mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2026-01-08 10:34:08 +08:00
[bugfix] interleaving sliding window for cohere2 model (#11583)
Signed-off-by: youkaichao <youkaichao@gmail.com>
This commit is contained in:
parent
d427e5cfda
commit
328841d002
@ -112,7 +112,7 @@ See [this page](#generative-models) for more information on how to use generativ
|
||||
- :code:`THUDM/chatglm2-6b`, :code:`THUDM/chatglm3-6b`, etc.
|
||||
- ✅︎
|
||||
- ✅︎
|
||||
* - :code:`CohereForCausalLM`,:code:`Cohere2ForCausalLM`
|
||||
* - :code:`CohereForCausalLM`, :code:`Cohere2ForCausalLM`
|
||||
- Command-R
|
||||
- :code:`CohereForAI/c4ai-command-r-v01`, :code:`CohereForAI/c4ai-command-r7b-12-2024`, etc.
|
||||
- ✅︎
|
||||
|
||||
@ -1,7 +1,6 @@
|
||||
from unittest.mock import patch
|
||||
|
||||
import pytest
|
||||
import transformers
|
||||
from transformers import PretrainedConfig
|
||||
|
||||
from vllm import LLM
|
||||
@ -12,9 +11,6 @@ from .registry import HF_EXAMPLE_MODELS
|
||||
@pytest.mark.parametrize("model_arch", HF_EXAMPLE_MODELS.get_supported_archs())
|
||||
def test_can_initialize(model_arch):
|
||||
model_info = HF_EXAMPLE_MODELS.get_hf_info(model_arch)
|
||||
if (model_arch == "Cohere2ForCausalLM"
|
||||
and transformers.__version__ < "4.48.0"):
|
||||
pytest.skip(reason="Model introduced in HF >= 4.48.0")
|
||||
if not model_info.is_available_online:
|
||||
pytest.skip("Model is not available online")
|
||||
|
||||
|
||||
@ -301,7 +301,7 @@ class ModelConfig:
|
||||
sliding_window = getattr(self.hf_text_config, "sliding_window", None)
|
||||
has_interleaved_attention = (sliding_window is not None) and (
|
||||
isinstance(sliding_window, list) or
|
||||
(self.hf_text_config.model_type in ["gemma2"]))
|
||||
(self.hf_text_config.model_type in ["gemma2", "cohere2"]))
|
||||
|
||||
if (not self.disable_sliding_window and has_interleaved_attention):
|
||||
if envs.VLLM_ATTENTION_BACKEND == "XFORMERS":
|
||||
|
||||
@ -172,16 +172,18 @@ class CohereAttention(nn.Module):
|
||||
is_neox_style=False,
|
||||
)
|
||||
|
||||
sliding_window = getattr(config, "sliding_window", None)
|
||||
# Model v2 has sliding windows, v1 does not
|
||||
self.v1 = sliding_window is None
|
||||
# Model v2 has interleaved sliding windows, v1 does not
|
||||
interleaved_sliding_window = getattr(config,
|
||||
"interleaved_sliding_window",
|
||||
None)
|
||||
self.v1 = interleaved_sliding_window is None
|
||||
|
||||
layer_idx = extract_layer_index(prefix)
|
||||
layer_has_sliding_window = (
|
||||
getattr(config, "sliding_window_pattern", False)
|
||||
and (layer_idx + 1) % self.config.sliding_window_pattern != 0)
|
||||
|
||||
self.sliding_window = (sliding_window
|
||||
self.sliding_window = (interleaved_sliding_window
|
||||
if layer_has_sliding_window else None)
|
||||
|
||||
self.attn = Attention(self.num_heads,
|
||||
|
||||
@ -22,9 +22,9 @@ from vllm.envs import VLLM_USE_MODELSCOPE
|
||||
from vllm.logger import init_logger
|
||||
# yapf conflicts with isort for this block
|
||||
# yapf: disable
|
||||
from vllm.transformers_utils.configs import (ChatGLMConfig, DbrxConfig,
|
||||
EAGLEConfig, ExaoneConfig,
|
||||
H2OVLChatConfig,
|
||||
from vllm.transformers_utils.configs import (ChatGLMConfig, Cohere2Config,
|
||||
DbrxConfig, EAGLEConfig,
|
||||
ExaoneConfig, H2OVLChatConfig,
|
||||
InternVLChatConfig, JAISConfig,
|
||||
MedusaConfig, MllamaConfig,
|
||||
MLPSpeculatorConfig, MPTConfig,
|
||||
@ -52,6 +52,7 @@ _CONFIG_REGISTRY_OVERRIDE_HF: Dict[str, Type[PretrainedConfig]] = {
|
||||
|
||||
_CONFIG_REGISTRY: Dict[str, Type[PretrainedConfig]] = {
|
||||
"chatglm": ChatGLMConfig,
|
||||
"cohere2": Cohere2Config,
|
||||
"dbrx": DbrxConfig,
|
||||
"mpt": MPTConfig,
|
||||
"RefinedWeb": RWConfig, # For tiiuae/falcon-40b(-instruct)
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
from vllm.transformers_utils.configs.chatglm import ChatGLMConfig
|
||||
from vllm.transformers_utils.configs.cohere2 import Cohere2Config
|
||||
from vllm.transformers_utils.configs.dbrx import DbrxConfig
|
||||
from vllm.transformers_utils.configs.eagle import EAGLEConfig
|
||||
from vllm.transformers_utils.configs.exaone import ExaoneConfig
|
||||
