mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2026-01-10 15:44:33 +08:00
[Performance] Dual stream execution of "shared_experts" and "selected_experts" inside FusedMoE (#26440)
Signed-off-by: Alexander Matveev <amatveev@redhat.com>
This commit is contained in:
parent
becb7de40b
commit
344a0017c0
@ -213,6 +213,7 @@ if TYPE_CHECKING:
|
||||
VLLM_NCCL_INCLUDE_PATH: str | None = None
|
||||
VLLM_USE_FBGEMM: bool = False
|
||||
VLLM_GC_DEBUG: str = ""
|
||||
VLLM_DISABLE_SHARED_EXPERTS_STREAM: bool = False
|
||||
|
||||
|
||||
def get_default_cache_root():
|
||||
@ -1379,6 +1380,10 @@ environment_variables: dict[str, Callable[[], Any]] = {
|
||||
# - VLLM_GC_DEBUG='{"top_objects":5}': enable GC debugger with
|
||||
# top 5 collected objects
|
||||
"VLLM_GC_DEBUG": lambda: os.getenv("VLLM_GC_DEBUG", ""),
|
||||
# Disables parallel execution of shared_experts via separate cuda stream
|
||||
"VLLM_DISABLE_SHARED_EXPERTS_STREAM": lambda: os.getenv(
|
||||
"VLLM_DISABLE_SHARED_EXPERTS_STREAM", False
|
||||
),
|
||||
}
|
||||
|
||||
# --8<-- [end:env-vars-definition]
|
||||
|
||||
@ -57,7 +57,7 @@ from vllm.platforms import current_platform
|
||||
from vllm.platforms.interface import CpuArchEnum
|
||||
from vllm.utils import cdiv, has_deep_ep, has_pplx, round_up
|
||||
from vllm.utils.flashinfer import has_flashinfer_cutlass_fused_moe
|
||||
from vllm.utils.torch_utils import direct_register_custom_op
|
||||
from vllm.utils.torch_utils import current_stream, direct_register_custom_op
|
||||
from vllm.v1.worker.ubatching import dbo_current_ubatch_id
|
||||
|
||||
if current_platform.is_cuda_alike():
|
||||
@ -1082,6 +1082,17 @@ class FusedMoE(CustomOp):
|
||||
n_shared_experts: int | None = None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
# Allow disabling of the separate shared experts stream for
|
||||
# debug purposes.
|
||||
# TODO: Remove this after more extensive testings with TP/DP
|
||||
# and other execution modes
|
||||
if envs.VLLM_DISABLE_SHARED_EXPERTS_STREAM:
|
||||
logger.info_once("Disabling MoE shared_experts cuda stream")
|
||||
self.shared_experts_stream = None
|
||||
else:
|
||||
self.shared_experts_stream = torch.cuda.Stream()
|
||||
|
||||
if params_dtype is None:
|
||||
params_dtype = torch.get_default_dtype()
|
||||
self.params_dtype = params_dtype
|
||||
@ -1332,6 +1343,10 @@ class FusedMoE(CustomOp):
|
||||
def shared_experts(self) -> torch.nn.Module | None:
|
||||
return None
|
||||
|
||||
@property
|
||||
def gate(self) -> torch.nn.Module | None:
|
||||
return None
|
||||
|
||||
@property
|
||||
def tp_size(self):
|
||||
return self.moe_parallel_config.tp_size
|
||||
@ -1390,6 +1405,11 @@ class FusedMoE(CustomOp):
|
||||
or (self.dp_size > 1 and self.use_flashinfer_cutlass_kernels)
|
||||
)
|
||||
|
||||
@property
|
||||
def is_internal_router(self) -> bool:
|
||||
# By default, router/gate is called before FusedMoE forward pass
|
||||
return False
|
||||
|
||||
