[Model] Lfm2Moe (#26344)

Signed-off-by: Paul Pak <paulpak58@gmail.com>
This commit is contained in:
Paul Pak 2025-10-08 01:03:05 +09:00 committed by GitHub
parent 1e4ecca1d0
commit 320feae6f5
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 967 additions and 7 deletions

View File

@ -390,6 +390,7 @@ th {
| `JAISLMHeadModel` | Jais | `inceptionai/jais-13b`, `inceptionai/jais-13b-chat`, `inceptionai/jais-30b-v3`, `inceptionai/jais-30b-chat-v3`, etc. | | ✅︎ | ✅︎ | | `JAISLMHeadModel` | Jais | `inceptionai/jais-13b`, `inceptionai/jais-13b-chat`, `inceptionai/jais-30b-v3`, `inceptionai/jais-30b-chat-v3`, etc. | | ✅︎ | ✅︎ |
| `JambaForCausalLM` | Jamba | `ai21labs/AI21-Jamba-1.5-Large`, `ai21labs/AI21-Jamba-1.5-Mini`, `ai21labs/Jamba-v0.1`, etc. | ✅︎ | ✅︎ | ✅︎ | | `JambaForCausalLM` | Jamba | `ai21labs/AI21-Jamba-1.5-Large`, `ai21labs/AI21-Jamba-1.5-Mini`, `ai21labs/Jamba-v0.1`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Lfm2ForCausalLM` | LFM2 | `LiquidAI/LFM2-1.2B`, `LiquidAI/LFM2-700M`, `LiquidAI/LFM2-350M`, etc. | ✅︎ | ✅︎ | ✅︎ | | `Lfm2ForCausalLM` | LFM2 | `LiquidAI/LFM2-1.2B`, `LiquidAI/LFM2-700M`, `LiquidAI/LFM2-350M`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Lfm2MoeForCausalLM` | LFM2MoE | `LiquidAI/LFM2-8B-A1B-preview`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `LlamaForCausalLM` | Llama 3.1, Llama 3, Llama 2, LLaMA, Yi | `meta-llama/Meta-Llama-3.1-405B-Instruct`, `meta-llama/Meta-Llama-3.1-70B`, `meta-llama/Meta-Llama-3-70B-Instruct`, `meta-llama/Llama-2-70b-hf`, `01-ai/Yi-34B`, etc. | ✅︎ | ✅︎ | ✅︎ | | `LlamaForCausalLM` | Llama 3.1, Llama 3, Llama 2, LLaMA, Yi | `meta-llama/Meta-Llama-3.1-405B-Instruct`, `meta-llama/Meta-Llama-3.1-70B`, `meta-llama/Meta-Llama-3-70B-Instruct`, `meta-llama/Llama-2-70b-hf`, `01-ai/Yi-34B`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `MambaForCausalLM` | Mamba | `state-spaces/mamba-130m-hf`, `state-spaces/mamba-790m-hf`, `state-spaces/mamba-2.8b-hf`, etc. | | ✅︎ | ✅︎ | | `MambaForCausalLM` | Mamba | `state-spaces/mamba-130m-hf`, `state-spaces/mamba-790m-hf`, `state-spaces/mamba-2.8b-hf`, etc. | | ✅︎ | ✅︎ |
| `Mamba2ForCausalLM` | Mamba2 | `mistralai/Mamba-Codestral-7B-v0.1`, etc. | | ✅︎ | ✅︎ | | `Mamba2ForCausalLM` | Mamba2 | `mistralai/Mamba-Codestral-7B-v0.1`, etc. | | ✅︎ | ✅︎ |

View File

@ -321,6 +321,9 @@ _TEXT_GENERATION_EXAMPLE_MODELS = {
"Lfm2ForCausalLM": _HfExamplesInfo( "Lfm2ForCausalLM": _HfExamplesInfo(
"LiquidAI/LFM2-1.2B", min_transformers_version="4.54" "LiquidAI/LFM2-1.2B", min_transformers_version="4.54"
), ),
"Lfm2MoeForCausalLM": _HfExamplesInfo(
"LiquidAI/LFM2-8B-A1B", min_transformers_version="4.58"
),
"LlamaForCausalLM": _HfExamplesInfo( "LlamaForCausalLM": _HfExamplesInfo(
"meta-llama/Llama-3.2-1B-Instruct", "meta-llama/Llama-3.2-1B-Instruct",
extras={ extras={

