mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-13 20:44:27 +08:00
[TPU] support fp8 kv cache quantization (#19292)
Signed-off-by: Chengji Yao <chengjiyao@google.com>
This commit is contained in:
parent
2b504eb770
commit
3a1d8940ae
@ -15,15 +15,18 @@ import pytest
|
|||||||
from vllm.platforms import current_platform
|
from vllm.platforms import current_platform
|
||||||
|
|
||||||
MODEL_NAMES = [
|
MODEL_NAMES = [
|
||||||
"Qwen/Qwen2-1.5B-Instruct",
|
"Qwen/Qwen3-1.7B",
|
||||||
"google/gemma-3-1b-it",
|
"google/gemma-3-1b-it",
|
||||||
]
|
]
|
||||||
|
FP8_KV_MODEL_NAMES = [
|
||||||
|
"Qwen/Qwen3-1.7B",
|
||||||
|
]
|
||||||
NUM_CONCURRENT = 500
|
NUM_CONCURRENT = 500
|
||||||
TASK = "gsm8k"
|
TASK = "gsm8k"
|
||||||
FILTER = "exact_match,strict-match"
|
FILTER = "exact_match,strict-match"
|
||||||
RTOL = 0.03
|
RTOL = 0.03
|
||||||
EXPECTED_VALUES = {
|
EXPECTED_VALUES = {
|
||||||
"Qwen/Qwen2-1.5B-Instruct": 0.58,
|
"Qwen/Qwen3-1.7B": 0.68,
|
||||||
"google/gemma-3-1b-it": 0.25,
|
"google/gemma-3-1b-it": 0.25,
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -70,10 +73,9 @@ def test_lm_eval_accuracy_v1_engine(model, monkeypatch: pytest.MonkeyPatch):
|
|||||||
if current_platform.is_tpu():
|
if current_platform.is_tpu():
|
||||||
# Limit compilation time for TPU V1
|
# Limit compilation time for TPU V1
|
||||||
|
|
||||||
if model == "google/gemma-3-1b-it":
|
# xet doesn't work well for both Qwen/Qwen3-1.7B and
|
||||||
# TPU + google/gemma-3-1b-it + xet doesn't work well.
|
# google/gemma-3-1b-it
|
||||||
m.setenv("HF_HUB_DISABLE_XET", "1")
|
m.setenv("HF_HUB_DISABLE_XET", "1")
|
||||||
|
|
||||||
more_args = "max_model_len=2048,max_num_seqs=64"
|
more_args = "max_model_len=2048,max_num_seqs=64"
|
||||||
|
|
||||||
# Add TP test (if provided)
|
# Add TP test (if provided)
|
||||||
@ -83,9 +85,27 @@ def test_lm_eval_accuracy_v1_engine(model, monkeypatch: pytest.MonkeyPatch):
|
|||||||
run_test(model, more_args)
|
run_test(model, more_args)
|
||||||
|
|
||||||
|
|
||||||
def test_lm_eval_accuracy_v0_engine(monkeypatch: pytest.MonkeyPatch):
|
@pytest.mark.skipif(not current_platform.is_cuda()
|
||||||
"""Run with the V0 Engine."""
|
and not current_platform.is_tpu(),
|
||||||
|
reason="V1 is currently only supported on CUDA and TPU")
|
||||||
|
@pytest.mark.parametrize("model", FP8_KV_MODEL_NAMES)
|
||||||
|
def test_lm_eval_accuracy_v1_engine_fp8_kv_cache(
|
||||||
|
model, monkeypatch: pytest.MonkeyPatch):
|
||||||
|
"""Run with the V1 Engine."""
