_stride = key.stride(1);
const int64_t value_head_num_stride = value.stride(1);
const int64_t num_blocks = key_cache.size(0);
const int64_t num_blocks_stride = key_cache.stride(0);
const int64_t cache_head_num_stride = key_cache.stride(1);
const int64_t block_size = key_cache.size(2);
const int64_t block_size_stride = key_cache.stride(2);
const int64_t head_dim = key.size(-1);
cpu_attention::ISA isa_tag = [&]() {
if (isa == "amx") {
return cpu_attention::ISA::AMX;
} else if (isa == "vec") {
return cpu_attention::ISA::VEC;
} else if (isa == "vec16") {
return cpu_attention::ISA::VEC16;
} else if (isa == "neon") {
return cpu_attention::ISA::NEON;
} else {
TORCH_CHECK(false, "Invalid ISA type: " + isa);
}
}();
VLLM_DISPATCH_FLOATING_TYPES(
key.scalar_type(), "cpu_attn_reshape_and_cache", [&]() {
CPU_ATTN_DISPATCH_CASE_HEADDIM(head_dim, [&] {
CPU_ATTN_DISPATCH_IMPL(isa_tag, [&]() {
attn_impl::reshape_and_cache(
key.data_ptr<scalar_t>(), value.data_ptr<scalar_t>(),
key_cache.data_ptr<scalar_t>(),
value_cache.data_ptr<scalar_t>(),
slot_mapping.data_ptr<int64_t>(), token_num,
key_token_num_stride, value_token_num_stride, head_num,
key_head_num_stride, value_head_num_stride, num_blocks,
num_blocks_stride, cache_head_num_stride, block_size,
block_size_stride);
});
});
});
}
void cpu_attention_with_kv_cache(
const torch::Tensor& query, // [num_tokens, num_heads, head_size]
const torch::Tensor&
key_cache, // [num_blocks, num_kv_heads, block_size, head_size]
const torch::Tensor&
value_cache, // [num_blocks, num_kv_heads, block_size, head_size]
torch::Tensor& output, // [num_tokens, num_heads, head_size]
const torch::Tensor& query_start_loc, // [num_tokens + 1]
const torch::Tensor& seq_lens, // [num_tokens]
const double scale, const bool causal,
const std::optional<torch::Tensor>& alibi_slopes, // [num_heads]
const int64_t sliding_window_left, const int64_t sliding_window_right,
const torch::Tensor& block_table, // [num_tokens, max_block_num]
const double softcap, const torch::Tensor& scheduler_metadata,
const std::optional<torch::Tensor>& s_aux // [num_heads]
) {
TORCH_CHECK_EQ(query.dim(), 3);
TORCH_CHECK_EQ(query.stride(2), 1);
TORCH_CHECK_EQ(key_cache.dim(), 4);
TORCH_CHECK_EQ(value_cache.dim(), 4);
cpu_attention::AttentionInput input;
input.metadata = reinterpret_cast<cpu_attention::AttentionMetadata*>(
scheduler_metadata.data_ptr());
input.num_tokens = query.size(0);
input.num_heads = query.size(1);
input.num_kv_heads = key_cache.size(1);
input.block_size = key_cache.size(2);
input.query = query.data_ptr();
input.query_num_tokens_stride = query.stride(0);
input.query_num_heads_stride = query.stride(1);
input.cache_num_blocks_stride = key_cache.stride(0);
input.cache_num_kv_heads_stride = key_cache.stride(1);
input.blt_num_tokens_stride = block_table.stride(0);
input.key_cache = key_cache.data_ptr();
input.value_cache = value_cache.data_ptr();
input.output = output.data_ptr();
input.query_start_loc = query_start_loc.data_ptr<int32_t>();
input.seq_lens = seq_lens.data_ptr<int32_t>();