def update_expert_map(self):
|
||||
# ep_size and ep_rank should already be updated
|
||||
assert self.expert_map is not None
|
||||
@ -2168,6 +2188,7 @@ class FusedMoE(CustomOp):
|
||||
self,
|
||||
full_hidden_states: torch.Tensor,
|
||||
full_router_logits: torch.Tensor,
|
||||
has_separate_shared_experts: bool,
|
||||
) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
|
||||
assert self.batched_hidden_states is not None
|
||||
assert self.batched_router_logits is not None
|
||||
@ -2216,11 +2237,23 @@ class FusedMoE(CustomOp):
|
||||
|
||||
# If there are shared experts but we are not using a modular kernel,
|
||||
# the shared experts must be called here
|
||||
if (
|
||||
not isinstance(self.quant_method.fused_experts, FusedMoEModularKernel)
|
||||
and self.shared_experts is not None
|
||||
):
|
||||
shared_output = self.shared_experts(staged_hidden_states)
|
||||
if has_separate_shared_experts:
|
||||
assert self.shared_experts is not None
|
||||
|
||||
if self.shared_experts_stream is not None:
|
||||
# For chunked, we start the shared experts stream here
|
||||
# (Note that no concurrency with the router/gate)
|
||||
self.shared_experts_stream.wait_stream(current_stream())
|
||||
|
||||
with torch.cuda.stream(self.shared_experts_stream):
|
||||
# Note that staged_hidden_states clone() is necessary
|
||||
# here to avoid conflict with the main stream
|
||||
shared_output = self.shared_experts(
|
||||
staged_hidden_states.clone()
|
||||
)
|
||||
else:
|
||||
shared_output = self.shared_experts(staged_hidden_states)
|
||||
|
||||
else:
|
||||
shared_output = None
|
||||
|
||||
@ -2249,9 +2282,14 @@ class FusedMoE(CustomOp):
|
||||
logical_replica_count=self.logical_replica_count,
|
||||
)
|
||||
|
||||
if shared_output is not None:
|
||||
if has_separate_shared_experts:
|
||||
assert not isinstance(final_hidden_states, tuple)
|
||||
assert self.shared_experts is not None
|
||||
|
||||
# Here we finish the shared experts stream
|
||||
if self.shared_experts_stream is not None:
|
||||
current_stream().wait_stream(self.shared_experts_stream)
|
||||
|
||||
final_hidden_states = (
|
||||
shared_output,
|
||||
final_hidden_states,
|
||||
@ -2321,8 +2359,33 @@ class FusedMoE(CustomOp):
|
||||
|
||||
self.ensure_moe_quant_config()
|
||||
|
||||
if self.use_dp_chunking:
|
||||
return self.forward_impl_chunked(hidden_states, router_logits)
|
||||
has_separate_shared_experts = (
|
||||
not isinstance(self.quant_method.fused_experts, FusedMoEModularKernel)
|
||||
and self.shared_experts is not None
|
||||
)
|
||||
|
||||
use_chunked_impl = self.use_dp_chunking
|
||||
|
||||
if (
|
||||
has_separate_shared_experts
|
||||
and not use_chunked_impl
|
||||
and self.shared_experts_stream is not None
|
||||
):
|
||||
# Start the separate shared experts stream here since we want
|
||||
# to run in parallel with the router/gate (next op below)
|
||||
self.shared_experts_stream.wait_stream(current_stream())