View File

@ -71,14 +71,14 @@ class Lfm2MLP(nn.Module):
output_sizes=[ff_dim] * 2, output_sizes=[ff_dim] * 2,
bias=False, bias=False,
quant_config=quant_config, quant_config=quant_config,
prefix=f"{prefix}.gate_up_proj", prefix=f"{prefix}.w1",
) )
self.w2 = RowParallelLinear( self.w2 = RowParallelLinear(
input_size=ff_dim, input_size=ff_dim,
output_size=dim, output_size=dim,
bias=False, bias=False,
quant_config=quant_config, quant_config=quant_config,
prefix=f"{prefix}.down_proj", prefix=f"{prefix}.w2",
) )
self.act_fn = SiluAndMul() self.act_fn = SiluAndMul()
@ -484,17 +484,12 @@ class Lfm2ForCausalLM(
quant_config = vllm_config.quant_config quant_config = vllm_config.quant_config
cache_config = vllm_config.cache_config cache_config = vllm_config.cache_config
lora_config = vllm_config.lora_config lora_config = vllm_config.lora_config
scheduler_config = vllm_config.scheduler_config
assert not cache_config.enable_prefix_caching, ( assert not cache_config.enable_prefix_caching, (
"Lfm2 currently does not support prefix caching" "Lfm2 currently does not support prefix caching"
) )
super().__init__() super().__init__()
self.config = config self.config = config
self.vllm_config = vllm_config
self.scheduler_config = scheduler_config
self.model_config = vllm_config.model_config
self.model = Lfm2Model( self.model = Lfm2Model(
vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model") vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")
) )

