[V1][Spec Decoding] Add num_drafts and num_accepted_tokens_per_position metrics (#16665)

Signed-off-by: Mark McLoughlin <markmc@redhat.com>
This commit is contained in:
Mark McLoughlin 2025-04-24 16:57:40 +01:00 committed by GitHub
parent 1bcbcbf574
commit 340d7b1b21
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 158 additions and 60 deletions

View File

@ -6,7 +6,7 @@ import pytest
import torch import torch
from vllm.config import (CacheConfig, KVTransferConfig, ModelConfig, from vllm.config import (CacheConfig, KVTransferConfig, ModelConfig,
SchedulerConfig, VllmConfig) SchedulerConfig, SpeculativeConfig, VllmConfig)
from vllm.multimodal.inputs import MultiModalKwargs, PlaceholderRange from vllm.multimodal.inputs import MultiModalKwargs, PlaceholderRange
from vllm.sampling_params import SamplingParams from vllm.sampling_params import SamplingParams
from vllm.v1.core.sched.output import SchedulerOutput from vllm.v1.core.sched.output import SchedulerOutput
@ -31,6 +31,7 @@ def create_scheduler(
num_blocks: int = 10000, num_blocks: int = 10000,
block_size: int = 16, block_size: int = 16,
max_model_len: Optional[int] = None, max_model_len: Optional[int] = None,
num_speculative_tokens: Optional[int] = None,
) -> Scheduler: ) -> Scheduler:
'''Create scheduler under test. '''Create scheduler under test.
@ -81,11 +82,17 @@ def create_scheduler(
kv_connector_extra_config={"shared_storage_path": "local_storage"}, kv_connector_extra_config={"shared_storage_path": "local_storage"},
) if use_kv_connector else None ) if use_kv_connector else None
speculative_config: Optional[SpeculativeConfig] = None
if num_speculative_tokens is not None:
speculative_config = SpeculativeConfig(
model="ngram", num_speculative_tokens=num_speculative_tokens)
vllm_config = VllmConfig( vllm_config = VllmConfig(
scheduler_config=scheduler_config, scheduler_config=scheduler_config,
model_config=model_config, model_config=model_config,
cache_config=cache_config, cache_config=cache_config,
kv_transfer_config=kv_transfer_config, kv_transfer_config=kv_transfer_config,
speculative_config=speculative_config,
) )
kv_cache_config = KVCacheConfig( kv_cache_config = KVCacheConfig(
num_blocks=num_blocks, # A large number of blocks to hold all requests num_blocks=num_blocks, # A large number of blocks to hold all requests
@ -429,7 +436,7 @@ def test_schedule_concurrent_partial_requests(enable_prefix_caching: bool):
def test_stop_via_update_from_output(): def test_stop_via_update_from_output():
"""Test stopping behavior through update_from_output""" """Test stopping behavior through update_from_output"""
scheduler = create_scheduler() scheduler = create_scheduler(num_speculative_tokens=1)
# Test case 1: Stop on EOS token # Test case 1: Stop on EOS token
requests = create_requests(num_requests=2, max_tokens=10) requests = create_requests(num_requests=2, max_tokens=10)
@ -480,7 +487,7 @@ def test_stop_via_update_from_output():
assert list(requests[1].output_token_ids) == [10, 11] assert list(requests[1].output_token_ids) == [10, 11]
# Test case 2: Stop on custom stop token # Test case 2: Stop on custom stop token
scheduler = create_scheduler() scheduler = create_scheduler(num_speculative_tokens=2)
requests = create_requests(num_requests=2, requests = create_requests(num_requests=2,
max_tokens=10, max_tokens=10,
stop_token_ids=[42, 43]) stop_token_ids=[42, 43])
@ -531,7 +538,7 @@ def test_stop_via_update_from_output():
assert list(requests[1].output_token_ids) == [13, 14] assert list(requests[1].output_token_ids) == [13, 14]