|
||||
|
||||
# If router/gate provided, then apply it here.
|
||||
# (Note: This code runs only when "overlapped mode" is on to allow
|
||||
# parallel execution of shared experts with the FusedMoE via
|
||||
# separate cuda stream)
|
||||
if self.gate is not None:
|
||||
router_logits, _ = self.gate(hidden_states)
|
||||
|
||||
if use_chunked_impl:
|
||||
return self.forward_impl_chunked(
|
||||
hidden_states, router_logits, has_separate_shared_experts
|
||||
)
|
||||
|
||||
do_naive_dispatch_combine: bool = (
|
||||
self.dp_size > 1 and not self.quant_method.using_modular_kernel
|
||||
@ -2330,11 +2393,17 @@ class FusedMoE(CustomOp):
|
||||
|
||||
# If there are shared experts but we are not using a modular kernel, the
|
||||
# shared experts must be called here
|
||||
if (
|
||||
not isinstance(self.quant_method.fused_experts, FusedMoEModularKernel)
|
||||
and self.shared_experts is not None
|
||||
):
|
||||
shared_output = self.shared_experts(hidden_states)
|
||||
if has_separate_shared_experts:
|
||||
assert self.shared_experts is not None
|
||||
|
||||
if self.shared_experts_stream is not None:
|
||||
# Run shared experts in parallel on a separate stream
|
||||
with torch.cuda.stream(self.shared_experts_stream):
|
||||
# Note that hidden_states clone() is necessary here to avoid
|
||||
# conflict with the main stream
|
||||
shared_output = self.shared_experts(hidden_states.clone())
|
||||
else:
|
||||
shared_output = self.shared_experts(hidden_states)
|
||||
else:
|
||||
shared_output = None
|
||||
|
||||
@ -2377,9 +2446,14 @@ class FusedMoE(CustomOp):
|
||||
logical_replica_count=self.logical_replica_count,
|
||||
)
|
||||
|
||||
if shared_output is not None:
|
||||
if has_separate_shared_experts:
|
||||
assert not isinstance(final_hidden_states, tuple)
|
||||
assert self.shared_experts is not None
|
||||
|
||||
# Wait for the parallel shared experts stream to finish here
|
||||
if self.shared_experts_stream is not None:
|
||||
current_stream().wait_stream(self.shared_experts_stream)
|
||||
|
||||
final_hidden_states = (
|
||||
shared_output,
|
||||
final_hidden_states,
|
||||
|
||||
@ -18,25 +18,40 @@ class SharedFusedMoE(FusedMoE):
|
||||
def __init__(
|
||||
self,
|
||||
shared_experts: torch.nn.Module | None,
|
||||
gate: torch.nn.Module | None = None,
|
||||
use_overlapped: bool = True,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(**kwargs)
|
||||
self._shared_experts = shared_experts
|
||||
|
||||
# Disable shared expert overlap if EP is disabled or we are not using
|
||||
# flashinfer + DP since there is nothing to be gained in this case.
|
||||
# Disabling the overlap optimization also prevents the shared experts
|
||||
# from being hidden from torch.compile.
|
||||
self.use_overlapped = (
|
||||
use_overlapped
|
||||
and not (self.use_ep or self.use_flashinfer_cutlass_kernels)
|
||||
and not (
|
||||
self.use_ep
|
||||
or (self.use_flashinfer_cutlass_kernels and self.dp_size > 1)
|
||||
)
|
||||
and self._shared_experts is not None
|
||||
)
|
||||
|
||||
self._gate = gate
|
||||
|
||||
@property
|
||||
def shared_experts(self) -> torch.nn.Module | None:
|
||||
return self._shared_experts if self.use_overlapped else None
|
||||
|
||||
@property
|
||||
def gate(self) -> torch.nn.Module | None:
|
||||
return self._gate if self.use_overlapped else None
|
||||
|
||||
@property
|
||||
def is_internal_router(self) -> bool:
|
||||
return self.gate is not None
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
|
||||
@ -227,6 +227,7 @@ class DeepseekV2MoE(nn.Module):
|
||||
|
||||
self.experts = SharedFusedMoE(
|
||||
shared_experts=self.shared_experts,
|
||||
gate=self.gate,
|
||||
num_experts=config.n_routed_experts,
|
||||
top_k=config.num_experts_per_tok,
|
||||
hidden_size=config.hidden_size,
|
||||
@ -264,12 +265,17 @@ class DeepseekV2MoE(nn.Module):
|
||||
if self.is_sequence_parallel:
|
||||
hidden_states = sequence_parallel_chunk(hidden_states)
|
||||
|
||||
# router_logits: (num_tokens, n_experts)
|
||||
router_logits, _ = self.gate(hidden_states)
|
||||
|
||||
fused_moe_out = self.experts(
|
||||
hidden_states=hidden_states, router_logits=router_logits
|
||||
)
|
||||
if self.experts.is_internal_router:
|
||||
# In this case, the gate/router runs inside the FusedMoE class
|
||||
fused_moe_out = self.experts(
|
||||
hidden_states=hidden_states, router_logits=hidden_states
|
||||
)
|
||||
else:
|
||||
# router_logits: (num_tokens, n_experts)
|
||||
router_logits, _ = self.gate(hidden_states)
|
||||
fused_moe_out = self.experts(
|
||||
hidden_states=hidden_states, router_logits=router_logits
|
||||
)
|
||||
|
||||
shared_output, final_hidden_states = fused_moe_out
|
||||
if self.shared_experts is None:
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user