|
||||||
|
|
||||||
with monkeypatch.context() as m:
|
with monkeypatch.context() as m:
|
||||||
m.setenv("VLLM_USE_V1", "0")
|
m.setenv("VLLM_USE_V1", "1")
|
||||||
run_test("Qwen/Qwen2-1.5B-Instruct")
|
|
||||||
|
more_args = None
|
||||||
|
if current_platform.is_tpu():
|
||||||
|
# Limit compilation time for TPU V1
|
||||||
|
|
||||||
|
# xet doesn't work well for Qwen/Qwen3-1.7B
|
||||||
|
m.setenv("HF_HUB_DISABLE_XET", "1")
|
||||||
|
more_args = "max_model_len=2048,max_num_seqs=128,kv_cache_dtype=fp8"
|
||||||
|
|
||||||
|
# Add TP test (if provided)
|
||||||
|
if TPU_TP_TEST_STR:
|
||||||
|
more_args += ",{}".format(TPU_TP_TEST_STR)
|
||||||
|
|
||||||
|
run_test(model, more_args)
|
||||||
|
|||||||
@ -95,4 +95,6 @@ def test_ragged_paged_attention():
|
|||||||
sm_scale=scale,
|
sm_scale=scale,
|
||||||
sliding_window=sliding_window,
|
sliding_window=sliding_window,
|
||||||
soft_cap=logits_soft_cap,
|
soft_cap=logits_soft_cap,
|
||||||
|
k_scale=1.0,
|
||||||
|
v_scale=1.0,
|
||||||
)
|
)
|
||||||
|
|||||||
@ -1358,10 +1358,10 @@ class EngineArgs:
|
|||||||
and not envs.is_set("VLLM_ATTENTION_BACKEND")
|
and not envs.is_set("VLLM_ATTENTION_BACKEND")
|
||||||
) or envs.VLLM_ATTENTION_BACKEND == "FLASH_ATTN_VLLM_V1"
|
) or envs.VLLM_ATTENTION_BACKEND == "FLASH_ATTN_VLLM_V1"
|
||||||
supported = False
|
supported = False
|
||||||
if current_platform.is_rocm() or (
|
if (current_platform.is_rocm()
|
||||||
current_platform.is_cuda()
|
or (current_platform.is_cuda()
|
||||||
and current_platform.is_device_capability(100)
|
and current_platform.is_device_capability(100))
|
||||||
): # handle hpu also for OOT platform
|
or current_platform.is_tpu()):
|
||||||
supported = True
|
supported = True
|
||||||
elif fp8_attention and will_use_fa:
|
elif fp8_attention and will_use_fa:
|
||||||
from vllm.attention.utils.fa_utils import (
|
from vllm.attention.utils.fa_utils import (
|
||||||
|
|||||||
@ -35,7 +35,9 @@ class TpuPlatform(Platform):
|
|||||||
device_control_env_var: str = "TPU_VISIBLE_CHIPS"
|
device_control_env_var: str = "TPU_VISIBLE_CHIPS"
|
||||||
simple_compile_backend: str = "openxla"
|
simple_compile_backend: str = "openxla"
|
||||||
|
|
||||||
supported_quantization: list[str] = ["tpu_int8", "compressed-tensors"]
|
supported_quantization: list[str] = [
|
||||||
|
"fp8", "tpu_int8", "compressed-tensors"
|
||||||
|
]
|
||||||
|
|
||||||
additional_env_vars: list[str] = [
|
additional_env_vars: list[str] = [
|
||||||
"TPU_CHIPS_PER_HOST_BOUNDS", "TPU_HOST_BOUNDS"
|
"TPU_CHIPS_PER_HOST_BOUNDS", "TPU_HOST_BOUNDS"
|
||||||
|
|||||||
@ -24,6 +24,19 @@ logger = init_logger(__name__)
|
|||||||
# TPU requires the head size to be a multiple of 128.
|
# TPU requires the head size to be a multiple of 128.
|
||||||
TPU_HEAD_SIZE_ALIGNMENT = 128
|
TPU_HEAD_SIZE_ALIGNMENT = 128
|
||||||
|
|
||||||
|
# Note: TPU can fp8 as storage dtype but doesn't support converting from uint8
|
||||||
|
# from to fp32 directly. That's why it has a dtype mapping different from GPU
|
||||||
|
TPU_STR_DTYPE_TO_TORCH_DTYPE = {
|
||||||
|
"half": torch.half,
|
||||||
|
"bfloat16": torch.bfloat16,
|
||||||
|
"float": torch.float,
|
||||||
|
"fp8": torch.float8_e4m3fn,
|
||||||
|
"fp8_e4m3": torch.float8_e4m3fn,
|
||||||
|
"fp8_e5m2": torch.float8_e5m2,
|
||||||
|
"int8": torch.int8,
|
||||||
|
"uint8": torch.uint8,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
class PallasAttentionBackend(AttentionBackend):
|
class PallasAttentionBackend(AttentionBackend):
|
||||||
|
|
||||||
@ -152,8 +165,6 @@ class PallasAttentionBackendImpl(AttentionImpl):
|
|||||||
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
|
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
|
||||||
if alibi_slopes is not None:
|
if alibi_slopes is not None:
|
||||||
raise NotImplementedError("Alibi slopes is not supported.")
|
raise NotImplementedError("Alibi slopes is not supported.")
|
||||||
if kv_cache_dtype != "auto":
|
|
||||||
raise NotImplementedError("FP8 KV cache dtype is not supported.")