View File

@ -0,0 +1,797 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from collections.abc import Iterable
from typing import Any, Optional
import torch
import torch.nn as nn
from vllm.attention import Attention
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, ModelConfig, VllmConfig, get_current_vllm_config
from vllm.distributed import (
get_ep_group,
get_pp_group,
get_tensor_model_parallel_world_size,
)
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.fused_moe import FusedMoE
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (
MergedColumnParallelLinear,
QKVParallelLinear,
ReplicatedLinear,
RowParallelLinear,
)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.mamba.mamba_utils import (
MambaStateDtypeCalculator,
MambaStateShapeCalculator,
)
from vllm.model_executor.layers.mamba.short_conv import ShortConv
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
DEFAULT_VOCAB_PADDING_SIZE,
ParallelLMHead,
VocabParallelEmbedding,
)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.sequence import IntermediateTensors
from vllm.transformers_utils.configs import Lfm2MoeConfig
from .interfaces import (
HasInnerState,
IsHybrid,
MixtureOfExperts,
SupportsLoRA,
SupportsPP,
SupportsQuant,
)
from .utils import (
AutoWeightsLoader,
PPMissingLayer,
extract_layer_index,
is_pp_missing_parameter,
make_empty_intermediate_tensors_factory,
make_layers,
maybe_prefix,
)
class Lfm2MoeMlp(nn.Module):
def __init__(
self,
dim: int,
ff_dim: int,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.w1 = MergedColumnParallelLinear(
input_size=dim,
output_sizes=[ff_dim] * 2,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.w1",
)
self.w2 = RowParallelLinear(
input_size=ff_dim,
output_size=dim,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.w2",
)
self.act_fn = SiluAndMul()
def forward(self, x: torch.Tensor) -> torch.Tensor:
gate_up, _ = self.w1(x)
x = self.act_fn(gate_up)
x, _ = self.w2(x)
return x
class Lfm2MoeSparseMoeBlock(nn.Module):
def __init__(
self,
config: Lfm2MoeConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
enable_eplb: bool = False,
):
super().__init__()
self.tp_size = get_tensor_model_parallel_world_size()
self.routed_scaling_factor = config.routed_scaling_factor
self.ep_group = get_ep_group().device_group
self.ep_rank = self.ep_group.rank()
self.ep_size = self.ep_group.size()
self.n_routed_experts = config.num_experts
if self.tp_size > self.n_routed_experts:
raise ValueError(
f"Tensor parallel size {self.tp_size} is greater than "
f"the number of experts {self.n_routed_experts}."
)
# Load balancing settings.
vllm_config = get_current_vllm_config()
eplb_config = vllm_config.parallel_config.eplb_config
self.enable_eplb = enable_eplb
self.n_logical_experts = self.n_routed_experts
self.n_redundant_experts = eplb_config.num_redundant_experts
self.n_physical_experts = self.n_logical_experts + self.n_redundant_experts
self.n_local_physical_experts = self.n_physical_experts // self.ep_size
self.physical_expert_start = self.ep_rank * self.n_local_physical_experts
self.physical_expert_end = (
self.physical_expert_start + self.n_local_physical_experts
)
self.gate = ReplicatedLinear(
config.hidden_size,
config.num_experts,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.gate",
)
if config.use_expert_bias:
self.gate.e_score_correction_bias = nn.Parameter(
torch.empty(self.n_routed_experts, dtype=torch.float32)
)
else:
self.gate.e_score_correction_bias = None
self.experts = FusedMoE(
num_experts=self.n_routed_experts,
top_k=config.num_experts_per_tok,
hidden_size=config.hidden_size,
intermediate_size=config.moe_intermediate_size,
reduce_results=False,
renormalize=config.norm_topk_prob,
quant_config=quant_config,
use_grouped_topk=True, # needed for softmax score func
num_expert_group=1,
topk_group=1,
prefix=f"{prefix}.experts",
enable_eplb=self.enable_eplb,
num_redundant_experts=self.n_redundant_experts,
scoring_func="sigmoid",
e_score_correction_bias=self.gate.e_score_correction_bias,
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
orig_shape = hidden_states.shape
hidden_dim = hidden_states.shape[-1]
hidden_states = hidden_states.view(-1, hidden_dim)
# router_logits: (num_tokens, n_experts)
router_logits, _ = self.gate(hidden_states)
final_hidden_states = (
self.experts(hidden_states=hidden_states, router_logits=router_logits)
* self.routed_scaling_factor
)
if self.tp_size > 1:
final_hidden_states = self.experts.maybe_all_reduce_tensor_model_parallel( # noqa E501
final_hidden_states
)
return final_hidden_states.view(orig_shape)
class Lfm2MoeAttention(nn.Module):
def __init__(
self,
config: Lfm2MoeConfig,
layer_idx: int,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
rope_theta: float = 10000,