input.block_table = block_table.data_ptr<int32_t>();
input.alibi_slopes =
alibi_slopes.has_value() ? alibi_slopes->data_ptr<float>() : nullptr;
// For now sink must be bf16
input.s_aux = s_aux.has_value() ? s_aux->data_ptr<c10::BFloat16>() : nullptr;
input.scale = scale;
input.causal = causal;
input.sliding_window_left = sliding_window_left;
input.sliding_window_right = sliding_window_right;
if (input.causal) {
// to make boundary calculation easier
input.sliding_window_right = 0;
}
float softcap_fp32 = softcap;
input.softcap = softcap_fp32;
VLLM_DISPATCH_FLOATING_TYPES(
query.scalar_type(), "cpu_attention_with_kv_cache", [&]() {
CPU_ATTN_DISPATCH_CASE_HEADDIM(query.size(2), [&] {
CPU_ATTN_DISPATCH_IMPL(input.metadata->isa, [&]() {
TORCH_CHECK_EQ(input.block_size % attn_impl::BlockSizeAlignment, 0);
cpu_attention::AttentionMainLoop<attn_impl> mainloop;
mainloop(&input);
});
});
});
}

511
csrc/cpu/cpu_attn_amx.hpp Normal file
View File

@ -0,0 +1,511 @@
#ifndef CPU_ATTN_AMX_HPP
#define CPU_ATTN_AMX_HPP
#include "cpu_attn_impl.hpp"
namespace cpu_attention {
namespace {
// AMX specific
constexpr static int64_t AMX_TILE_ROW_BYTES = 64;
constexpr static int64_t AMX_TILE_ROW_NUM = 16;
constexpr static int64_t AMX_TILE_BYTES = AMX_TILE_ROW_BYTES * AMX_TILE_ROW_NUM;
typedef struct __tile_config {
uint8_t palette_id = 1;
uint8_t start_row = 0;
uint8_t reserved_0[14] = {0};
uint16_t colsb[16] = {0};
uint8_t rows[16] = {0};
} __tilecfg;
// 2-2-4 pattern, for 16 < m <= 32
// TILE 0, 1: load A matrix, row num should be 16, m - 16
// TILE 2, 3: load B matrix, row num should be 16
// TILE 4, 5, 6, 7: store results C matrix, row num should be 16, 16, m - 16, m
// - 16
template <typename kv_cache_t>
class TileGemm224 {
public:
template <AttentionGemmPhase phase, int32_t k_size>
FORCE_INLINE static void gemm(const int32_t m_size, void* __restrict__ a_tile,
void* __restrict__ b_tile,
float* __restrict__ c_tile, const int64_t lda,
const int64_t ldb, const int64_t ldc,
const int32_t block_size,
const int32_t dynamic_k_size,
const bool accum_c) {
TORCH_CHECK(false, "Unsupported kv cache type for TileGemm224");
}
FORCE_INLINE static void init_tile_config(int32_t m, __tilecfg& config) {
TORCH_CHECK(false, "Unsupported kv cache type for TileGemm224");
}
};
template <>
class TileGemm224<c10::BFloat16> {
public:
template <AttentionGemmPhase phase, int32_t k_size>
FORCE_INLINE static void gemm(const int32_t m_size,
c10::BFloat16* __restrict__ a_tile,
c10::BFloat16* __restrict__ b_tile,
float* __restrict__ c_tile, const int64_t lda,
const int64_t ldb, const int64_t ldc,
const int32_t block_size,
const int32_t dynamic_k_size,
const bool accum_c) {
const int32_t k_times =
dynamic_k_size / (AMX_TILE_ROW_NUM * 4 / sizeof(c10::BFloat16));
c10::BFloat16* __restrict__ a_tile_0 = a_tile;
c10::BFloat16* __restrict__ a_tile_1 = a_tile + lda * AMX_TILE_ROW_NUM;
const int64_t a_tile_stride = [&]() {
if constexpr (phase == AttentionGemmPhase::QK) {
// q_buffer is prepacked
