mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-25 22:01:01 +08:00
[Refactor] TokenizerRegistry only uses lazy imports (#30609)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
This commit is contained in:
parent
ace34e3783
commit
39cefbdf17
@ -7,7 +7,7 @@ from vllm.config import ModelConfig
|
||||
from vllm.inputs import zip_enc_dec_prompts
|
||||
from vllm.inputs.parse import parse_raw_prompts
|
||||
from vllm.inputs.preprocess import InputPreprocessor
|
||||
from vllm.tokenizers import init_tokenizer_from_config
|
||||
from vllm.tokenizers import cached_tokenizer_from_config
|
||||
|
||||
pytestmark = pytest.mark.cpu_test
|
||||
|
||||
@ -108,7 +108,7 @@ def test_zip_enc_dec_prompts(mm_processor_kwargs, expected_mm_kwargs):
|
||||
)
|
||||
def test_preprocessor_always_mm_code_path(model_id, prompt):
|
||||
model_config = ModelConfig(model=model_id)
|
||||
tokenizer = init_tokenizer_from_config(model_config)
|
||||
tokenizer = cached_tokenizer_from_config(model_config)
|
||||
input_preprocessor = InputPreprocessor(model_config, tokenizer)
|
||||
|
||||
# HF processor adds sep token
|
||||
|
||||
@ -3,38 +3,39 @@
|
||||
from typing import _get_protocol_attrs # type: ignore
|
||||
|
||||
import pytest
|
||||
from transformers import PreTrainedTokenizerBase
|
||||
from transformers import (
|
||||
PreTrainedTokenizer,
|
||||
PreTrainedTokenizerBase,
|
||||
PreTrainedTokenizerFast,
|
||||
)
|
||||
|
||||
from vllm.tokenizers import TokenizerLike, get_tokenizer
|
||||
from vllm.tokenizers.mistral import MistralTokenizer
|
||||
|
||||
|
||||
def _get_missing_attrs(obj: object, target: type):
|
||||
return [k for k in _get_protocol_attrs(target) if not hasattr(obj, k)]
|
||||
|
||||
|
||||
def _assert_tokenizer_like(tokenizer: object):
|
||||
missing_attrs = _get_missing_attrs(tokenizer, TokenizerLike)
|
||||
assert not missing_attrs, f"Missing attrs: {missing_attrs}"
|
||||
|
||||
|
||||
def test_tokenizer_like_protocol():
|
||||
assert not (
|
||||
missing_attrs := _get_missing_attrs(
|
||||
get_tokenizer("gpt2", use_fast=False),
|
||||
TokenizerLike,
|
||||
)
|
||||
), f"Missing attrs: {missing_attrs}"
|
||||
tokenizer = get_tokenizer("gpt2", use_fast=False)
|
||||
assert isinstance(tokenizer, PreTrainedTokenizer)
|
||||
_assert_tokenizer_like(tokenizer)
|
||||
|
||||
assert not (
|
||||
missing_attrs := _get_missing_attrs(
|
||||
get_tokenizer("gpt2", use_fast=True),
|
||||
TokenizerLike,
|
||||
)
|
||||
), f"Missing attrs: {missing_attrs}"
|
||||
tokenizer = get_tokenizer("gpt2", use_fast=True)
|
||||
assert isinstance(tokenizer, PreTrainedTokenizerFast)
|
||||
_assert_tokenizer_like(tokenizer)
|
||||
|
||||
assert not (
|
||||
missing_attrs := _get_missing_attrs(
|
||||
get_tokenizer(
|
||||
"mistralai/Mistral-7B-Instruct-v0.3", tokenizer_mode="mistral"
|
||||
),
|
||||
TokenizerLike,
|
||||
)
|
||||
), f"Missing attrs: {missing_attrs}"
|
||||
tokenizer = get_tokenizer(
|
||||
"mistralai/Mistral-7B-Instruct-v0.3", tokenizer_mode="mistral"
|
||||
)
|
||||
assert isinstance(tokenizer, MistralTokenizer)
|
||||
_assert_tokenizer_like(tokenizer)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("tokenizer_name", ["facebook/opt-125m", "gpt2"])
|
||||
|
||||
@ -2,7 +2,14 @@
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
from pathlib import Path
|
||||
|
||||
from vllm.tokenizers import TokenizerLike, TokenizerRegistry, get_tokenizer
|
||||
import pytest
|
||||