@ -22,6 +23,7 @@ from vllm.transformers_utils.configs.ultravox import UltravoxConfig
|
||||
|
||||
__all__ = [
|
||||
"ChatGLMConfig",
|
||||
"Cohere2Config",
|
||||
"DbrxConfig",
|
||||
"MPTConfig",
|
||||
"RWConfig",
|
||||
|
||||
192
vllm/transformers_utils/configs/cohere2.py
Normal file
192
vllm/transformers_utils/configs/cohere2.py
Normal file
@ -0,0 +1,192 @@
|
||||
# ruff: noqa
|
||||
|
||||
# Adapted from
|
||||
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/cohere2/configuration_cohere2.py
|
||||
from transformers import PretrainedConfig
|
||||
from transformers.modeling_rope_utils import rope_config_validation
|
||||
|
||||
|
||||
class Cohere2Config(PretrainedConfig):
|
||||
r"""
|
||||
This is the configuration class to store the configuration of a [`CohereModel`]. It is used to instantiate an Cohere
|
||||
model according to the specified arguments, defining the model architecture.
|
||||
|
||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||
documentation from [`PretrainedConfig`] for more information. Instantiating a configuration
|
||||
with the defaults will yield a similar configuration to that of the [CohereForAI/c4ai-command-r-v01](https://huggingface.co/CohereForAI/c4ai-command-r-v01) model.
|
||||
|
||||
|
||||
Args:
|
||||
vocab_size (`int`, *optional*, defaults to 256000):
|
||||
Vocabulary size of the Cohere model. Defines the number of different tokens that can be represented by the
|
||||
`inputs_ids` passed when calling [`CohereModel`]
|
||||
hidden_size (`int`, *optional*, defaults to 8192):
|
||||
Dimension of the hidden representations.
|
||||
intermediate_size (`int`, *optional*, defaults to 22528):
|
||||
Dimension of the MLP representations.
|
||||
logit_scale (`float`, *optional*, defaults to 0.0625):
|
||||
The scaling factor for the output logits.
|
||||
num_hidden_layers (`int`, *optional*, defaults to 40):
|
||||
Number of hidden layers in the Transformer decoder.
|
||||
num_attention_heads (`int`, *optional*, defaults to 64):
|
||||
Number of attention heads for each attention layer in the Transformer decoder.
|
||||
num_key_value_heads (`int`, *optional*):
|
||||
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
||||
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
||||
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
||||
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
||||
by meanpooling all the original heads within that group. For more details checkout [this
|
||||
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
||||
`num_attention_heads`.
|
||||
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
||||
The non-linear activation function (function or string) in the decoder.
|
||||
max_position_embeddings (`int`, *optional*, defaults to 8192):
|
||||
The maximum sequence length that this model might ever be used with.
|
||||
initializer_range (`float`, *optional*, defaults to 0.02):
|
||||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
||||
The epsilon used by the layer normalization.
|
||||
use_cache (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
||||
relevant if `config.is_decoder=True`.
|
||||
pad_token_id (`int`, *optional*, defaults to 0):
|
||||
Padding token id.
|
||||
bos_token_id (`int`, *optional*, defaults to 5):
|
||||
Beginning of stream token id.
|
||||
eos_token_id (`int`, *optional*, defaults to 255001):
|
||||
End of stream token id.
|
||||
tie_word_embeddings (`bool`, *optional*, defaults to `True`):
|
||||
Whether to tie weight embeddings
|
||||
rope_theta (`float`, *optional*, defaults to 10000.0):
|
||||
The base period of the RoPE embeddings.
|
||||
rope_scaling (`Dict`, *optional*):
|
||||
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
||||
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
||||
accordingly.
|
||||
Expected contents:
|
||||
`rope_type` (`str`):
|
||||
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
||||
'llama3'], with 'default' being the original RoPE implementation.
|
||||
`factor` (`float`, *optional*):
|
||||
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
||||
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
||||
original maximum pre-trained length.