return AMX_TILE_ROW_BYTES;
} else if constexpr (phase == AttentionGemmPhase::PV) {
// logits_buffer is row-major
return lda * sizeof(c10::BFloat16);
} else {
TORCH_CHECK(false, "Unreachable");
}
}();
c10::BFloat16* __restrict__ b_tile_2 = b_tile;
c10::BFloat16* __restrict__ b_tile_3 = [&]() {
if constexpr (phase == AttentionGemmPhase::QK) {
// k_cache is prepacked
return b_tile + (k_size * AMX_TILE_ROW_BYTES / 4);
} else if constexpr (phase == AttentionGemmPhase::PV) {
// v_cache is prepacked
return b_tile + (block_size * AMX_TILE_ROW_BYTES / 4);
} else {
TORCH_CHECK(false, "Unreachable");
}
}();
// k_cache, v_cache are prepacked
const int32_t b_tile_stride = AMX_TILE_ROW_BYTES;
// logits_buffer, output_buffer are not prepacked
float* __restrict__ c_tile_4 = c_tile;
float* __restrict__ c_tile_5 =
c_tile_4 + AMX_TILE_ROW_BYTES / sizeof(float);
float* __restrict__ c_tile_6 = c_tile + AMX_TILE_ROW_NUM * ldc;
float* __restrict__ c_tile_7 =
c_tile_6 + AMX_TILE_ROW_BYTES / sizeof(float);
const int32_t c_tile_stride = ldc * sizeof(float);
if (accum_c) {
_tile_loadd(4, c_tile_4, c_tile_stride);
_tile_loadd(5, c_tile_5, c_tile_stride);
_tile_loadd(6, c_tile_6, c_tile_stride);
_tile_loadd(7, c_tile_7, c_tile_stride);
} else {
_tile_zero(4);
_tile_zero(5);
_tile_zero(6);
_tile_zero(7);
}
for (int32_t k = 0; k < k_times; ++k) {
_tile_loadd(0, a_tile_0, a_tile_stride);
_tile_stream_loadd(2, b_tile_2, b_tile_stride);
_tile_dpbf16ps(4, 0, 2);
_tile_stream_loadd(3, b_tile_3, b_tile_stride);
_tile_dpbf16ps(5, 0, 3);
_tile_loadd(1, a_tile_1, a_tile_stride);
_tile_dpbf16ps(6, 1, 2);
_tile_dpbf16ps(7, 1, 3);
// update ptrs
if constexpr (phase == AttentionGemmPhase::QK) {
// Q buffer is prepacked
a_tile_0 += AMX_TILE_BYTES / sizeof(c10::BFloat16);
a_tile_1 += AMX_TILE_BYTES / sizeof(c10::BFloat16);
} else if constexpr (phase == AttentionGemmPhase::PV) {
// P buffer is not prepacked
a_tile_0 += AMX_TILE_ROW_BYTES / sizeof(c10::BFloat16);
a_tile_1 += AMX_TILE_ROW_BYTES / sizeof(c10::BFloat16);
} else {
TORCH_CHECK(false, "Unreachable");
}
b_tile_2 += AMX_TILE_BYTES / sizeof(c10::BFloat16);
b_tile_3 += AMX_TILE_BYTES / sizeof(c10::BFloat16);
}
_tile_stored(4, c_tile_4, c_tile_stride);
_tile_stored(5, c_tile_5, c_tile_stride);
_tile_stored(6, c_tile_6, c_tile_stride);
_tile_stored(7, c_tile_7, c_tile_stride);
}
FORCE_INLINE static void init_tile_config(int32_t m, __tilecfg& config) {
const int32_t m_0 = AMX_TILE_ROW_NUM;
const int32_t m_1 = m - AMX_TILE_ROW_NUM;
config.rows[0] = m_0;
config.rows[1] = m_1;
config.rows[2] = AMX_TILE_ROW_NUM;
config.rows[3] = AMX_TILE_ROW_NUM;
config.rows[4] = m_0;
config.rows[5] = m_0;
config.rows[6] = m_1;
config.rows[7] = m_1;
_tile_loadconfig(&config);
}
};
// 1-2-2 pattern, for 0 < m <= 16
// TILE 0, (1): load A matrix, use extra 1 tile for prefetch, row num should be
// m, m
// TILE 2, 3, (4, 5): load B matrix, use extra 2 tiles for prefetch, row
// num should be 16
// TILE 6, 7, (6, 7): store results C matrix, row num should be
// m
template <typename kv_cache_t>