|
||||
from vllm.tokenizers import TokenizerLike
|
||||
from vllm.tokenizers.registry import (
|
||||
TokenizerRegistry,
|
||||
get_tokenizer,
|
||||
resolve_tokenizer_args,
|
||||
)
|
||||
|
||||
|
||||
class TestTokenizer(TokenizerLike):
|
||||
@ -40,10 +47,22 @@ class TestTokenizer(TokenizerLike):
|
||||
return True
|
||||
|
||||
|
||||
@pytest.mark.parametrize("runner_type", ["generate", "pooling"])
|
||||
def test_resolve_tokenizer_args_idempotent(runner_type):
|
||||
tokenizer_mode, tokenizer_name, args, kwargs = resolve_tokenizer_args(
|
||||
"facebook/opt-125m",
|
||||
runner_type=runner_type,
|
||||
)
|
||||
|
||||
assert (tokenizer_mode, tokenizer_name, args, kwargs) == resolve_tokenizer_args(
|
||||
tokenizer_name, *args, **kwargs
|
||||
)
|
||||
|
||||
|
||||
def test_customized_tokenizer():
|
||||
TokenizerRegistry.register("test_tokenizer", __name__, TestTokenizer.__name__)
|
||||
|
||||
tokenizer = TokenizerRegistry.get_tokenizer("test_tokenizer", "abc")
|
||||
tokenizer = TokenizerRegistry.load_tokenizer("test_tokenizer", "abc")
|
||||
assert isinstance(tokenizer, TestTokenizer)
|
||||
assert tokenizer.path_or_repo_id == "abc"
|
||||
assert tokenizer.bos_token_id == 0
|
||||
|
||||
@ -50,7 +50,6 @@ from vllm.model_executor.models import SupportsMultiModal
|
||||
from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalDataDict, MultiModalUUIDDict
|
||||
from vllm.multimodal.utils import MEDIA_CONNECTOR_REGISTRY, MediaConnector
|
||||
from vllm.tokenizers import TokenizerLike
|
||||
from vllm.tokenizers.mistral import MistralTokenizer
|
||||
from vllm.transformers_utils.chat_templates import get_chat_template_fallback_path
|
||||
from vllm.transformers_utils.processor import cached_get_processor
|
||||
from vllm.utils import random_uuid
|
||||
@ -60,6 +59,8 @@ from vllm.utils.import_utils import LazyLoader
|
||||
|
||||
if TYPE_CHECKING:
|
||||
import torch
|
||||
|
||||
from vllm.tokenizers.mistral import MistralTokenizer
|
||||
else:
|
||||
torch = LazyLoader("torch", globals(), "torch")
|
||||
|
||||
@ -1832,7 +1833,7 @@ def apply_hf_chat_template(
|
||||
|
||||
|
||||
def apply_mistral_chat_template(
|
||||
tokenizer: MistralTokenizer,
|
||||
tokenizer: "MistralTokenizer",
|
||||
messages: list[ChatCompletionMessageParam],
|
||||
chat_template: str | None,
|
||||
tools: list[dict[str, Any]] | None,
|
||||
|
||||
@ -1,9 +1,6 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
from .deepseekv32 import DeepseekV32Tokenizer
|
||||
from .hf import HfTokenizer
|
||||
from .mistral import MistralTokenizer
|
||||
from .protocol import TokenizerLike
|
||||
from .registry import (
|
||||
TokenizerRegistry,
|
||||
@ -15,12 +12,9 @@ from .registry import (
|
||||
|
||||
__all__ = [
|
||||
"TokenizerLike",
|
||||
"HfTokenizer",
|
||||
"MistralTokenizer",
|
||||
"TokenizerRegistry",
|
||||
"cached_get_tokenizer",
|
||||
"get_tokenizer",
|
||||
"cached_tokenizer_from_config",
|
||||
"init_tokenizer_from_config",
|
||||
"DeepseekV32Tokenizer",
|
||||
]
|
||||
|
||||
@ -2,24 +2,18 @@
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
from transformers import BatchEncoding
|
||||
|
||||
from vllm.entrypoints.chat_utils import ChatCompletionMessageParam
|
||||
|
||||
from .deepseek_v32_encoding import encode_messages
|
||||
from .hf import HfTokenizer, TokenizerLike
|
||||
from .registry import TokenizerRegistry
|
||||
from .hf import CachedHfTokenizer
|
||||