rope_scaling: Optional[dict[str, Any]] = None,
max_position_embeddings: int = 8192,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.layer_idx = layer_idx
self.hidden_size = hidden_size
self.num_kv_heads = num_kv_heads
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = num_kv_heads
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
self.head_dim = self.hidden_size // self.total_num_heads
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.rope_theta = rope_theta
self.max_position_embeddings = max_position_embeddings
self.qkv_proj = QKVParallelLinear(
hidden_size=self.hidden_size,
head_size=self.head_dim,
total_num_heads=self.total_num_heads,
total_num_kv_heads=self.total_num_kv_heads,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
self.out_proj = RowParallelLinear(
input_size=self.total_num_heads * self.head_dim,
output_size=self.hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.out_proj",
)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=self.max_position_embeddings,
base=self.rope_theta,
rope_scaling=rope_scaling,
is_neox_style=True,
)
self.attn = Attention(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
cache_config=cache_config,
prefix=f"{prefix}.attn",
)
self.q_layernorm = RMSNorm(self.head_dim, eps=config.norm_eps)
self.k_layernorm = RMSNorm(self.head_dim, eps=config.norm_eps)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
n_tokens, _ = hidden_states.shape
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q = q.view(n_tokens, self.num_heads, self.head_dim).contiguous()
k = k.view(n_tokens, self.num_kv_heads, self.head_dim).contiguous()
q = self.q_layernorm(q)
k = self.k_layernorm(k)
q, k = self.rotary_emb(positions, q, k)
q = q.view(n_tokens, self.num_heads * self.head_dim)
k = k.view(n_tokens, self.num_kv_heads * self.head_dim)
attn_output = self.attn(q, k, v)
output, _ = self.out_proj(attn_output)
return output
class Lfm2MoeAttentionDecoderLayer(nn.Module):
def __init__(
self,
config: Lfm2MoeConfig,
layer_idx: int,
model_config: Optional[ModelConfig] = None,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
enable_eplb: bool = False,
) -> None:
super().__init__()
self.prefix = prefix
self.config = config
self.layer_idx = layer_idx
rope_theta = getattr(config, "rope_theta", 10000)
rope_scaling = getattr(config, "rope_scaling", None)
if rope_scaling is not None and getattr(
config, "original_max_position_embeddings", None
):
rope_scaling["original_max_position_embeddings"] = (
config.original_max_position_embeddings
)
max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
self.self_attn = Lfm2MoeAttention(
config=config,
layer_idx=layer_idx,
hidden_size=config.hidden_size,
num_heads=config.num_attention_heads,
num_kv_heads=config.num_key_value_heads,
rope_theta=rope_theta,
rope_scaling=rope_scaling,
max_position_embeddings=max_position_embeddings,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.self_attn",
)
if layer_idx < config.num_dense_layers:
self.feed_forward = Lfm2MoeMlp(
dim=config.hidden_size,
ff_dim=config.intermediate_size,
quant_config=quant_config,
prefix=f"{prefix}.feed_forward",
)
else:
self.feed_forward = Lfm2MoeSparseMoeBlock(
config=config,
quant_config=quant_config,
prefix=f"{prefix}.feed_forward",
enable_eplb=enable_eplb,
)
self.operator_norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
self.ffn_norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
residual: Optional[torch.Tensor],
**kwargs,
) -> tuple[torch.Tensor, torch.Tensor]:
if residual is None:
residual = hidden_states
hidden_states = self.operator_norm(hidden_states)
else:
hidden_states, residual = self.operator_norm(hidden_states, residual)
hidden_states = self.self_attn(positions=positions, hidden_states=hidden_states)
hidden_states, residual = self.ffn_norm(hidden_states, residual)
return self.feed_forward(hidden_states), residual
class Lfm2MoeShortConvDecoderLayer(nn.Module):
def __init__(
self,
config: Lfm2MoeConfig,
layer_idx: int,
model_config: Optional[ModelConfig] = None,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
enable_eplb: bool = False,
) -> None:
super().__init__()
self.layer_idx = layer_idx
self.conv = ShortConv(
config=config,
dim=config.hidden_size,
layer_idx=layer_idx,
model_config=model_config,
cache_config=cache_config,
prefix=f"{prefix}.conv",
)
if layer_idx < config.num_dense_layers:
self.feed_forward = Lfm2MoeMlp(
dim=config.hidden_size,
ff_dim=config.intermediate_size,
quant_config=quant_config,
prefix=f"{prefix}.feed_forward",
)
else:
self.feed_forward = Lfm2MoeSparseMoeBlock(
config=config,
quant_config=quant_config,
prefix=f"{prefix}.feed_forward",
enable_eplb=enable_eplb,
)
self.operator_norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
self.ffn_norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
