mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 01:15:26 +08:00
Migrate MistralForCausalLM to LlamaForCausalLM (#2868)
This commit is contained in:
parent
5574081c49
commit
344020c926
@ -30,7 +30,7 @@ _MODELS = {
|
|||||||
"LlamaForCausalLM": ("llama", "LlamaForCausalLM"),
|
"LlamaForCausalLM": ("llama", "LlamaForCausalLM"),
|
||||||
# For decapoda-research/llama-*
|
# For decapoda-research/llama-*
|
||||||
"LLaMAForCausalLM": ("llama", "LlamaForCausalLM"),
|
"LLaMAForCausalLM": ("llama", "LlamaForCausalLM"),
|
||||||
"MistralForCausalLM": ("mistral", "MistralForCausalLM"),
|
"MistralForCausalLM": ("llama", "LlamaForCausalLM"),
|
||||||
"MixtralForCausalLM": ("mixtral", "MixtralForCausalLM"),
|
"MixtralForCausalLM": ("mixtral", "MixtralForCausalLM"),
|
||||||
"QuantMixtralForCausalLM": ("mixtral_quant", "MixtralForCausalLM"),
|
"QuantMixtralForCausalLM": ("mixtral_quant", "MixtralForCausalLM"),
|
||||||
# transformers's mpt class has lower case
|
# transformers's mpt class has lower case
|
||||||
|
|||||||
@ -92,6 +92,7 @@ class LlamaAttention(nn.Module):
|
|||||||
max_position_embeddings: int = 8192,
|
max_position_embeddings: int = 8192,
|
||||||
linear_method: Optional[LinearMethodBase] = None,
|
linear_method: Optional[LinearMethodBase] = None,
|
||||||
bias: bool = False,
|
bias: bool = False,
|
||||||
|
sliding_window: Optional[int] = None,
|
||||||
) -> None:
|
) -> None:
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.hidden_size = hidden_size
|
self.hidden_size = hidden_size
|
||||||
@ -141,7 +142,8 @@ class LlamaAttention(nn.Module):
|
|||||||
self.attn = PagedAttention(self.num_heads,
|
self.attn = PagedAttention(self.num_heads,
|
||||||
self.head_dim,
|
self.head_dim,
|
||||||
self.scaling,
|
self.scaling,
|
||||||
num_kv_heads=self.num_kv_heads)
|
num_kv_heads=self.num_kv_heads,
|
||||||
|
sliding_window=sliding_window)
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
self,
|
self,
|
||||||
@ -172,6 +174,7 @@ class LlamaDecoderLayer(nn.Module):
|
|||||||
rope_scaling = getattr(config, "rope_scaling", None)
|
rope_scaling = getattr(config, "rope_scaling", None)
|
||||||
max_position_embeddings = getattr(config, "max_position_embeddings",
|
max_position_embeddings = getattr(config, "max_position_embeddings",
|
||||||
8192)
|
8192)
|
||||||
|
sliding_window = getattr(config, "sliding_window", None)
|
||||||
self.self_attn = LlamaAttention(
|
self.self_attn = LlamaAttention(
|
||||||
hidden_size=self.hidden_size,
|
hidden_size=self.hidden_size,
|
||||||
num_heads=config.num_attention_heads,
|
num_heads=config.num_attention_heads,
|
||||||
@ -182,6 +185,7 @@ class LlamaDecoderLayer(nn.Module):
|
|||||||
max_position_embeddings=max_position_embeddings,
|
max_position_embeddings=max_position_embeddings,
|
||||||
linear_method=linear_method,
|
linear_method=linear_method,
|
||||||
bias=getattr(config, "bias", False),
|
bias=getattr(config, "bias", False),
|
||||||
|
sliding_window=sliding_window,
|
||||||
)
|
)
|
||||||
self.mlp = LlamaMLP(
|
self.mlp = LlamaMLP(
|
||||||
hidden_size=self.hidden_size,
|
hidden_size=self.hidden_size,
|
||||||
|
|||||||
@ -1,377 +0,0 @@
|
|||||||
# coding=utf-8
|
|
||||||
# Adapted from
|
|
||||||
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
|
|
||||||
# Copyright 2023 The vLLM team.
|
|
||||||
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
|
||||||
#
|
|
||||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
|
||||||
# and OPT implementations in this library. It has been modified from its
|
|
||||||
# original forms to accommodate minor architectural differences compared
|
|
||||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
"""Inference-only Mistral model compatible with HuggingFace weights."""