from .protocol import TokenizerLike
|
||||
|
||||
|
||||
@TokenizerRegistry.register("deepseek_v32")
|
||||
class DeepseekV32Tokenizer(HfTokenizer):
|
||||
def __init__(self, tokenizer: TokenizerLike):
|
||||
self.tokenizer = tokenizer
|
||||
self.name_or_path = (
|
||||
tokenizer.name_or_path if hasattr(tokenizer, "name_or_path") else ""
|
||||
)
|
||||
self._added_vocab = self.tokenizer.get_added_vocab()
|
||||
self._added_vocab_size = len(self._added_vocab)
|
||||
|
||||
class DeepseekV32Tokenizer(CachedHfTokenizer):
|
||||
@classmethod
|
||||
def from_pretrained(
|
||||
cls,
|
||||
@ -40,7 +34,21 @@ class DeepseekV32Tokenizer(HfTokenizer):
|
||||
)
|
||||
return DeepseekV32Tokenizer(tokenizer)
|
||||
|
||||
def apply_chat_template(self, messages, tools=None, **kwargs):
|
||||
def __init__(self, tokenizer: TokenizerLike) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.tokenizer = tokenizer
|
||||
self.name_or_path = getattr(tokenizer, "name_or_path", "")
|
||||
|
||||
self._added_vocab = self.tokenizer.get_added_vocab()
|
||||
self._added_vocab_size = len(self._added_vocab)
|
||||
|
||||
def apply_chat_template(
|
||||
self,
|
||||
messages: list["ChatCompletionMessageParam"],
|
||||
tools: list[dict[str, Any]] | None = None,
|
||||
**kwargs,
|
||||
) -> str | list[int]:
|
||||
thinking = kwargs.get("thinking", False)
|
||||
thinking_mode = "thinking"
|
||||
if not thinking:
|
||||
@ -49,13 +57,24 @@ class DeepseekV32Tokenizer(HfTokenizer):
|
||||
messages = conversation.copy()
|
||||
if tools is not None and len(tools) > 0:
|
||||
messages.insert(0, {"role": "system"})
|
||||
messages[0]["tools"] = tools
|
||||
messages[0]["tools"] = tools # type: ignore[typeddict-unknown-key]
|
||||
|
||||
# Historical reasoning content is dropped when a new user message is introduced
|
||||
drop_thinking = messages[-1]["role"] == "user"
|
||||
|
||||
encode_config = dict(thinking_mode=thinking_mode, drop_thinking=drop_thinking)
|
||||
prompt_str = encode_messages(messages, **encode_config) # type: ignore
|
||||
|
||||
if kwargs.get("tokenize", True):
|
||||
tokenizer_kwargs = {
|
||||
k: kwargs[k] for k in ("truncation", "max_length") if k in kwargs
|
||||
}
|
||||
return self.encode(
|
||||
prompt_str,
|
||||
add_special_tokens=False,
|
||||
**tokenizer_kwargs,
|
||||
)
|
||||
|
||||
return prompt_str
|
||||
|
||||
def num_special_tokens_to_add(self) -> int:
|
||||
|
||||
@ -3,22 +3,18 @@
|
||||
import contextlib
|
||||
import copy
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING
|
||||
from typing import TypeAlias
|
||||
|
||||
from transformers import AutoTokenizer
|
||||
from transformers import AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast
|
||||
|
||||
from vllm.transformers_utils.config import get_sentence_transformer_tokenizer_config
|
||||
|
||||
from .protocol import TokenizerLike
|
||||
from .registry import TokenizerRegistry
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PreTrainedTokenizer, PreTrainedTokenizerFast
|
||||
HfTokenizer: TypeAlias = PreTrainedTokenizer | PreTrainedTokenizerFast
|
||||
|
||||
|
||||
def get_cached_tokenizer(
|
||||
tokenizer: "PreTrainedTokenizer | PreTrainedTokenizerFast",
|
||||
) -> TokenizerLike:
|
||||
def get_cached_tokenizer(tokenizer: HfTokenizer) -> HfTokenizer:
|
||||
"""
|
||||
By default, transformers will recompute multiple tokenizer properties
|
||||
each time they are called, leading to a significant slowdown.