residual: Optional[torch.Tensor],
**kwargs,
):
if residual is None:
residual = hidden_states
hidden_states = self.operator_norm(hidden_states)
else:
hidden_states, residual = self.operator_norm(hidden_states, residual)
output = torch.empty_like(hidden_states)
self.conv(
hidden_states,
output,
)
hidden_states, residual = self.ffn_norm(output, residual)
hidden_states = self.feed_forward(hidden_states)
return hidden_states, residual
@support_torch_compile
class Lfm2MoeModel(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
model_config = vllm_config.model_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
lora_config = vllm_config.lora_config
parallel_config = vllm_config.parallel_config
enable_eplb = parallel_config.enable_eplb
eplb_config = parallel_config.eplb_config
self.num_redundant_experts = eplb_config.num_redundant_experts
self.config = config
lora_vocab = (
(lora_config.lora_extra_vocab_size * (lora_config.max_loras or 1))
if lora_config
else 0
)
self.vocab_size = config.vocab_size + lora_vocab
self.org_vocab_size = config.vocab_size
self.embed_tokens = VocabParallelEmbedding(
self.vocab_size, config.hidden_size, org_num_embeddings=config.vocab_size
)
def get_layer(prefix: str):
layer_idx = extract_layer_index(prefix)
is_attn = self.config.layer_types[layer_idx] == "full_attention"
layer_class = (
Lfm2MoeAttentionDecoderLayer
if is_attn
else Lfm2MoeShortConvDecoderLayer
)
return layer_class(
config,
layer_idx,
model_config,
cache_config,
quant_config=quant_config,
prefix=prefix,
enable_eplb=enable_eplb,
)
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers, get_layer, prefix=f"{prefix}.layers"
)
self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size
)
if get_pp_group().is_last_rank:
self.embedding_norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
else:
self.embedding_norm = PPMissingLayer()
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
residual = None
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
residual = intermediate_tensors["residual"]
for layer in self.layers[self.start_layer : self.end_layer]:
hidden_states, residual = layer(
positions=positions,
hidden_states=hidden_states,
residual=residual,
)
if not get_pp_group().is_last_rank:
return IntermediateTensors(
{"hidden_states": hidden_states, "residual": residual}
)
hidden_states, _ = self.embedding_norm(hidden_states, residual)
return hidden_states
def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
return FusedMoE.make_expert_params_mapping(
ckpt_gate_proj_name="w1",
ckpt_down_proj_name="w2",
ckpt_up_proj_name="w3",
num_experts=self.config.num_experts,
num_redundant_experts=self.num_redundant_experts,
)
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
stacked_params_mapping = [
(".qkv_proj", ".q_proj", "q"),
(".qkv_proj", ".k_proj", "k"),
(".qkv_proj", ".v_proj", "v"),
(".w1", ".w1", 0),
(".w1", ".w3", 1),
]
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
expert_params_mapping = self.get_expert_mapping()
for name, loaded_weight in weights:
if "expert_bias" in name:
name = name.replace("expert_bias", "gate.e_score_correction_bias")
for param_name, weight_name, shard_id in stacked_params_mapping:
# Skip non-stacked layers and experts (experts handled below).
if weight_name not in name:
continue
if ("feed_forward.experts." in name) and name not in params_dict:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if (
name.endswith(".bias") or name.endswith("_bias")
) and name not in params_dict:
continue
# Skip layers on other devices.
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
for mapping in expert_params_mapping:
param_name, weight_name, expert_id, shard_id = mapping
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip layers on other devices.
if is_pp_missing_parameter(name, self):
continue
# Skip loading extra bias for GPTQ models.
if (
name.endswith(".bias") or name.endswith("_bias")
) and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(
param,
loaded_weight,
name,
shard_id=shard_id,
expert_id=expert_id,
)
break
else:
# Skip loading extra bias for GPTQ models.
if (
name.endswith(".bias") or name.endswith("_bias")
) and name not in params_dict:
continue
# Skip layers on other devices.
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = getattr(
param, "weight_loader", default_weight_loader
)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
class Lfm2MoeForCausalLM(
nn.Module,
HasInnerState,
SupportsLoRA,
SupportsPP,
IsHybrid,
SupportsQuant,
MixtureOfExperts,
):
packed_modules_mapping = {
"qkv_proj": [
"q_proj",
"k_proj",
"v_proj",
],
"w1": [
"w1",
"w3",
],
}
# LoRA specific attributes
embedding_modules = {
"embed_tokens": "input_embeddings",
"lm_head": "output_embeddings",
}