# Test case 3: Stop on max tokens # Test case 3: Stop on max tokens
scheduler = create_scheduler() scheduler = create_scheduler(num_speculative_tokens=2)
requests = create_requests(num_requests=2, max_tokens=2) requests = create_requests(num_requests=2, max_tokens=2)
for req in requests: for req in requests:
req.num_computed_tokens = req.num_tokens req.num_computed_tokens = req.num_tokens
@ -580,7 +587,7 @@ def test_stop_via_update_from_output():
assert list(requests[1].output_token_ids) == [13] assert list(requests[1].output_token_ids) == [13]
# Test case 4: Ignore EOS flag # Test case 4: Ignore EOS flag
scheduler = create_scheduler() scheduler = create_scheduler(num_speculative_tokens=2)
requests = create_requests(num_requests=1, max_tokens=10) requests = create_requests(num_requests=1, max_tokens=10)
requests[0].sampling_params.ignore_eos = True requests[0].sampling_params.ignore_eos = True
requests[0].num_computed_tokens = requests[0].num_tokens requests[0].num_computed_tokens = requests[0].num_tokens
@ -682,13 +689,14 @@ def test_schedule_concurrent_batches(enable_prefix_caching: Optional[bool],
@pytest.mark.parametrize( @pytest.mark.parametrize(
"spec_tokens,output_tokens,expected", "spec_tokens,output_tokens,expected",
[ [
([[1, 2, 3]], [[1, 2, 3, 4]], (3, 3)), # perfect match ([[1, 2, 3]], [[1, 2, 3, 4]], (1, 3, 3, [1, 1, 1])), # perfect match
([[1, 2, 3]], [[1, 5]], (3, 1)), # early mismatch ([[1, 2, 3]], [[1, 5]], (1, 3, 1, [1, 0, 0])), # early mismatch
([[1, 2], [3]], [[1, 2, 5], [3, 4]], (3, 3)), # multiple sequences ([[1, 2], [3]], [[1, 2, 5], [3, 4]],
([[1]], [[1, 2]], (1, 1)), # single token sequence (2, 3, 3, [2, 1])), # multiple sequences
([[]], [[5]], (0, 0)), # empty sequence ([[1]], [[1, 2]], (1, 1, 1, [1])), # single token sequence
([[]], [[5]], (0, 0, 0, [0])), # empty sequence
([[1, 2, 3], [4, 5, 6]], [[1, 2, 7], [4, 8]], ([[1, 2, 3], [4, 5, 6]], [[1, 2, 7], [4, 8]],
(6, 3)), # multiple mismatches (2, 6, 3, [2, 1, 0])), # multiple mismatches
]) ])
def test_schedule_spec_decoding_stats(spec_tokens, output_tokens, expected): def test_schedule_spec_decoding_stats(spec_tokens, output_tokens, expected):
"""Test scheduling behavior with speculative decoding. """Test scheduling behavior with speculative decoding.
@ -697,7 +705,8 @@ def test_schedule_spec_decoding_stats(spec_tokens, output_tokens, expected):
1. Speculated tokens get scheduled correctly 1. Speculated tokens get scheduled correctly
2. Spec decoding stats properly count number of draft and accepted tokens 2. Spec decoding stats properly count number of draft and accepted tokens
""" """
scheduler = create_scheduler() num_spec_tokens = max(1, max(len(t) for t in spec_tokens))
scheduler = create_scheduler(num_speculative_tokens=num_spec_tokens)
requests = create_requests(num_requests=len(spec_tokens), num_tokens=1) requests = create_requests(num_requests=len(spec_tokens), num_tokens=1)
req_ids = [] req_ids = []
req_to_index = {} req_to_index = {}
@ -770,8 +779,10 @@ def test_schedule_spec_decoding_stats(spec_tokens, output_tokens, expected):
else: else:
assert scheduler_stats.spec_decoding_stats is not None assert scheduler_stats.spec_decoding_stats is not None
stats = scheduler_stats.spec_decoding_stats stats = scheduler_stats.spec_decoding_stats
assert stats.num_draft_tokens == expected[0] assert stats.num_drafts == expected[0]
assert stats.num_accepted_tokens == expected[1] assert stats.num_draft_tokens == expected[1]
assert stats.num_accepted_tokens == expected[2]
assert stats.num_accepted_tokens_per_pos == expected[3]
def _assert_right_scheduler_output( def _assert_right_scheduler_output(