class TileGemm122 {
public:
template <AttentionGemmPhase phase, int32_t k_size>
FORCE_INLINE static void gemm(const int32_t m_size, void* __restrict__ a_tile,
void* __restrict__ b_tile,
float* __restrict__ c_tile, const int64_t lda,
const int64_t ldb, const int64_t ldc,
const int32_t block_size,
const int32_t dynamic_k_size,
const bool accum_c) {
TORCH_CHECK(false, "Unsupported kv cache type for TileGemm122");
}
FORCE_INLINE static void init_tile_config(int32_t m, __tilecfg& config) {
TORCH_CHECK(false, "Unsupported kv cache type for TileGemm122");
}
};
template <>
class TileGemm122<c10::BFloat16> {
public:
template <AttentionGemmPhase phase, int32_t k_size>
FORCE_INLINE static void gemm(const int32_t m_size,
c10::BFloat16* __restrict__ a_tile,
c10::BFloat16* __restrict__ b_tile,
float* __restrict__ c_tile, const int64_t lda,
const int64_t ldb, const int64_t ldc,
const int32_t block_size,
const int32_t dynamic_k_size,
const bool accum_c) {
c10::BFloat16* __restrict__ a_tile_0 = a_tile;
c10::BFloat16* __restrict__ a_tile_1 = [&]() {
if constexpr (phase == AttentionGemmPhase::QK) {
// q_buffer is prepacked
return a_tile + AMX_TILE_BYTES / sizeof(c10::BFloat16);
} else if constexpr (phase == AttentionGemmPhase::PV) {
// logits_buffer is row-major
return a_tile + AMX_TILE_ROW_BYTES / sizeof(c10::BFloat16);
} else {
TORCH_CHECK(false, "Unreachable");
}
}();
const int64_t a_tile_stride = [&]() {
if constexpr (phase == AttentionGemmPhase::QK) {
// q_buffer is prepacked
return AMX_TILE_ROW_BYTES;
} else if constexpr (phase == AttentionGemmPhase::PV) {
// logits_buffer is row-major
return lda * sizeof(c10::BFloat16);
} else {
TORCH_CHECK(false, "Unreachable");
}
}();
c10::BFloat16* __restrict__ b_tile_2 = b_tile;
c10::BFloat16* __restrict__ b_tile_3 = [&]() {
if constexpr (phase == AttentionGemmPhase::QK) {
// k_cache is prepacked
return b_tile + (k_size * AMX_TILE_ROW_BYTES / 4);
} else if constexpr (phase == AttentionGemmPhase::PV) {
// v_cache is prepacked
return b_tile + (block_size * AMX_TILE_ROW_BYTES / 4);
} else {
TORCH_CHECK(false, "Unreachable");
}
}();
c10::BFloat16* __restrict__ b_tile_4 =
b_tile_2 + AMX_TILE_BYTES / sizeof(c10::BFloat16);
c10::BFloat16* __restrict__ b_tile_5 =
b_tile_3 + AMX_TILE_BYTES / sizeof(c10::BFloat16);
int64_t b_stride = AMX_TILE_ROW_BYTES;
float* __restrict__ c_tile_6 = c_tile;
float* __restrict__ c_tile_7 = c_tile + AMX_TILE_ROW_BYTES / sizeof(float);
int64_t c_stride = ldc * sizeof(float);
const int32_t k_times =
dynamic_k_size / (AMX_TILE_ROW_NUM * 4 / sizeof(c10::BFloat16));
const int32_t k_group_times = k_times / 2;
const bool has_tail = (k_times % 2 == 1);
if (accum_c) {
_tile_loadd(6, c_tile_6, c_stride);
_tile_loadd(7, c_tile_7, c_stride);
} else {
_tile_zero(6);
_tile_zero(7);
}
for (int32_t k = 0; k < k_group_times; ++k) {
_tile_loadd(0, a_tile_0, a_tile_stride);
_tile_stream_loadd(2, b_tile_2, b_stride);
_tile_dpbf16ps(6, 0, 2);
_tile_stream_loadd(3, b_tile_3, b_stride);
_tile_dpbf16ps(7, 0, 3);