embedding_padding_modules = ["lm_head"]
@classmethod
def get_mamba_state_dtype_from_config(
cls,
vllm_config: "VllmConfig",
) -> tuple[torch.dtype, ...]:
return MambaStateDtypeCalculator.short_conv_state_dtype(
vllm_config.model_config.dtype,
vllm_config.cache_config.mamba_cache_dtype,
)
@classmethod
def get_mamba_state_shape_from_config(
cls,
vllm_config: "VllmConfig",
) -> tuple[tuple[int, int]]:
"""Calculate shapes for LFM2's convolutional cache.
Args:
vllm_config: vLLM config
Returns:
Tuple containing:
- conv_state_shape: Shape for convolutional state cache
"""
parallel_config = vllm_config.parallel_config
hf_config = vllm_config.model_config.hf_config
return MambaStateShapeCalculator.short_conv_state_shape(
tp_world_size=parallel_config.tensor_parallel_size,
intermediate_size=hf_config.hidden_size,
conv_kernel=hf_config.conv_L_cache,
)
def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None:
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
cache_config = vllm_config.cache_config
lora_config = vllm_config.lora_config
assert not cache_config.enable_prefix_caching, (
"Lfm2Moe currently does not support prefix caching"
)
super().__init__()
self.config = config
self.model = Lfm2MoeModel(
vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")
)
if get_pp_group().is_last_rank:
self.unpadded_vocab_size = self.config.vocab_size
if lora_config:
self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
self.lm_head = ParallelLMHead(
self.unpadded_vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
padding_size=(
DEFAULT_VOCAB_PADDING_SIZE
# We need bigger padding if using lora for kernel
# compatibility
if not lora_config
else lora_config.lora_vocab_padding_size
),
quant_config=quant_config,
prefix=maybe_prefix(prefix, "lm_head"),
)
self.lm_head = self.lm_head.tie_weights(self.model.embed_tokens)
else:
self.lm_head = PPMissingLayer()
self.logits_processor = LogitsProcessor(
self.unpadded_vocab_size, config.vocab_size
)
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors
)
# Set MoE hyperparameters
self.expert_weights = []
self.moe_layers: list[FusedMoE] = []
example_layer = None
for layer in self.model.layers:
if isinstance(layer, PPMissingLayer):
continue
assert isinstance(
layer, (Lfm2MoeAttentionDecoderLayer, Lfm2MoeShortConvDecoderLayer)
)
if isinstance(layer.feed_forward, Lfm2MoeSparseMoeBlock):
example_layer = layer.feed_forward
self.moe_layers.append(layer.feed_forward.experts)
if example_layer is None:
raise RuntimeError(
"No Lfm2MoeSparseMoeBlock layer found in the model.layers."
)
self.num_moe_layers = len(self.moe_layers)
self.num_expert_groups = 1
self.num_shared_experts = 0
self.num_logical_experts = example_layer.n_logical_experts
self.num_physical_experts = example_layer.n_physical_experts
self.num_local_physical_experts = example_layer.n_local_physical_experts
self.num_routed_experts = example_layer.n_routed_experts
self.num_redundant_experts = example_layer.n_redundant_experts
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def set_eplb_state(
self,
expert_load_view: torch.Tensor,
logical_to_physical_map: torch.Tensor,
logical_replica_count: torch.Tensor,
) -> None:
for layer_idx, layer in enumerate(self.moe_layers):
# Register the expert weights.
self.expert_weights.append(layer.get_expert_weights())
layer.set_eplb_state(
moe_layer_idx=layer_idx,
expert_load_view=expert_load_view,
logical_to_physical_map=logical_to_physical_map,
logical_replica_count=logical_replica_count,
)
def update_physical_experts_metadata(
self,
num_physical_experts: int,
num_local_physical_experts: int,
) -> None:
assert self.num_local_physical_experts == num_local_physical_experts
self.num_physical_experts = num_physical_experts
self.num_local_physical_experts = num_local_physical_experts
self.num_redundant_experts = num_physical_experts - self.num_logical_experts
for layer in self.model.layers:
if isinstance(layer.feed_forward, Lfm2MoeSparseMoeBlock):
moe = layer.feed_forward
moe.n_local_physical_experts = num_local_physical_experts
moe.n_physical_experts = num_physical_experts
moe.n_redundant_experts = self.num_redundant_experts
moe.experts.update_expert_map()
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
hidden_states = self.model(
input_ids, positions, intermediate_tensors, inputs_embeds
)
return hidden_states
def compute_logits(self, hidden_states: torch.Tensor) -> torch.Tensor:
logits = self.logits_processor(self.lm_head, hidden_states)
return logits
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
loader = AutoWeightsLoader(
self,
skip_prefixes=(["lm_head."] if self.config.tie_word_embeddings else None),
)
return loader.load_weights(weights)
def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
return self.model.get_expert_mapping()