|
|
||||||
|
|
||||||
if attn_type != AttentionType.DECODER:
|
if attn_type != AttentionType.DECODER:
|
||||||
raise NotImplementedError("Encoder self-attention and "
|
raise NotImplementedError("Encoder self-attention and "
|
||||||
@ -161,6 +172,11 @@ class PallasAttentionBackendImpl(AttentionImpl):
|
|||||||
"are not implemented for "
|
"are not implemented for "
|
||||||
"PallasAttentionBackendImpl")
|
"PallasAttentionBackendImpl")
|
||||||
|
|
||||||
|
self.kv_cache_quantized_dtype = None
|
||||||
|
if kv_cache_dtype != "auto":
|
||||||
|
self.kv_cache_quantized_dtype = TPU_STR_DTYPE_TO_TORCH_DTYPE.get(
|
||||||
|
kv_cache_dtype.lower().strip())
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
self,
|
self,
|
||||||
layer: AttentionLayer,
|
layer: AttentionLayer,
|
||||||
@ -194,7 +210,6 @@ class PallasAttentionBackendImpl(AttentionImpl):
|
|||||||
output = torch.ones_like(query)
|
output = torch.ones_like(query)
|
||||||
return output
|
return output
|
||||||
|
|
||||||
assert layer._k_scale_float == 1.0 and layer._v_scale_float == 1.0
|
|
||||||
num_tokens, hidden_size = query.shape
|
num_tokens, hidden_size = query.shape
|
||||||
query = query.view(num_tokens, self.num_heads, self.head_size)
|
query = query.view(num_tokens, self.num_heads, self.head_size)
|
||||||
key = key.view(-1, self.num_kv_heads, self.head_size)
|
key = key.view(-1, self.num_kv_heads, self.head_size)
|
||||||
@ -215,10 +230,21 @@ class PallasAttentionBackendImpl(AttentionImpl):
|
|||||||
# Skip this if sharing KV cache with an earlier attention layer.
|
# Skip this if sharing KV cache with an earlier attention layer.
|
||||||
slot_mapping = attn_metadata.slot_mapping
|
slot_mapping = attn_metadata.slot_mapping
|
||||||
write_to_kv_cache(
|
write_to_kv_cache(
|
||||||
key, value, kv_cache, slot_mapping,
|
key,
|
||||||
|
value,
|
||||||
|
kv_cache,
|
||||||
|
slot_mapping,
|
||||||
attn_metadata.num_slices_per_kv_cache_update_block,
|
attn_metadata.num_slices_per_kv_cache_update_block,
|
||||||
attn_metadata.num_kv_update_slices)
|
attn_metadata.num_kv_update_slices,
|
||||||
|
self.kv_cache_quantized_dtype,
|
||||||
|
layer._k_scale_float,
|
||||||
|
layer._v_scale_float,
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.kv_cache_quantized_dtype is not None and (
|
||||||
|
layer._k_scale_float == 0.0 or layer._v_scale_float == 0.0):
|
||||||
|
raise ValueError(
|
||||||
|
"k_scale_float and v_scale_float must be non-zero")
|
||||||
output = torch.ops.xla.ragged_paged_attention(
|
output = torch.ops.xla.ragged_paged_attention(
|
||||||
query,
|
query,
|
||||||
kv_cache,
|
kv_cache,
|
||||||
@ -236,6 +262,8 @@ class PallasAttentionBackendImpl(AttentionImpl):
|
|||||||
sm_scale=self.scale,
|
sm_scale=self.scale,
|
||||||
sliding_window=self.sliding_window,
|
sliding_window=self.sliding_window,
|
||||||
soft_cap=self.logits_soft_cap,
|
soft_cap=self.logits_soft_cap,
|
||||||
|
k_scale=layer._k_scale_float,
|
||||||
|
v_scale=layer._v_scale_float,
|
||||||
)
|
)
|
||||||
|
|
||||||
if self.head_size % TPU_HEAD_SIZE_ALIGNMENT != 0:
|
if self.head_size % TPU_HEAD_SIZE_ALIGNMENT != 0:
|
||||||
@ -251,18 +279,32 @@ def write_to_kv_cache(
|
|||||||
slot_mapping: torch.Tensor,
|
slot_mapping: torch.Tensor,
|
||||||
num_slices_per_kv_cache_update_block: int,
|
num_slices_per_kv_cache_update_block: int,
|
||||||
num_kv_update_slices: torch.Tensor,
|
num_kv_update_slices: torch.Tensor,
|
||||||
|
kv_cache_quantized_dtype: Optional[torch.dtype] = None,
|
||||||
|
k_scale: float = 1.0,
|
||||||
|
v_scale: float = 1.0,
|
||||||
) -> None:
|
) -> None:
|
||||||
""" Write the key and values to the KV cache.