_tile_loadd(1, a_tile_1, a_tile_stride);
_tile_stream_loadd(4, b_tile_4, b_stride);
_tile_dpbf16ps(6, 1, 4);
_tile_stream_loadd(5, b_tile_5, b_stride);
_tile_dpbf16ps(7, 1, 5);
// update ptrs
if constexpr (phase == AttentionGemmPhase::QK) {
// Q buffer is prepacked
a_tile_0 += 2 * AMX_TILE_BYTES / sizeof(c10::BFloat16);
a_tile_1 += 2 * AMX_TILE_BYTES / sizeof(c10::BFloat16);
} else if constexpr (phase == AttentionGemmPhase::PV) {
// P buffer is not prepacked
a_tile_0 += 2 * AMX_TILE_ROW_BYTES / sizeof(c10::BFloat16);
a_tile_1 += 2 * AMX_TILE_ROW_BYTES / sizeof(c10::BFloat16);
}
b_tile_2 += 2 * AMX_TILE_BYTES / sizeof(c10::BFloat16);
b_tile_3 += 2 * AMX_TILE_BYTES / sizeof(c10::BFloat16);
b_tile_4 += 2 * AMX_TILE_BYTES / sizeof(c10::BFloat16);
b_tile_5 += 2 * AMX_TILE_BYTES / sizeof(c10::BFloat16);
}
if (has_tail) {
_tile_loadd(0, a_tile_0, a_tile_stride);
_tile_stream_loadd(2, b_tile_2, b_stride);
_tile_dpbf16ps(6, 0, 2);
_tile_stream_loadd(3, b_tile_3, b_stride);
_tile_dpbf16ps(7, 0, 3);
}
_tile_stored(6, c_tile_6, c_stride);
_tile_stored(7, c_tile_7, c_stride);
}
FORCE_INLINE static void init_tile_config(int32_t m, __tilecfg& config) {
config.rows[0] = m;
config.rows[1] = m;
config.rows[2] = AMX_TILE_ROW_NUM;
config.rows[3] = AMX_TILE_ROW_NUM;
config.rows[4] = AMX_TILE_ROW_NUM;
config.rows[5] = AMX_TILE_ROW_NUM;
config.rows[6] = m;
config.rows[7] = m;
_tile_loadconfig(&config);
}
};
} // namespace
template <typename scalar_t, int64_t head_dim>
class AttentionImpl<ISA::AMX, scalar_t, head_dim> {
public:
using query_t = scalar_t;
using q_buffer_t = scalar_t;
using kv_cache_t = scalar_t;
using logits_buffer_t = float;
using partial_output_buffer_t = float;
using prob_buffer_t = scalar_t;
constexpr static int64_t BlockSizeAlignment =
AMX_TILE_ROW_BYTES /
sizeof(kv_cache_t); // KV token num unit of QK and PV phases
constexpr static int64_t HeadDimAlignment =
2 * (AMX_TILE_ROW_BYTES / 4); // headdim num unit of PV phase
constexpr static int64_t MaxQHeadNumPerIteration = 32;
constexpr static int64_t HeadDim = head_dim;
constexpr static ISA ISAType = ISA::AMX;
constexpr static bool scale_on_logits = true;
public:
AttentionImpl() : current_q_head_num_(0) {
// Use all columns in AMX tiles
vec_op::unroll_loop<int, 8>([&](int i) { amx_tile_config_.colsb[i] = 64; });
}
~AttentionImpl() { _tile_release(); }
template <template <typename tile_gemm_t> typename attention>
FORCE_INLINE void execute_attention(DEFINE_CPU_ATTENTION_PARAMS) {
if (q_head_num > AMX_TILE_ROW_NUM) {
if (q_head_num != current_q_head_num_) {
current_q_head_num_ = q_head_num;
TileGemm224<kv_cache_t>::init_tile_config(q_head_num, amx_tile_config_);
}
attention<TileGemm224<kv_cache_t>> attention_iteration;
attention_iteration(CPU_ATTENTION_PARAMS);
} else {
if (q_head_num != current_q_head_num_) {
current_q_head_num_ = q_head_num;
TileGemm122<kv_cache_t>::init_tile_config(q_head_num, amx_tile_config_);
}
attention<TileGemm122<kv_cache_t>> attention_iteration;
attention_iteration(CPU_ATTENTION_PARAMS);
}
}