|
||||
`original_max_position_embeddings` (`int`, *optional*):
|
||||
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
||||
pretraining.
|
||||
`attention_factor` (`float`, *optional*):
|
||||
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
||||
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
||||
`factor` field to infer the suggested value.
|
||||
`beta_fast` (`float`, *optional*):
|
||||
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
||||
ramp function. If unspecified, it defaults to 32.
|
||||
`beta_slow` (`float`, *optional*):
|
||||
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
||||
ramp function. If unspecified, it defaults to 1.
|
||||
`short_factor` (`List[float]`, *optional*):
|
||||
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
||||
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
||||
size divided by the number of attention heads divided by 2
|
||||
`long_factor` (`List[float]`, *optional*):
|
||||
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
||||
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
||||
size divided by the number of attention heads divided by 2
|
||||
`low_freq_factor` (`float`, *optional*):
|
||||
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
||||
`high_freq_factor` (`float`, *optional*):
|
||||
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
||||
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
||||
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
||||
attention_dropout (`float`, *optional*, defaults to 0.0):
|
||||
The dropout ratio for the attention probabilities.
|
||||
sliding_window (`int`, *optional*, defaults to 4096):
|
||||
Size of the sliding window attention context.
|
||||
sliding_window_pattern (`int`, *optional*, defaults to 4):
|
||||
Pattern for the sliding window attention.
|
||||
cache_implementation (`str`, *optional*, defaults to `"hybrid"`): the cache type to be used with `generate`.
|
||||
|
||||
```python
|
||||
>>> from transformers import Cohere2Model, Cohere2Config
|
||||
|
||||
>>> # Initializing a Cohere Nextmodel configuration
|
||||
>>> configuration = Cohere2Config()
|
||||
|
||||
>>> # Initializing a model from the Cohere2 configuration
|
||||
>>> model = Cohere2Model(configuration) # doctest: +SKIP
|
||||
|
||||
>>> # Accessing the model configuration
|
||||
>>> configuration = model.config # doctest: +SKIP
|
||||
```
|
||||
"""
|
||||
|
||||
model_type = "cohere2"
|
||||
keys_to_ignore_at_inference = ["past_key_values"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=256000,
|
||||
hidden_size=8192,
|
||||
intermediate_size=22528,
|
||||
logit_scale=0.0625,
|
||||
num_hidden_layers=40,
|
||||
num_attention_heads=64,
|
||||
num_key_value_heads=None,
|
||||
hidden_act="silu",
|
||||
max_position_embeddings=8192,
|
||||
initializer_range=0.02,
|
||||
layer_norm_eps=1e-5,
|
||||
use_cache=True,
|
||||
pad_token_id=0,
|
||||
bos_token_id=5,
|
||||
eos_token_id=255001,
|
||||
tie_word_embeddings=True,
|
||||
rope_theta=10000.0,
|
||||
rope_scaling=None,
|
||||
attention_bias=False,
|
||||
attention_dropout=0.0,
|
||||
sliding_window=4096,
|
||||
sliding_window_pattern=4,
|
||||
cache_implementation="hybrid",
|
||||
**kwargs,
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.hidden_size = hidden_size
|
||||
self.logit_scale = logit_scale
|
||||
self.intermediate_size = intermediate_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
|
||||
# for backward compatibility
|
||||
if num_key_value_heads is None:
|
||||
num_key_value_heads = num_attention_heads
|
||||
|
||||
self.num_key_value_heads = num_key_value_heads
|
||||
self.hidden_act = hidden_act
|
||||
self.initializer_range = initializer_range
|
||||
self.layer_norm_eps = layer_norm_eps
|
||||
self.use_cache = use_cache
|
||||
self.rope_theta = rope_theta
|
||||
self.rope_scaling = rope_scaling
|
||||
self.attention_bias = attention_bias
|
||||
self.attention_dropout = attention_dropout
|
||||
self.sliding_window = sliding_window
|
||||
self.sliding_window_pattern = sliding_window_pattern
|
||||
# Need to specify head_dim in the config so it can be used in the attention forward functions
|
||||
self.head_dim = hidden_size // num_attention_heads
|
||||
self.cache_implementation = cache_implementation
|
||||
|
||||
# Validate the correctness of rotary position embeddings parameters
|
||||
rope_config_validation(self)
|
||||
|
||||
super().__init__(
|
||||
pad_token_id=pad_token_id,
|
||||
bos_token_id=bos_token_id,
|
||||
eos_token_id=eos_token_id,
|
||||
tie_word_embeddings=tie_word_embeddings,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
__all__ = ["Cohere2Config"]
|
||||
Loading…
x
Reference in New Issue
Block a user