|
|
||||||
from typing import List, Optional, Tuple
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from torch import nn
|
|
||||||
from transformers import MistralConfig
|
|
||||||
|
|
||||||
from vllm.model_executor.input_metadata import InputMetadata
|
|
||||||
from vllm.model_executor.layers.activation import SiluAndMul
|
|
||||||
from vllm.model_executor.layers.attention import PagedAttention
|
|
||||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
||||||
from vllm.model_executor.layers.linear import (LinearMethodBase,
|
|
||||||
MergedColumnParallelLinear,
|
|
||||||
QKVParallelLinear,
|
|
||||||
RowParallelLinear)
|
|
||||||
from vllm.model_executor.layers.rotary_embedding import get_rope
|
|
||||||
from vllm.model_executor.layers.sampler import Sampler
|
|
||||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
||||||
VocabParallelEmbedding, ParallelLMHead, DEFAULT_VOCAB_PADDING_SIZE)
|
|
||||||
from vllm.model_executor.parallel_utils.parallel_state import (
|
|
||||||
get_tensor_model_parallel_world_size)
|
|
||||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
|
||||||
from vllm.model_executor.weight_utils import (default_weight_loader,
|
|
||||||
hf_model_weights_iterator)
|
|
||||||
from vllm.sequence import SamplerOutput
|
|
||||||
from vllm.config import LoRAConfig
|
|
||||||
|
|
||||||
KVCache = Tuple[torch.Tensor, torch.Tensor]
|
|
||||||
|
|
||||||
|
|
||||||
class MistralMLP(nn.Module):
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
hidden_size: int,
|
|
||||||
intermediate_size: int,
|
|
||||||
hidden_act: str,
|
|
||||||
linear_method: Optional[LinearMethodBase] = None,
|
|
||||||
) -> None:
|
|
||||||
super().__init__()
|
|
||||||
self.gate_up_proj = MergedColumnParallelLinear(
|
|
||||||
hidden_size, [intermediate_size] * 2,
|
|
||||||
bias=False,
|
|
||||||
linear_method=linear_method)
|
|
||||||
self.down_proj = RowParallelLinear(intermediate_size,
|
|
||||||
hidden_size,
|
|
||||||
bias=False,
|
|
||||||
linear_method=linear_method)
|
|
||||||
if hidden_act != "silu":
|
|
||||||
raise ValueError(f"Unsupported activation: {hidden_act}. "
|
|
||||||
"Only silu is supported for now.")
|
|
||||||
self.act_fn = SiluAndMul()
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
gate_up, _ = self.gate_up_proj(x)
|
|
||||||
x = self.act_fn(gate_up)
|
|
||||||
x, _ = self.down_proj(x)
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
class MistralAttention(nn.Module):
|
|
||||||
|
|
||||||
def __init__(self,
|
|
||||||
hidden_size: int,
|
|
||||||
num_heads: int,
|
|
||||||
num_kv_heads: int,
|
|
||||||
max_position: int = 4096 * 32,
|
|
||||||
rope_theta: float = 10000,
|
|
||||||
linear_method: Optional[LinearMethodBase] = None,
|
|
||||||
sliding_window: Optional[int] = None) -> None:
|
|
||||||
super().__init__()
|
|
||||||
self.hidden_size = hidden_size
|
|
||||||
tp_size = get_tensor_model_parallel_world_size()
|
|
||||||
self.total_num_heads = num_heads
|
|
||||||
assert self.total_num_heads % tp_size == 0
|
|
||||||
self.num_heads = self.total_num_heads // tp_size
|
|
||||||
self.total_num_kv_heads = num_kv_heads
|
|
||||||
if self.total_num_kv_heads >= tp_size:
|
|
||||||
# Number of KV heads is greater than TP size, so we partition
|
|
||||||
# the KV heads across multiple tensor parallel GPUs.
|
|
||||||
assert self.total_num_kv_heads % tp_size == 0
|
|
||||||
else:
|
|
||||||
# Number of KV heads is less than TP size, so we replicate
|
|
||||||
# the KV heads across multiple tensor parallel GPUs.
|
|
||||||
assert tp_size % self.total_num_kv_heads == 0
|
|
||||||
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
|
||||||
self.head_dim = hidden_size // self.total_num_heads
|
|
||||||
self.q_size = self.num_heads * self.head_dim
|
|
||||||
self.kv_size = self.num_kv_heads * self.head_dim
|
|
||||||
self.scaling = self.head_dim**-0.5
|
|
||||||
self.rope_theta = rope_theta
|
|
||||||
self.sliding_window = sliding_window
|
|
||||||
|
|
||||||
self.qkv_proj = QKVParallelLinear(
|
|
||||||
hidden_size,
|
|
||||||
self.head_dim,
|
|
||||||
self.total_num_heads,
|
|
||||||
self.total_num_kv_heads,
|
|
||||||
bias=False,
|
|
||||||
linear_method=linear_method,
|
|
||||||
)
|
|
||||||
self.o_proj = RowParallelLinear(
|
|
||||||
self.total_num_heads * self.head_dim,
|
|
||||||
hidden_size,
|
|
||||||
bias=False,
|
|
||||||
linear_method=linear_method,
|
|
||||||
)
|
|
||||||
|
|
||||||
self.rotary_emb = get_rope(
|
|
||||||
self.head_dim,
|
|
||||||
rotary_dim=self.head_dim,
|
|
||||||
max_position=max_position,
|
|
||||||
base=self.rope_theta,
|
|
||||||
)
|
|
||||||
self.attn = PagedAttention(self.num_heads,
|
|
||||||
self.head_dim,
|
|
||||||
self.scaling,
|
|
||||||
num_kv_heads=self.num_kv_heads,
|
|
||||||
sliding_window=self.sliding_window)
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
positions: torch.Tensor,
|
|
||||||
hidden_states: torch.Tensor,
|
|
||||||
kv_cache: KVCache,
|
|
||||||
input_metadata: InputMetadata,
|
|
||||||
) -> torch.Tensor:
|
|
||||||
qkv, _ = self.qkv_proj(hidden_states)
|
|
||||||
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
|
||||||
q, k = self.rotary_emb(positions, q, k)
|
|
||||||
k_cache, v_cache = kv_cache
|
|
||||||
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
|
|
||||||
output, _ = self.o_proj(attn_output)
|
|
||||||
return output
|
|
||||||
|
|
||||||
|
|
||||||
class MistralDecoderLayer(nn.Module):
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
config: MistralConfig,
|
|
||||||
linear_method: Optional[LinearMethodBase] = None,
|
|
||||||
) -> None:
|
|
||||||
super().__init__()
|
|
||||||
self.hidden_size = config.hidden_size
|
|
||||||
# Requires transformers > 4.32.0
|
|
||||||
rope_theta = getattr(config, "rope_theta", 10000)
|
|
||||||
self.self_attn = MistralAttention(
|
|
||||||
hidden_size=self.hidden_size,
|
|
||||||
num_heads=config.num_attention_heads,
|
|
||||||
max_position=config.max_position_embeddings,
|
|
||||||
num_kv_heads=config.num_key_value_heads,
|
|
||||||
rope_theta=rope_theta,
|
|
||||||
linear_method=linear_method,
|
|
||||||
sliding_window=config.sliding_window)
|
|
||||||
self.mlp = MistralMLP(
|
|
||||||
hidden_size=self.hidden_size,
|
|
||||||
intermediate_size=config.intermediate_size,
|
|
||||||
hidden_act=config.hidden_act,
|
|
||||||
linear_method=linear_method,
|
|
||||||
)
|
|
||||||
self.input_layernorm = RMSNorm(config.hidden_size,
|
|
||||||
eps=config.rms_norm_eps)
|
|
||||||
self.post_attention_layernorm = RMSNorm(config.hidden_size,
|
|
||||||
eps=config.rms_norm_eps)