|
||||
@ -65,11 +61,10 @@ def get_cached_tokenizer(
|
||||
CachedTokenizer.__name__ = f"Cached{tokenizer.__class__.__name__}"
|
||||
|
||||
cached_tokenizer.__class__ = CachedTokenizer
|
||||
return cached_tokenizer # type: ignore
|
||||
return cached_tokenizer
|
||||
|
||||
|
||||
@TokenizerRegistry.register("hf")
|
||||
class HfTokenizer(TokenizerLike):
|
||||
class CachedHfTokenizer(TokenizerLike):
|
||||
@classmethod
|
||||
def from_pretrained(
|
||||
cls,
|
||||
@ -79,7 +74,7 @@ class HfTokenizer(TokenizerLike):
|
||||
revision: str | None = None,
|
||||
download_dir: str | None = None,
|
||||
**kwargs,
|
||||
) -> "TokenizerLike":
|
||||
) -> HfTokenizer:
|
||||
try:
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
path_or_repo_id,
|
||||
|
||||
@ -3,10 +3,11 @@
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Any, cast
|
||||
|
||||
from vllm.entrypoints.chat_utils import ChatCompletionMessageParam
|
||||
from vllm.entrypoints.openai.protocol import ChatCompletionRequest
|
||||
from vllm.logger import init_logger
|
||||
|
||||
from .protocol import TokenizerLike
|
||||
from .registry import TokenizerRegistry
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from mistral_common.protocol.instruct.request import (
|
||||
@ -15,9 +16,6 @@ if TYPE_CHECKING:
|
||||
from mistral_common.tokens.tokenizers.tekken import Tekkenizer
|
||||
from transformers import BatchEncoding
|
||||
|
||||
from vllm.entrypoints.chat_utils import ChatCompletionMessageParam
|
||||
from vllm.entrypoints.openai.protocol import ChatCompletionRequest
|
||||
|
||||
try:
|
||||
# Transformers v5
|
||||
from transformers.tokenization_mistral_common import MistralCommonBackend
|
||||
@ -201,7 +199,6 @@ def _tekken_token_to_id(tokenizer: "Tekkenizer", t: str | bytes) -> int:
|
||||
return tokenizer.unk_id
|
||||
|
||||
|
||||
@TokenizerRegistry.register("mistral")
|
||||
class MistralTokenizer(TokenizerLike):
|
||||
@classmethod
|
||||
def from_pretrained(
|
||||
|
||||
@ -97,7 +97,7 @@ class TokenizerLike(Protocol):
|
||||
messages: list["ChatCompletionMessageParam"],
|
||||
tools: list[dict[str, Any]] | None = None,
|
||||
**kwargs,
|
||||
) -> list[int]:
|
||||
) -> str | list[int]:
|
||||
raise NotImplementedError
|
||||
|
||||
def convert_tokens_to_string(self, tokens: list[str]) -> str:
|
||||
|
||||
@ -1,13 +1,13 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
import importlib.util
|
||||
from collections.abc import Callable
|
||||
from dataclasses import dataclass, field
|
||||
from functools import lru_cache
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, TypeVar, overload
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
import huggingface_hub
|
||||
from typing_extensions import assert_never
|
||||
from typing_extensions import TypeVar, assert_never, deprecated
|
||||
|
||||
import vllm.envs as envs
|
||||
from vllm.logger import init_logger
|
||||
@ -24,46 +24,25 @@ from vllm.utils.import_utils import resolve_obj_by_qualname
|
||||
from .protocol import TokenizerLike
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from vllm.config import ModelConfig
|
||||
from vllm.config.model import ModelConfig, RunnerType
|
||||
|
||||
logger = init_logger(__name__)
|
||||
|
||||
_T = TypeVar("_T", bound=type[TokenizerLike])
|
||||
|
||||
_VLLM_TOKENIZERS = {
|
||||
"deepseekv32": ("deepseekv32", "DeepseekV32Tokenizer"),
|
||||
"hf": ("hf", "CachedHfTokenizer"),
|
||||
"mistral": ("mistral", "MistralTokenizer"),
|
||||
}
|
||||
|
||||
|
||||
class TokenizerRegistry:
|
||||
# Tokenizer name -> tokenizer_cls or (tokenizer module, tokenizer class)
|
||||
REGISTRY: dict[str, type[TokenizerLike] | tuple[str, str]] = {}
|
||||
@dataclass
|
||||
class _TokenizerRegistry:
|
||||
# Tokenizer mode -> (tokenizer module, tokenizer class)
|
||||
tokenizers: dict[str, tuple[str, str]] = field(default_factory=dict)
|
||||
|
||||
# In-tree tokenizers
|
||||
@staticmethod
|
||||
@overload
|
||||
def register(tokenizer_mode: str) -> Callable[[_T], _T]: ...