View File

@ -119,6 +119,7 @@ _TEXT_GENERATION_MODELS = {
"JAISLMHeadModel": ("jais", "JAISLMHeadModel"), "JAISLMHeadModel": ("jais", "JAISLMHeadModel"),
"JambaForCausalLM": ("jamba", "JambaForCausalLM"), "JambaForCausalLM": ("jamba", "JambaForCausalLM"),
"Lfm2ForCausalLM": ("lfm2", "Lfm2ForCausalLM"), "Lfm2ForCausalLM": ("lfm2", "Lfm2ForCausalLM"),
"Lfm2MoeForCausalLM": ("lfm2_moe", "Lfm2MoeForCausalLM"),
"LlamaForCausalLM": ("llama", "LlamaForCausalLM"), "LlamaForCausalLM": ("llama", "LlamaForCausalLM"),
"Llama4ForCausalLM": ("llama4", "Llama4ForCausalLM"), "Llama4ForCausalLM": ("llama4", "Llama4ForCausalLM"),
# For decapoda-research/llama-* # For decapoda-research/llama-*

View File

@ -91,6 +91,7 @@ _CONFIG_REGISTRY: dict[str, type[PretrainedConfig]] = LazyConfigDict(
step3_vl="Step3VLConfig", step3_vl="Step3VLConfig",
step3_text="Step3TextConfig", step3_text="Step3TextConfig",
qwen3_next="Qwen3NextConfig", qwen3_next="Qwen3NextConfig",
lfm2_moe="Lfm2MoeConfig",
) )
_CONFIG_ATTRS_MAPPING: dict[str, str] = { _CONFIG_ATTRS_MAPPING: dict[str, str] = {

View File

@ -19,6 +19,7 @@ from vllm.transformers_utils.configs.eagle import EAGLEConfig
from vllm.transformers_utils.configs.falcon import RWConfig from vllm.transformers_utils.configs.falcon import RWConfig
from vllm.transformers_utils.configs.jais import JAISConfig from vllm.transformers_utils.configs.jais import JAISConfig
from vllm.transformers_utils.configs.kimi_vl import KimiVLConfig from vllm.transformers_utils.configs.kimi_vl import KimiVLConfig
from vllm.transformers_utils.configs.lfm2_moe import Lfm2MoeConfig
from vllm.transformers_utils.configs.medusa import MedusaConfig from vllm.transformers_utils.configs.medusa import MedusaConfig
from vllm.transformers_utils.configs.midashenglm import MiDashengLMConfig from vllm.transformers_utils.configs.midashenglm import MiDashengLMConfig
from vllm.transformers_utils.configs.mlp_speculator import MLPSpeculatorConfig from vllm.transformers_utils.configs.mlp_speculator import MLPSpeculatorConfig
@ -46,6 +47,7 @@ __all__ = [
"EAGLEConfig", "EAGLEConfig",
"RWConfig", "RWConfig",
"JAISConfig", "JAISConfig",
"Lfm2MoeConfig",
"MedusaConfig", "MedusaConfig",
"MiDashengLMConfig", "MiDashengLMConfig",
"MLPSpeculatorConfig", "MLPSpeculatorConfig",