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
positions: torch.Tensor,
|
|
||||||
hidden_states: torch.Tensor,
|
|
||||||
kv_cache: KVCache,
|
|
||||||
input_metadata: InputMetadata,
|
|
||||||
residual: Optional[torch.Tensor],
|
|
||||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
||||||
# Self Attention
|
|
||||||
if residual is None:
|
|
||||||
residual = hidden_states
|
|
||||||
hidden_states = self.input_layernorm(hidden_states)
|
|
||||||
else:
|
|
||||||
hidden_states, residual = self.input_layernorm(
|
|
||||||
hidden_states, residual)
|
|
||||||
hidden_states = self.self_attn(
|
|
||||||
positions=positions,
|
|
||||||
hidden_states=hidden_states,
|
|
||||||
kv_cache=kv_cache,
|
|
||||||
input_metadata=input_metadata,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Fully Connected
|
|
||||||
hidden_states, residual = self.post_attention_layernorm(
|
|
||||||
hidden_states, residual)
|
|
||||||
hidden_states = self.mlp(hidden_states)
|
|
||||||
return hidden_states, residual
|
|
||||||
|
|
||||||
|
|
||||||
class MistralModel(nn.Module):
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
config: MistralConfig,
|
|
||||||
linear_method: Optional[LinearMethodBase] = None,
|
|
||||||
lora_config: Optional[LoRAConfig] = None,
|
|
||||||
) -> None:
|
|
||||||
super().__init__()
|
|
||||||
self.config = config
|
|
||||||
self.padding_idx = config.pad_token_id
|
|
||||||
lora_vocab = (lora_config.lora_extra_vocab_size *
|
|
||||||
(lora_config.max_loras or 1)) if lora_config else 0
|
|
||||||
self.vocab_size = config.vocab_size + lora_vocab
|
|
||||||
self.org_vocab_size = config.vocab_size
|
|
||||||
|
|
||||||
self.embed_tokens = VocabParallelEmbedding(
|
|
||||||
self.vocab_size,
|
|
||||||
config.hidden_size,
|
|
||||||
org_num_embeddings=config.vocab_size,
|
|
||||||
)
|
|
||||||
self.layers = nn.ModuleList([
|
|
||||||
MistralDecoderLayer(config, linear_method)
|
|
||||||
for _ in range(config.num_hidden_layers)
|
|
||||||
])
|
|
||||||
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
input_ids: torch.Tensor,
|
|
||||||
positions: torch.Tensor,
|
|
||||||
kv_caches: List[KVCache],
|
|
||||||
input_metadata: InputMetadata,
|
|
||||||
) -> torch.Tensor:
|
|
||||||
hidden_states = self.embed_tokens(input_ids)
|
|
||||||
residual = None
|
|
||||||
for i in range(len(self.layers)):
|
|
||||||
layer = self.layers[i]
|
|
||||||
hidden_states, residual = layer(
|
|
||||||
positions,
|
|
||||||
hidden_states,
|
|
||||||
kv_caches[i],
|
|
||||||
input_metadata,
|
|
||||||
residual,
|
|
||||||
)
|
|
||||||
hidden_states, _ = self.norm(hidden_states, residual)
|
|
||||||
return hidden_states
|
|
||||||
|
|
||||||
|
|
||||||
class MistralForCausalLM(nn.Module):
|
|
||||||
packed_modules_mapping = {
|
|
||||||
"qkv_proj": [
|
|
||||||
"q_proj",
|
|
||||||
"k_proj",
|
|
||||||
"v_proj",
|
|
||||||
],
|
|
||||||
"gate_up_proj": [
|
|
||||||
"gate_proj",
|
|
||||||
"up_proj",
|
|
||||||
],
|
|
||||||
}
|
|
||||||
|
|
||||||
# LoRA specific attributes
|
|
||||||
supported_lora_modules = [
|
|
||||||
"qkv_proj",
|
|
||||||
"o_proj",
|
|
||||||
"gate_up_proj",
|
|
||||||
"down_proj",
|
|
||||||
"embed_tokens",
|
|
||||||
"lm_head",
|
|
||||||
]
|
|
||||||
embedding_modules = {
|
|
||||||
"embed_tokens": "input_embeddings",
|
|
||||||
"lm_head": "output_embeddings",
|
|
||||||
}
|
|
||||||