View File

@ -122,11 +122,12 @@ class Scheduler(SchedulerInterface):
self.encoder_cache_manager = EncoderCacheManager( self.encoder_cache_manager = EncoderCacheManager(
cache_size=encoder_cache_size) cache_size=encoder_cache_size)
self.num_lookahead_tokens = 0
speculative_config = vllm_config.speculative_config speculative_config = vllm_config.speculative_config
if speculative_config and speculative_config.method == "eagle": self.num_spec_tokens = self.num_lookahead_tokens = 0
self.num_lookahead_tokens = \ if speculative_config:
speculative_config.num_speculative_tokens self.num_spec_tokens = speculative_config.num_speculative_tokens
if speculative_config.method == "eagle":
self.num_lookahead_tokens = self.num_spec_tokens
def schedule(self) -> SchedulerOutput: def schedule(self) -> SchedulerOutput:
# NOTE(woosuk) on the scheduling algorithm: # NOTE(woosuk) on the scheduling algorithm:
@ -824,7 +825,8 @@ class Scheduler(SchedulerInterface):
if not self.log_stats: if not self.log_stats:
return None return None
if spec_decoding_stats is None: if spec_decoding_stats is None:
spec_decoding_stats = SpecDecodingStats() spec_decoding_stats = SpecDecodingStats.new(self.num_spec_tokens)
spec_decoding_stats.observe(num_draft_tokens=num_draft_tokens, spec_decoding_stats.observe_draft(
num_accepted_tokens=num_accepted_tokens) num_draft_tokens=num_draft_tokens,
num_accepted_tokens=num_accepted_tokens)
return spec_decoding_stats return spec_decoding_stats

View File

@ -12,7 +12,7 @@ from vllm.logger import init_logger
from vllm.v1.core.kv_cache_utils import PrefixCachingMetrics from vllm.v1.core.kv_cache_utils import PrefixCachingMetrics
from vllm.v1.engine import FinishReason from vllm.v1.engine import FinishReason
from vllm.v1.metrics.stats import IterationStats, SchedulerStats from vllm.v1.metrics.stats import IterationStats, SchedulerStats
from vllm.v1.spec_decode.metrics import SpecDecodingMetrics from vllm.v1.spec_decode.metrics import SpecDecodingLogging, SpecDecodingProm
logger = init_logger(__name__) logger = init_logger(__name__)
@ -39,7 +39,7 @@ class LoggingStatLogger(StatLoggerBase):
# Prefix cache metrics. This cannot be reset. # Prefix cache metrics. This cannot be reset.
# TODO: Make the interval configurable. # TODO: Make the interval configurable.
self.prefix_caching_metrics = PrefixCachingMetrics() self.prefix_caching_metrics = PrefixCachingMetrics()
self.spec_decoding_metrics = SpecDecodingMetrics() self.spec_decoding_logging = SpecDecodingLogging()
self.last_prompt_throughput: float = 0.0 self.last_prompt_throughput: float = 0.0
self.last_generation_throughput: float = 0.0 self.last_generation_throughput: float = 0.0
@ -70,7 +70,7 @@ class LoggingStatLogger(StatLoggerBase):
self.prefix_caching_metrics.observe(scheduler_stats.prefix_cache_stats) self.prefix_caching_metrics.observe(scheduler_stats.prefix_cache_stats)
if scheduler_stats.spec_decoding_stats is not None: if scheduler_stats.spec_decoding_stats is not None:
self.spec_decoding_metrics.observe( self.spec_decoding_logging.observe(
scheduler_stats.spec_decoding_stats) scheduler_stats.spec_decoding_stats)
self.last_scheduler_stats = scheduler_stats self.last_scheduler_stats = scheduler_stats
@ -112,7 +112,7 @@ class LoggingStatLogger(StatLoggerBase):
) )
if scheduler_stats.spec_decoding_stats is not None: if scheduler_stats.spec_decoding_stats is not None:
self.spec_decoding_metrics.log(log_fn=log_fn) self.spec_decoding_logging.log(log_fn=log_fn)
class PrometheusStatLogger(StatLoggerBase): class PrometheusStatLogger(StatLoggerBase):
@ -133,6 +133,9 @@ class PrometheusStatLogger(StatLoggerBase):
max_model_len = vllm_config.model_config.max_model_len max_model_len = vllm_config.model_config.max_model_len
self.spec_decoding_prom = SpecDecodingProm(
vllm_config.speculative_config, labelnames, labelvalues)
# #
# Scheduler state # Scheduler state
# #
@ -323,24 +326,6 @@ class PrometheusStatLogger(StatLoggerBase):
self.labelname_running_lora_adapters, self.labelname_running_lora_adapters,
]) ])
#
# Speculative Decoding metrics
# The acceptance rate can be calculated using a PromQL query:
#
# rate(vllm:spec_decode_num_accepted_tokens_total[$interval]) /
# rate(vllm:spec_decode_num_draft_tokens_total[$interval])
#
self.counter_spec_decode_num_draft_tokens = \
prometheus_client.Counter(
name="vllm:spec_decode_num_draft_tokens_total",
documentation="Number of draft tokens.",
labelnames=labelnames).labels(*labelvalues)
self.counter_spec_decode_num_accepted_tokens = \
prometheus_client.Counter(
name="vllm:spec_decode_num_accepted_tokens_total",
documentation="Number of accepted tokens.",
labelnames=labelnames).labels(*labelvalues)
# #
# Cache config info metric # Cache config info metric
# #
@ -378,10 +363,8 @@ class PrometheusStatLogger(StatLoggerBase):
scheduler_stats.prefix_cache_stats.hits) scheduler_stats.prefix_cache_stats.hits)
if scheduler_stats.spec_decoding_stats is not None: if scheduler_stats.spec_decoding_stats is not None:
self.counter_spec_decode_num_draft_tokens.inc( self.spec_decoding_prom.observe(
scheduler_stats.spec_decoding_stats.num_draft_tokens) scheduler_stats.spec_decoding_stats)
self.counter_spec_decode_num_accepted_tokens.inc(
scheduler_stats.spec_decoding_stats.num_accepted_tokens)
if iteration_stats is None: if iteration_stats is None:
return return