View File

@ -0,0 +1,160 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from typing import Optional
from transformers.configuration_utils import PretrainedConfig
class Lfm2MoeConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Lfm2MoeModel`]. It is used to instantiate a LFM2 Moe
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the LFM2-8B-A1B model.
e.g. [LiquidAI/LFM2-8B-A1B](https://huggingface.co/LiquidAI/LFM2-8B-A1B)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 65536):
Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Lfm2Model`]
hidden_size (`int`, *optional*, defaults to 2048):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 7168):
Dimension of the MLP representations.
moe_intermediate_size (`int`, *optional*, defaults to 1792):
Intermediate size of the routed expert.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
pad_token_id (`int`, *optional*, defaults to 0):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 1):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 2):
End of stream token id.
tie_word_embeddings (`bool`, *optional*, defaults to `True`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 1000000.0):
The base period of the RoPE embeddings.
max_position_embeddings (`int`, *optional*, defaults to 128000):
The maximum sequence length that this model might ever be used with.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the rms normalization layers.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*, defaults to 8):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details, check out [this
paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to
`num_attention_heads`.
conv_bias (`bool`, *optional*, defaults to `False`):
Whether to use bias in the conv layers.
conv_L_cache (`int`, *optional*, defaults to 3):
L_cache dim in the conv layers.
num_dense_layers (`int`, *optional*, defaults to 2):
Number of dense Lfm2MoeMLP layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
num_experts_per_tok (`int`, *optional*, defaults to 4):
Number of selected experts.
num_experts (`int`, *optional*, defaults to 32):
Number of routed experts.
use_expert_bias (`bool`, *optional*, defaults to `True`):
Whether to use the expert bias on the routing weights.
routed_scaling_factor (`float`, *optional*, defaults to 1.0):
Scaling factor for routed experts in MoE models.
norm_topk_prob (`bool`, *optional*, defaults to `True`):
Whether to normalize the topk probabilities.
layer_types (`Optional`, *optional*):
Type of each layers.
```python
>>> from transformers import Lfm2MoeModel, Lfm2MoeConfig
>>> # Initializing a LFM2 Moe model
>>> configuration = Lfm2MoeConfig()
>>> # Initializing a model from the LFM2-8B-A1B style configuration
>>> model = Lfm2MoeModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```""" # noqa: E501
model_type = "lfm2_moe"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size: int = 65536,
hidden_size: int = 2048,
intermediate_size: int = 7168,
moe_intermediate_size: int = 1792,
num_hidden_layers: int = 32,
pad_token_id: int = 0,
bos_token_id: int = 1,
eos_token_id: int = 2,
tie_word_embeddings: bool = True,
rope_theta: float = 1000000.0,
max_position_embeddings: int = 128_000,
use_cache: bool = True,
norm_eps: float = 0.00001,
num_attention_heads: int = 32,
num_key_value_heads: int = 8,
conv_bias: bool = False,
conv_L_cache: int = 3,
num_dense_layers: int = 2,
num_experts_per_tok: int = 4,
num_experts: int = 32,
use_expert_bias: bool = True,
routed_scaling_factor: float = 1.0,
norm_topk_prob: bool = True,
layer_types: Optional[list[str]] = None,
**kwargs,
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.rope_theta = rope_theta
self.max_position_embeddings = max_position_embeddings
self.use_cache = use_cache
self.norm_eps = norm_eps
# attn operator config
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
# custom operator config
self.conv_bias = conv_bias
self.conv_L_cache = conv_L_cache
# moe config
self.num_dense_layers = num_dense_layers
self.moe_intermediate_size = moe_intermediate_size
self.num_experts_per_tok = num_experts_per_tok
self.num_experts = num_experts
self.use_expert_bias = use_expert_bias
self.routed_scaling_factor = routed_scaling_factor
self.norm_topk_prob = norm_topk_prob
self.layer_types = layer_types
tie_word_embeddings = kwargs.get(
"tie_embedding", tie_word_embeddings
) # to fit original config keys
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
__all__ = ["Lfm2MoeConfig"]