embedding_padding_modules = ["lm_head"]
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
config: MistralConfig,
|
|
||||||
linear_method: Optional[LinearMethodBase] = None,
|
|
||||||
lora_config: Optional[LoRAConfig] = None,
|
|
||||||
) -> None:
|
|
||||||
super().__init__()
|
|
||||||
self.config = config
|
|
||||||
self.linear_method = linear_method
|
|
||||||
self.model = MistralModel(config,
|
|
||||||
linear_method,
|
|
||||||
lora_config=lora_config)
|
|
||||||
unpadded_vocab_size = config.vocab_size
|
|
||||||
if lora_config:
|
|
||||||
unpadded_vocab_size += lora_config.lora_extra_vocab_size
|
|
||||||
self.lm_head = ParallelLMHead(
|
|
||||||
unpadded_vocab_size,
|
|
||||||
config.hidden_size,
|
|
||||||
org_num_embeddings=config.vocab_size,
|
|
||||||
padding_size=DEFAULT_VOCAB_PADDING_SIZE
|
|
||||||
# We need bigger padding if using lora for kernel
|
|
||||||
# compatibility
|
|
||||||
if not lora_config else lora_config.lora_vocab_padding_size,
|
|
||||||
)
|
|
||||||
self.sampler = Sampler(unpadded_vocab_size, config.vocab_size)
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
input_ids: torch.Tensor,
|
|
||||||
positions: torch.Tensor,
|
|
||||||
kv_caches: List[KVCache],
|
|
||||||
input_metadata: InputMetadata,
|
|
||||||
) -> torch.Tensor:
|
|
||||||
hidden_states = self.model(input_ids, positions, kv_caches,
|
|
||||||
input_metadata)
|
|
||||||
return hidden_states
|
|
||||||
|
|
||||||
def sample(
|
|
||||||
self,
|
|
||||||
hidden_states: torch.Tensor,
|
|
||||||
sampling_metadata: SamplingMetadata,
|
|
||||||
) -> Optional[SamplerOutput]:
|
|
||||||
next_tokens = self.sampler(self.lm_head.weight, hidden_states,
|
|
||||||
sampling_metadata)
|
|
||||||
return next_tokens
|
|
||||||
|
|
||||||
def load_weights(self,
|
|
||||||
model_name_or_path: str,
|
|
||||||
cache_dir: Optional[str] = None,
|
|
||||||
load_format: str = "auto",
|
|
||||||
revision: Optional[str] = None):
|
|
||||||
stacked_params_mapping = [
|
|
||||||
# (param_name, shard_name, shard_id)
|
|
||||||
("qkv_proj", "q_proj", "q"),
|
|
||||||
("qkv_proj", "k_proj", "k"),
|
|
||||||
("qkv_proj", "v_proj", "v"),
|
|
||||||
("gate_up_proj", "gate_proj", 0),
|
|
||||||
("gate_up_proj", "up_proj", 1),
|
|
||||||
]
|
|
||||||
params_dict = dict(self.named_parameters())
|
|
||||||
for name, loaded_weight in hf_model_weights_iterator(
|
|
||||||
model_name_or_path, cache_dir, load_format, revision):
|
|
||||||
if "rotary_emb.inv_freq" in name:
|
|
||||||
continue
|
|
||||||
for (param_name, weight_name, shard_id) in stacked_params_mapping:
|
|
||||||
if weight_name not in name:
|
|
||||||
continue
|
|
||||||
name = name.replace(weight_name, param_name)
|
|
||||||
# Skip loading extra bias for GPTQ models.
|
|
||||||
if name.endswith(".bias") and name not in params_dict:
|
|
||||||
continue
|
|
||||||
param = params_dict[name]
|
|
||||||
weight_loader = param.weight_loader
|
|
||||||
weight_loader(param, loaded_weight, shard_id)
|
|
||||||
break
|
|
||||||
else:
|
|
||||||
# Skip loading extra bias for GPTQ models.
|
|
||||||
if name.endswith(".bias") and name not in params_dict:
|
|
||||||
continue
|
|
||||||
param = params_dict[name]
|
|
||||||
weight_loader = getattr(param, "weight_loader",
|
|
||||||
default_weight_loader)
|
|
||||||
weight_loader(param, loaded_weight)
|
|
||||||
Loading…
x
Reference in New Issue
Block a user