|
||||
|
||||
# OOT tokenizers
|
||||
@staticmethod
|
||||
@overload
|
||||
def register(tokenizer_mode: str, module: str, class_name: str) -> None: ...
|
||||
|
||||
@staticmethod
|
||||
def register(
|
||||
tokenizer_mode: str,
|
||||
module: str | None = None,
|
||||
class_name: str | None = None,
|
||||
) -> Callable[[_T], _T] | None:
|
||||
# In-tree tokenizers
|
||||
if module is None or class_name is None:
|
||||
|
||||
def wrapper(tokenizer_cls: _T) -> _T:
|
||||
assert tokenizer_mode not in TokenizerRegistry.REGISTRY
|
||||
TokenizerRegistry.REGISTRY[tokenizer_mode] = tokenizer_cls
|
||||
|
||||
return tokenizer_cls
|
||||
|
||||
return wrapper
|
||||
|
||||
# OOT tokenizers
|
||||
if tokenizer_mode in TokenizerRegistry.REGISTRY:
|
||||
def register(self, tokenizer_mode: str, module: str, class_name: str) -> None:
|
||||
if tokenizer_mode in self.tokenizers:
|
||||
logger.warning(
|
||||
"%s.%s is already registered for tokenizer_mode=%r. "
|
||||
"It is overwritten by the new one.",
|
||||
@ -72,36 +51,42 @@ class TokenizerRegistry:
|
||||
tokenizer_mode,
|
||||
)
|
||||
|
||||
TokenizerRegistry.REGISTRY[tokenizer_mode] = (module, class_name)
|
||||
self.tokenizers[tokenizer_mode] = (module, class_name)
|
||||
|
||||
return None
|
||||
|
||||
@staticmethod
|
||||
def get_tokenizer(tokenizer_mode: str, *args, **kwargs) -> "TokenizerLike":
|
||||
if tokenizer_mode not in TokenizerRegistry.REGISTRY:
|
||||
def load_tokenizer_cls(self, tokenizer_mode: str) -> type[TokenizerLike]:
|
||||
if tokenizer_mode not in self.tokenizers:
|
||||
raise ValueError(f"No tokenizer registered for {tokenizer_mode=!r}.")
|
||||
|
||||
item = TokenizerRegistry.REGISTRY[tokenizer_mode]
|
||||
if isinstance(item, type):
|
||||
return item.from_pretrained(*args, **kwargs)
|
||||
|
||||
module, class_name = item
|
||||
module, class_name = self.tokenizers[tokenizer_mode]
|
||||
logger.debug_once(f"Loading {class_name} for {tokenizer_mode=!r}")
|
||||
|
||||
class_ = resolve_obj_by_qualname(f"{module}.{class_name}")
|
||||
return class_.from_pretrained(*args, **kwargs)
|
||||
return resolve_obj_by_qualname(f"{module}.{class_name}")
|
||||
|
||||
def load_tokenizer(self, tokenizer_mode: str, *args, **kwargs) -> TokenizerLike:
|
||||
tokenizer_cls = self.load_tokenizer_cls(tokenizer_mode)
|
||||
return tokenizer_cls.from_pretrained(*args, **kwargs)
|
||||
|
||||
|
||||
def get_tokenizer(
|
||||
TokenizerRegistry = _TokenizerRegistry(
|
||||
{
|
||||
mode: (f"vllm.tokenizers.{mod_relname}", cls_name)
|
||||
for mode, (mod_relname, cls_name) in _VLLM_TOKENIZERS.items()
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
def resolve_tokenizer_args(
|
||||
tokenizer_name: str | Path,
|
||||
*args,
|
||||
runner_type: "RunnerType" = "generate",
|
||||
tokenizer_mode: str = "auto",
|
||||
trust_remote_code: bool = False,
|
||||
revision: str | None = None,
|
||||
download_dir: str | None = None,
|
||||
**kwargs,
|
||||
) -> TokenizerLike:
|
||||
"""Gets a tokenizer for the given model name via HuggingFace or ModelScope."""