View File

@ -1,9 +1,12 @@
# SPDX-License-Identifier: Apache-2.0 # SPDX-License-Identifier: Apache-2.0
from dataclasses import dataclass from dataclasses import dataclass, field
from typing import Optional
import numpy as np import numpy as np
import prometheus_client
from vllm.config import SpeculativeConfig
from vllm.logger import init_logger from vllm.logger import init_logger
logger = init_logger(__name__) logger = init_logger(__name__)
@ -11,52 +14,151 @@ logger = init_logger(__name__)
@dataclass @dataclass
class SpecDecodingStats: class SpecDecodingStats:
"""Per-step iteration decoding stats from scheduler.
Each scheduler step, statistics on spec decoding performance are
aggregated across requests by the scheduler and returned to the
frontend in EngineCoreOutputs->SchedulerStats.
"""
num_spec_tokens: int
num_drafts: int = 0
num_draft_tokens: int = 0 num_draft_tokens: int = 0
num_accepted_tokens: int = 0 num_accepted_tokens: int = 0
num_accepted_tokens_per_pos: list[int] = field(default_factory=list)
def take(self): @classmethod
copied = SpecDecodingStats(self.num_draft_tokens, def new(cls, num_spec_tokens: int) -> "SpecDecodingStats":
self.num_accepted_tokens) return cls(num_spec_tokens=num_spec_tokens,
self.reset() num_accepted_tokens_per_pos=[0] * num_spec_tokens)
return copied
def reset(self): def observe_draft(self, num_draft_tokens: int, num_accepted_tokens: int):
self.num_draft_tokens = 0 self.num_drafts += 1
self.num_accepted_tokens = 0
def observe(self, num_draft_tokens: int, num_accepted_tokens: int):
self.num_draft_tokens += num_draft_tokens self.num_draft_tokens += num_draft_tokens
self.num_accepted_tokens += num_accepted_tokens self.num_accepted_tokens += num_accepted_tokens
assert num_accepted_tokens <= self.num_spec_tokens
for i in range(num_accepted_tokens):
self.num_accepted_tokens_per_pos[i] += 1
class SpecDecodingMetrics: class SpecDecodingLogging:
"""Aggregate and log spec decoding metrics.
LoggingStatLogger aggregates per-iteration metrics over a set
time interval using observe() and then logs them using log()
before resetting to zero.
"""
def __init__(self): def __init__(self):
self.reset() self.reset()
def reset(self): def reset(self):
self.num_drafts: list[int] = []
self.num_draft_tokens: list[int] = [] self.num_draft_tokens: list[int] = []
self.num_accepted_tokens: list[int] = [] self.num_accepted_tokens: list[int] = []
self.accepted_tokens_per_pos_lists: list[list[int]] = []
def observe(self, spec_decoding_stats: SpecDecodingStats): def observe(self, spec_decoding_stats: SpecDecodingStats):
self.num_drafts.append(spec_decoding_stats.num_drafts)
self.num_draft_tokens.append(spec_decoding_stats.num_draft_tokens) self.num_draft_tokens.append(spec_decoding_stats.num_draft_tokens)
self.num_accepted_tokens.append( self.num_accepted_tokens.append(
spec_decoding_stats.num_accepted_tokens) spec_decoding_stats.num_accepted_tokens)
self.accepted_tokens_per_pos_lists.append(
spec_decoding_stats.num_accepted_tokens_per_pos)
def log(self, log_fn=logger.info): def log(self, log_fn=logger.info):
num_drafts = np.sum(self.num_drafts)
num_draft_tokens = np.sum(self.num_draft_tokens) num_draft_tokens = np.sum(self.num_draft_tokens)
num_accepted_tokens = np.sum(self.num_accepted_tokens) num_accepted_tokens = np.sum(self.num_accepted_tokens)
draft_acceptance_rate = (num_accepted_tokens / num_draft_tokens * draft_acceptance_rate = (num_accepted_tokens / num_draft_tokens *