// k_cache_token_group_stride: stride of K cache when move to next
// BlockSizeAlignment tokens in a block
constexpr static int64_t k_cache_token_group_stride(
const int32_t block_size) {
return BlockSizeAlignment * head_dim;
}
// v_cache_token_group_stride: stride of V cache when move to next
// BlockSizeAlignment tokens in a block
constexpr static int64_t v_cache_token_group_stride(
const int32_t block_size) {
return BlockSizeAlignment * (AMX_TILE_ROW_BYTES / 4);
}
// v_cache_head_group_stride: stride of V cache when move to next
// HeadDimAlignment head dims in a block
constexpr static int64_t v_cache_head_group_stride(const int32_t block_size) {
return block_size * HeadDimAlignment;
}
static void copy_q_heads_tile(
scalar_t* __restrict__ src, // [q_num, q_heads_per_kv, head_size]
scalar_t* __restrict__ q_buffer, const int32_t q_num,
const int32_t q_heads_per_kv, const int64_t q_num_stride,
const int64_t q_head_stride, const float scale) {
constexpr int64_t bytes_per_head = head_dim * sizeof(scalar_t);
static_assert(bytes_per_head % AMX_TILE_ROW_BYTES == 0);
constexpr int64_t head_size_block_num = bytes_per_head / AMX_TILE_ROW_BYTES;
constexpr int64_t head_elem_num_pre_block =
AMX_TILE_ROW_BYTES / sizeof(scalar_t);
int32_t idx = 0;
int8_t* __restrict__ q_buffer_iter = reinterpret_cast<int8_t*>(q_buffer);
for (int32_t q_num_idx = 0; q_num_idx < q_num;
++q_num_idx, src += q_num_stride) {
scalar_t* __restrict__ src_iter = src;
for (int32_t q_head_idx = 0; q_head_idx < q_heads_per_kv;
++q_head_idx, src_iter += q_head_stride) {
vec_op::unroll_loop<int32_t, head_size_block_num>(
[&](int32_t head_size_block_idx) {
// Use INT8Vec64 for 64 bytes block
vec_op::INT8Vec64 vec(src_iter + head_size_block_idx *
head_elem_num_pre_block);
vec.save(q_buffer_iter + head_size_block_idx * AMX_TILE_BYTES);
});
++idx;
q_buffer_iter += AMX_TILE_ROW_BYTES;
if ((idx & (AMX_TILE_ROW_NUM - 1)) == 0) {
// head is in another amx tile
q_buffer_iter -= AMX_TILE_ROW_NUM * AMX_TILE_ROW_BYTES;
q_buffer_iter += head_size_block_num * AMX_TILE_BYTES;
}
}
}
}
// reshape KV to AMX friendly layout
static void reshape_and_cache(
const scalar_t* __restrict__ key, const scalar_t* __restrict__ value,
scalar_t* __restrict__ key_cache, scalar_t* __restrict__ value_cache,
const int64_t* __restrict__ slot_mapping, const int64_t token_num,
const int64_t key_token_num_stride, const int64_t value_token_num_stride,
const int64_t head_num, const int64_t key_head_num_stride,
const int64_t value_head_num_stride, const int64_t num_blocks,
const int64_t num_blocks_stride, const int64_t cache_head_num_stride,
const int64_t block_size, const int64_t block_size_stride) {
// For AMX 2D tiles, size of each line is 64 bytes
constexpr int64_t amx_tile_row_size = AMX_TILE_ROW_BYTES;
// For AMX B martix, N always is 16
constexpr int64_t amx_b_tile_n_size = AMX_TILE_ROW_BYTES / 4;
constexpr int64_t amx_b_tile_k_size = amx_tile_row_size / sizeof(scalar_t);
// For now suppose block_size is divisible by amx_tile_column_num