|
""" Write the key and values to the KV cache.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
key: shape = [num_tokens, num_kv_heads * head_size]
|
key: shape = [num_tokens, num_kv_heads, head_size]
|
||||||
value: shape = [num_tokens, num_kv_heads * head_size]
|
value: shape = [num_tokens, num_kv_heads, head_size]
|
||||||
kv_cache = [num_blocks, block_size, num_kv_heads * 2, head_size]
|
kv_cache = [num_blocks, block_size, num_kv_heads * 2, head_size]
|
||||||
num_slices_per_kv_cache_update_block: int
|
num_slices_per_kv_cache_update_block: int
|
||||||
"""
|
"""
|
||||||
_, page_size, num_combined_kv_heads, head_size = kv_cache.shape
|
_, page_size, num_combined_kv_heads, head_size = kv_cache.shape
|
||||||
head_size = cdiv(head_size,
|
head_size = cdiv(head_size,
|
||||||
TPU_HEAD_SIZE_ALIGNMENT) * TPU_HEAD_SIZE_ALIGNMENT
|
TPU_HEAD_SIZE_ALIGNMENT) * TPU_HEAD_SIZE_ALIGNMENT
|
||||||
|
|
||||||
|
if kv_cache_quantized_dtype is not None:
|
||||||
|
dtype_info = torch.finfo(kv_cache_quantized_dtype)
|
||||||
|
key = key.to(torch.float32) / k_scale
|
||||||
|
# NOTE: clamp is added here to avoid out of range of quantized dtype
|
||||||
|
key = torch.clamp(key, dtype_info.min, dtype_info.max)
|
||||||
|
key = key.to(kv_cache_quantized_dtype)
|
||||||
|
value = value.to(torch.float32) / v_scale
|
||||||
|
value = torch.clamp(value, dtype_info.min, dtype_info.max)
|
||||||
|
value = value.to(kv_cache_quantized_dtype)
|
||||||
|
|
||||||
kv = torch.cat([key, value], axis=-1).reshape(-1, num_combined_kv_heads,
|
kv = torch.cat([key, value], axis=-1).reshape(-1, num_combined_kv_heads,
|
||||||
head_size)
|
head_size)
|
||||||
|
|
||||||
|
|||||||
@ -32,9 +32,10 @@ from vllm.multimodal.inputs import (BatchedTensorInputs, MultiModalKwargs,
|
|||||||
from vllm.multimodal.utils import group_mm_inputs_by_modality
|
from vllm.multimodal.utils import group_mm_inputs_by_modality
|
||||||
from vllm.pooling_params import PoolingTask
|
from vllm.pooling_params import PoolingTask
|
||||||
from vllm.sequence import IntermediateTensors
|
from vllm.sequence import IntermediateTensors
|
||||||
from vllm.utils import (STR_DTYPE_TO_TORCH_DTYPE, LayerBlockType, cdiv,
|
from vllm.utils import (LayerBlockType, cdiv, is_pin_memory_available,
|
||||||
is_pin_memory_available, prev_power_of_2)
|
prev_power_of_2)
|
||||||
from vllm.v1.attention.backends.pallas import (PallasAttentionBackend,
|
from vllm.v1.attention.backends.pallas import (TPU_STR_DTYPE_TO_TORCH_DTYPE,
|
||||||
|
PallasAttentionBackend,
|
||||||
PallasMetadata,
|
PallasMetadata,
|
||||||
get_page_size_bytes)
|
get_page_size_bytes)
|
||||||
from vllm.v1.core.encoder_cache_manager import compute_encoder_budget
|
from vllm.v1.core.encoder_cache_manager import compute_encoder_budget
|
||||||
@ -142,11 +143,11 @@ class TPUModelRunner(LoRAModelRunnerMixin):
|
|||||||
if cache_config.cache_dtype == "auto":
|
if cache_config.cache_dtype == "auto":
|
||||||
model_dtype = self.dtype
|
model_dtype = self.dtype
|
||||||
if isinstance(model_dtype, str):
|
if isinstance(model_dtype, str):
|
||||||
self.kv_cache_dtype = STR_DTYPE_TO_TORCH_DTYPE[model_dtype]
|
self.kv_cache_dtype = TPU_STR_DTYPE_TO_TORCH_DTYPE[model_dtype]
|
||||||
else:
|
else:
|
||||||
self.kv_cache_dtype = model_dtype
|
self.kv_cache_dtype = model_dtype
|
||||||
else:
|
else:
|
||||||
self.kv_cache_dtype = STR_DTYPE_TO_TORCH_DTYPE[
|
self.kv_cache_dtype = TPU_STR_DTYPE_TO_TORCH_DTYPE[
|
||||||
cache_config.cache_dtype]
|
cache_config.cache_dtype]
|
||||||
self._hidden_states_dtype = self.dtype
|
self._hidden_states_dtype = self.dtype
|
||||||
|
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user