|
||||
):
|
||||
revision: str | None = kwargs.get("revision")
|
||||
download_dir: str | None = kwargs.get("download_dir")
|
||||
|
||||
if envs.VLLM_USE_MODELSCOPE:
|
||||
# download model from ModelScope hub,
|
||||
# lazy import so that modelscope is not required for normal use.
|
||||
@ -125,16 +110,6 @@ def get_tokenizer(
|
||||
)
|
||||
tokenizer_name = tokenizer_path
|
||||
|
||||
if tokenizer_mode == "slow":
|
||||
if kwargs.get("use_fast", False):
|
||||
raise ValueError("Cannot use the fast tokenizer in slow tokenizer mode.")
|
||||
|
||||
tokenizer_mode = "hf"
|
||||
kwargs["use_fast"] = False
|
||||
|
||||
if "truncation_side" not in kwargs:
|
||||
kwargs["truncation_side"] = "left"
|
||||
|
||||
# Separate model folder from file path for GGUF models
|
||||
if is_gguf(tokenizer_name):
|
||||
if check_gguf_file(tokenizer_name):
|
||||
@ -150,6 +125,21 @@ def get_tokenizer(
|
||||
)
|
||||
kwargs["gguf_file"] = gguf_file
|
||||
|
||||
if "truncation_side" not in kwargs:
|
||||
if runner_type == "generate" or runner_type == "draft":
|
||||
kwargs["truncation_side"] = "left"
|
||||
elif runner_type == "pooling":
|
||||
kwargs["truncation_side"] = "right"
|
||||
else:
|
||||
assert_never(runner_type)
|
||||
|
||||
if tokenizer_mode == "slow":
|
||||
if kwargs.get("use_fast", False):
|
||||
raise ValueError("Cannot use the fast tokenizer in slow tokenizer mode.")
|
||||
|
||||
tokenizer_mode = "hf"
|
||||
kwargs["use_fast"] = False
|
||||
|
||||
# Try to use official Mistral tokenizer if possible
|
||||
if tokenizer_mode == "auto" and importlib.util.find_spec("mistral_common"):
|
||||
allow_patterns = ["tekken.json", "tokenizer.model.v*"]
|
||||
@ -165,49 +155,70 @@ def get_tokenizer(
|
||||
if tokenizer_mode == "auto":
|
||||
tokenizer_mode = "hf"
|
||||
|
||||
tokenizer_args = (tokenizer_name, *args)
|
||||
tokenizer_kwargs = dict(
|
||||
return tokenizer_mode, tokenizer_name, args, kwargs
|
||||
|
||||
|
||||
cached_resolve_tokenizer_args = lru_cache(resolve_tokenizer_args)
|
||||
|
||||
|
||||
def tokenizer_args_from_config(config: "ModelConfig", **kwargs):
|
||||
return cached_resolve_tokenizer_args(
|
||||
config.tokenizer,
|
||||
runner_type=config.runner_type,
|
||||
tokenizer_mode=config.tokenizer_mode,
|
||||
revision=config.tokenizer_revision,
|
||||
trust_remote_code=config.trust_remote_code,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
_T = TypeVar("_T", bound=TokenizerLike, default=TokenizerLike)
|
||||
|
||||
|
||||
def get_tokenizer(
|
||||
tokenizer_name: str | Path,
|
||||
*args,
|
||||
tokenizer_cls: type[_T] = TokenizerLike, # type: ignore[assignment]
|
||||
trust_remote_code: bool = False,
|
||||
revision: str | None = None,
|
||||
download_dir: str | None = None,
|
||||
**kwargs,
|
||||
) -> _T:
|
||||
"""Gets a tokenizer for the given model name via HuggingFace or ModelScope."""
