mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 07:34:57 +08:00
[Test] Test multiple attn backend for chunked prefill. (#4023)
This commit is contained in:
parent
7fd3949a0b
commit
36729bac13
@ -12,7 +12,13 @@ steps:
|
||||
command: pytest -v -s async_engine
|
||||
|
||||
- label: Basic Correctness Test
|
||||
command: pytest -v -s basic_correctness
|
||||
commands:
|
||||
- VLLM_ATTENTION_BACKEND=XFORMERS pytest -v -s basic_correctness/test_basic_correctness.py
|
||||
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s basic_correctness/test_basic_correctness.py
|
||||
- VLLM_ATTENTION_BACKEND=ROCM_FLASH pytest -v -s basic_correctness/test_basic_correctness.py
|
||||
- VLLM_ATTENTION_BACKEND=XFORMERS pytest -v -s basic_correctness/test_chunked_prefill.py
|
||||
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s basic_correctness/test_chunked_prefill.py
|
||||
- VLLM_ATTENTION_BACKEND=ROCM_FLASH pytest -v -s basic_correctness/test_chunked_prefill.py
|
||||
|
||||
- label: Core Test
|
||||
command: pytest -v -s core
|
||||
|
||||
@ -4,8 +4,6 @@ Run `pytest tests/basic_correctness/test_basic_correctness.py`.
|
||||
"""
|
||||
import pytest
|
||||
|
||||
from vllm.attention.selector import VLLM_ATTENTION_BACKEND
|
||||
|
||||
MODELS = [
|
||||
"facebook/opt-125m",
|
||||
"meta-llama/Llama-2-7b-hf",
|
||||
@ -16,7 +14,6 @@ MODELS = [
|
||||
@pytest.mark.parametrize("dtype", ["half"])
|
||||
@pytest.mark.parametrize("max_tokens", [5])
|
||||
@pytest.mark.parametrize("enforce_eager", [False, True])
|
||||
@pytest.mark.parametrize("attn_backend", ["XFORMERS", "FLASH_ATTN"])
|
||||
def test_models(
|
||||
hf_runner,
|
||||
vllm_runner,
|
||||
@ -25,10 +22,7 @@ def test_models(
|
||||
dtype: str,
|
||||
max_tokens: int,
|
||||
enforce_eager: bool,
|
||||
attn_backend: str,
|
||||
monkeypatch,
|
||||
) -> None:
|
||||
monkeypatch.setenv(VLLM_ATTENTION_BACKEND, attn_backend)
|
||||
hf_model = hf_runner(model, dtype=dtype)
|
||||
hf_outputs = hf_model.generate_greedy(example_prompts, max_tokens)
|
||||
del hf_model
|
||||
|
||||
@ -33,10 +33,6 @@ def test_models(
|
||||
enforce_eager: bool,
|
||||
tensor_parallel_size: int,
|
||||
) -> None:
|
||||
if (tensor_parallel_size == 2 and chunked_prefill_token_size != 16
|
||||
and not enforce_eager):
|
||||
pytest.skip(f"Skip {chunked_prefill_token_size=} and {enforce_eager=} "
|
||||
"for high TP to save testing time.")
|
||||
max_num_seqs = min(chunked_prefill_token_size, 256)
|
||||
enable_chunked_prefill = False
|
||||
max_num_batched_tokens = None
|
||||
|
||||
@ -162,7 +162,7 @@ class ROCmFlashAttentionImpl(AttentionImpl):
|
||||
# AMD Radeon 7900 series (gfx1100) currently does not support
|
||||
# xFormers nor FlashAttention. As a temporary workaround, we use
|
||||
# naive PyTorch implementation of attention.
|
||||
self.attn_fuc = _naive_attention()
|
||||
self.attn_fuc = _naive_attention
|
||||
logger.debug("Using naive attention in ROCmBackend")
|
||||
elif self.use_triton_flash_attn:
|
||||
from vllm.attention.ops.triton_flash_attention import ( # noqa: F401
|
||||
@ -334,26 +334,21 @@ def _naive_attention(
|
||||
prompt_lens: List[int],
|
||||
scale: float,
|
||||
) -> torch.Tensor:
|
||||
num_tokens = query.shape[0]
|
||||
output = torch.empty_like(query)
|
||||
start = 0
|
||||
for _, prompt_len in enumerate(prompt_lens):
|
||||
end = start + prompt_len
|
||||
out = _naive_masked_attention(
|
||||
query[None, start:end],
|
||||
key[None, start:end],
|
||||
value[None, start:end],
|
||||
query[start:end],
|
||||
key[start:end],
|
||||
value[start:end],
|
||||
scale,
|
||||
)
|
||||
# TODO(woosuk): Unnecessary copy. Optimize.
|
||||
output[start:end].copy_(out)
|
||||
start += prompt_len
|
||||
|
||||
# Using view got RuntimeError: view size is not compatible
|
||||
# with input tensor's size and stride (at least one
|
||||
# dimension spans across two contiguous subspaces).
|
||||
# Use reshape instead.
|
||||
return output.reshape(num_tokens, -1)
|
||||
return output
|
||||
|
||||
|
||||
def _naive_masked_attention(
|
||||
@ -362,14 +357,13 @@ def _naive_masked_attention(
|
||||
value: torch.Tensor,
|
||||
scale: float,
|
||||
) -> torch.Tensor:
|
||||
seq_len, _, _ = query.shape
|
||||
seq_len, head_size, head_dim = query.shape
|
||||
attn_mask = torch.triu(torch.ones(seq_len,
|
||||
seq_len,
|
||||
dtype=query.dtype,
|
||||
device=query.device),
|
||||
diagonal=1)
|
||||
attn_mask = attn_mask * torch.finfo(query.dtype).min
|
||||
|
||||
attn_weights = scale * torch.einsum("qhd,khd->hqk", query, key).float()
|
||||
attn_weights = attn_weights + attn_mask.float()
|
||||
attn_weights = torch.softmax(attn_weights, dim=-1).to(value.dtype)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user