100 if num_draft_tokens > 0 else float("nan")) 100 if num_draft_tokens > 0 else float("nan"))
mean_acceptance_length = (num_accepted_tokens / num_drafts)
pos_matrix = np.array(self.accepted_tokens_per_pos_lists)
acceptance_rates = np.sum(pos_matrix, axis=0) / num_drafts
rates_str = ", ".join(f"{p:.3f}" for p in acceptance_rates)
log_fn( log_fn(
"SpecDecoding metrics: " "SpecDecoding metrics: "
"Draft acceptance rate: %.1f%%, " "Draft acceptance rate: %.1f%%, "
"Mean acceptance length: %.2f, "
"Accepted: %d tokens, " "Accepted: %d tokens, "
"Drafted: %d tokens", "Drafted: %d tokens, "
"Per-position acceptance rate: %s",
draft_acceptance_rate, draft_acceptance_rate,
mean_acceptance_length,
num_accepted_tokens, num_accepted_tokens,
num_draft_tokens, num_draft_tokens,
rates_str,
) )
self.reset() self.reset()
class SpecDecodingProm:
"""Record spec decoding metrics in Prometheus.
The acceptance rate can be calculated using a PromQL query:
rate(vllm:spec_decode_num_accepted_tokens_total[$interval]) /
rate(vllm:spec_decode_num_draft_tokens_total[$interval])
The mean acceptance length can be calculated using:
rate(vllm:spec_decode_num_accepted_tokens_total[$interval]) /
rate(vllm:spec_decode_num_drafts[$interval])
A per-position acceptance rate vector can be computed using
vllm:spec_decode_num_accepted_tokens_per_pos[$interval] /
vllm:spec_decode_num_drafts[$interval]
"""
def __init__(self, speculative_config: Optional[SpeculativeConfig],
labelnames: list[str], labelvalues: list[str]):
self.spec_decoding_enabled = speculative_config is not None
if not self.spec_decoding_enabled:
return
self.counter_spec_decode_num_drafts = \
prometheus_client.Counter(
name="vllm:spec_decode_num_drafts_total",
documentation="Number of spec decoding drafts.",
labelnames=labelnames).labels(*labelvalues)
self.counter_spec_decode_num_draft_tokens = \
prometheus_client.Counter(
name="vllm:spec_decode_num_draft_tokens_total",
documentation="Number of draft tokens.",
labelnames=labelnames).labels(*labelvalues)
self.counter_spec_decode_num_accepted_tokens = \
prometheus_client.Counter(
name="vllm:spec_decode_num_accepted_tokens_total",
documentation="Number of accepted tokens.",
labelnames=labelnames).labels(*labelvalues)
assert speculative_config is not None
num_spec_tokens = (speculative_config.num_speculative_tokens
if self.spec_decoding_enabled else 0)
pos_labelnames = labelnames + ["position"]
base_counter = prometheus_client.Counter(
name="vllm:spec_decode_num_accepted_tokens_per_pos",
documentation="Accepted tokens per draft position.",
labelnames=pos_labelnames)
self.counter_spec_decode_num_accepted_tokens_per_pos: \
list[prometheus_client.Counter] = []
for pos in range(num_spec_tokens):
pos_labelvalues = labelvalues + [str(pos)]
self.counter_spec_decode_num_accepted_tokens_per_pos.append(
base_counter.labels(*pos_labelvalues))
def observe(self, spec_decoding_stats: SpecDecodingStats):
if not self.spec_decoding_enabled:
return
self.counter_spec_decode_num_drafts.inc(spec_decoding_stats.num_drafts)
self.counter_spec_decode_num_draft_tokens.inc(
spec_decoding_stats.num_draft_tokens)
self.counter_spec_decode_num_accepted_tokens.inc(
spec_decoding_stats.num_accepted_tokens)
for pos, counter in enumerate(
self.counter_spec_decode_num_accepted_tokens_per_pos):
counter.inc(spec_decoding_stats.num_accepted_tokens_per_pos[pos])