|
||||
tokenizer_mode, tokenizer_name, args, kwargs = cached_resolve_tokenizer_args(
|
||||
tokenizer_name,
|
||||
*args,
|
||||
trust_remote_code=trust_remote_code,
|
||||
revision=revision,
|
||||
download_dir=download_dir,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
if tokenizer_mode == "custom":
|
||||
logger.warning_once(
|
||||
"TokenizerRegistry now uses `tokenizer_mode` as the registry key "
|
||||
"instead of `tokenizer_name`. "
|
||||
"Please update the definition of `.from_pretrained` in "
|
||||
"your custom tokenizer to accept `args=%s`, `kwargs=%s`. "
|
||||
"Then, you can pass `tokenizer_mode=%r` instead of "
|
||||
"`tokenizer_mode='custom'` when initializing vLLM.",
|
||||
tokenizer_args,
|
||||
str(tokenizer_kwargs),
|
||||
tokenizer_name,
|
||||
)
|
||||
if tokenizer_cls == TokenizerLike:
|
||||
tokenizer_cls_ = TokenizerRegistry.load_tokenizer_cls(tokenizer_mode)
|
||||
else:
|
||||
tokenizer_cls_ = tokenizer_cls
|
||||
|
||||
tokenizer_mode = str(tokenizer_name)
|
||||
|
||||
tokenizer = TokenizerRegistry.get_tokenizer(
|
||||
tokenizer_mode,
|
||||
*tokenizer_args,
|
||||
**tokenizer_kwargs,
|
||||
)
|
||||
tokenizer = tokenizer_cls_.from_pretrained(tokenizer_name, *args, **kwargs)
|
||||
if not tokenizer.is_fast:
|
||||
logger.warning(
|
||||
"Using a slow tokenizer. This might cause a significant "
|
||||
"slowdown. Consider using a fast tokenizer instead."
|
||||
)
|
||||
|
||||
return tokenizer
|
||||
return tokenizer # type: ignore
|
||||
|
||||
|
||||
cached_get_tokenizer = lru_cache(get_tokenizer)
|
||||
|
||||
|
||||
def cached_tokenizer_from_config(model_config: "ModelConfig", **kwargs):
|
||||
if model_config.skip_tokenizer_init:
|
||||
return None
|
||||
|
||||
return cached_get_tokenizer(
|
||||
model_config.tokenizer,
|
||||
runner_type=model_config.runner_type,
|
||||
tokenizer_mode=model_config.tokenizer_mode,
|
||||
revision=model_config.tokenizer_revision,
|
||||
trust_remote_code=model_config.trust_remote_code,
|
||||
@ -215,19 +226,8 @@ def cached_tokenizer_from_config(model_config: "ModelConfig", **kwargs):
|
||||
)
|
||||
|
||||
|
||||
@deprecated(
|
||||
"Renamed to `cached_tokenizer_from_config`. The old name will be removed in v0.14."