TORCH_CHECK_EQ(block_size % amx_b_tile_k_size, 0);
#pragma omp parallel for collapse(2)
for (int64_t token_idx = 0; token_idx < token_num; ++token_idx) {
for (int64_t head_idx = 0; head_idx < head_num; ++head_idx) {
const int64_t pos = slot_mapping[token_idx];
if (pos < 0) {
// skip
continue;
}
const int64_t block_idx = pos / block_size;
const int64_t block_offset = pos % block_size;
{
// Write Key
// Head elements should be packed as quand-words and stored in token
// groups with (quadword_stride/4) tokens
constexpr int64_t token_num_per_group = amx_tile_row_size / 4;
static_assert(head_dim % (4 / sizeof(scalar_t)) == 0);
constexpr int64_t quadword_num = head_dim / (4 / sizeof(scalar_t));
const int32_t* key_start_quadword_ptr =
reinterpret_cast<const int32_t*>(
key + token_idx * key_token_num_stride +
head_idx * key_head_num_stride);
const int64_t group_idx = block_offset / token_num_per_group;
const int64_t group_offset = block_offset % token_num_per_group;
constexpr int64_t quadword_num_per_group =
token_num_per_group * quadword_num;
int32_t* key_cache_start_ptr =
reinterpret_cast<int32_t*>(key_cache +
block_idx * num_blocks_stride +
head_idx * cache_head_num_stride) +
group_idx * quadword_num_per_group + group_offset;
#pragma GCC unroll 8
for (int64_t i = 0, j = 0; j < quadword_num;
i += token_num_per_group, ++j) {
key_cache_start_ptr[i] = key_start_quadword_ptr[j];
}
}
{
// Write Value
// Different from Key, block_size dimension is packed rather than
// head_size dimension block_size dimension is packed as quand-words;
constexpr int64_t token_num_per_sub_group = 4 / sizeof(scalar_t);
const int64_t token_num_per_group = block_size;
constexpr int64_t head_elems_per_group = amx_b_tile_n_size;
const int64_t group_size = token_num_per_group * head_elems_per_group;
// For now suppose head_dim is divisible by amx_b_tile_n_size
static_assert(head_dim % head_elems_per_group == 0);
constexpr int64_t group_num = head_dim / head_elems_per_group;
const int64_t sub_group_idx = block_offset / token_num_per_sub_group;
const int64_t sub_group_offset =
block_offset % token_num_per_sub_group;
const scalar_t* value_start_ptr = value +
token_idx * value_token_num_stride +
head_idx * value_head_num_stride;
scalar_t* value_cache_start_ptr =
value_cache + block_idx * num_blocks_stride +
head_idx * cache_head_num_stride +
sub_group_idx * token_num_per_sub_group * amx_b_tile_n_size +
sub_group_offset;
for (int64_t i = 0; i < group_num; ++i) {
#pragma GCC unroll head_elems_per_group
for (int64_t j = 0, k = 0; j < head_elems_per_group;
++j, k += token_num_per_sub_group) {
value_cache_start_ptr[k] = value_start_ptr[j];
}
value_start_ptr += head_elems_per_group;
value_cache_start_ptr += group_size;
}
}
}
}
}
private:
alignas(64) __tilecfg amx_tile_config_;
int32_t current_q_head_num_;
};
} // namespace cpu_attention
#endif

2013
csrc/cpu/cpu_attn_impl.hpp Normal file

File diff suppressed because it is too large Load Diff

Some files were not shown because too many files have changed in this diff Show More