|
||||
)
|
||||
def init_tokenizer_from_config(model_config: "ModelConfig"):
|
||||
runner_type = model_config.runner_type
|
||||
if runner_type == "generate" or runner_type == "draft":
|
||||
truncation_side = "left"
|
||||
elif runner_type == "pooling":
|
||||
truncation_side = "right"
|
||||
else:
|
||||
assert_never(runner_type)
|
||||
|
||||
return get_tokenizer(
|
||||
model_config.tokenizer,
|
||||
tokenizer_mode=model_config.tokenizer_mode,
|
||||
trust_remote_code=model_config.trust_remote_code,
|
||||
revision=model_config.tokenizer_revision,
|
||||
truncation_side=truncation_side,
|
||||
)
|
||||
return cached_tokenizer_from_config(model_config)
|
||||
|
||||
@ -60,17 +60,17 @@ def __getattr__(name: str):
|
||||
|
||||
return cached_tokenizer_from_config
|
||||
if name == "init_tokenizer_from_configs":
|
||||
from vllm.tokenizers import init_tokenizer_from_config
|
||||
from vllm.tokenizers import cached_tokenizer_from_config
|
||||
|
||||
warnings.warn(
|
||||
"`vllm.transformers_utils.tokenizer.init_tokenizer_from_configs` "
|
||||
"has been moved to `vllm.tokenizers.init_tokenizer_from_config`. "
|
||||
"has been moved to `vllm.tokenizers.cached_tokenizer_from_config`. "
|
||||
"The old name will be removed in v0.14.",
|
||||
DeprecationWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
|
||||
return init_tokenizer_from_config
|
||||
return cached_tokenizer_from_config
|
||||
|
||||
raise AttributeError(f"module {__name__!r} has no attribute {name!r}")
|
||||
|
||||
|
||||
@ -26,7 +26,7 @@ from vllm.plugins.io_processors import get_io_processor
|
||||
from vllm.pooling_params import PoolingParams
|
||||
from vllm.sampling_params import SamplingParams
|
||||
from vllm.tasks import SupportedTask
|
||||
from vllm.tokenizers import TokenizerLike, init_tokenizer_from_config
|
||||
from vllm.tokenizers import TokenizerLike, cached_tokenizer_from_config
|
||||
from vllm.tracing import init_tracer
|
||||
from vllm.transformers_utils.config import maybe_register_config_serialize_by_value
|
||||
from vllm.usage.usage_lib import UsageContext
|
||||
@ -111,7 +111,7 @@ class AsyncLLM(EngineClient):
|
||||
if self.model_config.skip_tokenizer_init:
|
||||
tokenizer = None
|
||||
else:
|
||||
tokenizer = init_tokenizer_from_config(self.model_config)
|
||||
tokenizer = cached_tokenizer_from_config(self.model_config)
|
||||
|
||||
self.input_processor = InputProcessor(self.vllm_config, tokenizer)
|
||||
self.io_processor = get_io_processor(
|
||||
|
||||
@ -23,7 +23,7 @@ from vllm.plugins.io_processors import get_io_processor
|
||||
from vllm.pooling_params import PoolingParams
|
||||
from vllm.sampling_params import SamplingParams
|
||||
from vllm.tasks import SupportedTask
|
||||
from vllm.tokenizers import TokenizerLike, init_tokenizer_from_config
|
||||
from vllm.tokenizers import TokenizerLike, cached_tokenizer_from_config
|
||||
from vllm.tracing import init_tracer
|
||||
from vllm.usage.usage_lib import UsageContext
|
||||
from vllm.v1.engine import EngineCoreRequest
|
||||
@ -86,7 +86,7 @@ class LLMEngine:
|
||||
if self.model_config.skip_tokenizer_init:
|
||||
tokenizer = None
|
||||
else:
|
||||
tokenizer = init_tokenizer_from_config(self.model_config)
|
||||
tokenizer = cached_tokenizer_from_config(self.model_config)
|
||||
|
||||
self.input_processor = InputProcessor(self.vllm_config, tokenizer)
|
||||
self.io_processor = get_io_processor(
|
||||
|
||||
@ -7,7 +7,7 @@ from typing import TYPE_CHECKING
|
||||
from vllm.config import VllmConfig
|
||||
from vllm.logger import init_logger
|
||||
from vllm.reasoning import ReasoningParserManager
|
||||
from vllm.tokenizers import init_tokenizer_from_config
|
||||
from vllm.tokenizers import cached_tokenizer_from_config
|
||||
from vllm.utils.import_utils import LazyLoader
|
||||
from vllm.v1.structured_output.backend_guidance import GuidanceBackend
|
||||
from vllm.v1.structured_output.backend_types import (
|
||||
@ -71,7 +71,7 @@ class StructuredOutputManager:
|
||||
# of CPUs.
|
||||
max_workers = max(1, (multiprocessing.cpu_count() + 1) // 2)
|
||||
self.executor = ThreadPoolExecutor(max_workers=max_workers)
|
||||
self.tokenizer = init_tokenizer_from_config(
|
||||
self.tokenizer = cached_tokenizer_from_config(
|
||||
model_config=self.vllm_config.model_config
|
||||
)
|
||||
reasoning_parser = (
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user