[Misc][Doc] Add Example of using OpenAI Server with VLM (#5832)

This commit is contained in:
Roger Wang 2024-06-25 20:34:25 -07:00 committed by GitHub
parent dda4811591
commit 3aa7b6cf66
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 101 additions and 3 deletions

View File

@ -130,6 +130,8 @@ To consume the server, you can use the OpenAI client like in the example below:
)
print("Chat response:", chat_response)
A full code example can be found in `examples/openai_vision_api_client.py <https://github.com/vllm-project/vllm/blob/main/examples/openai_vision_api_client.py>`_.
.. note::
By default, the timeout for fetching images through http url is ``5`` seconds. You can override this by setting the environment variable:

View File

@ -0,0 +1,90 @@
"""An example showing how to use vLLM to serve VLMs.
Launch the vLLM server with the following command:
python -m vllm.entrypoints.openai.api_server \
--model llava-hf/llava-1.5-7b-hf \
--image-input-type pixel_values \
--image-token-id 32000 \
--image-input-shape 1,3,336,336 \
--image-feature-size 576 \
--chat-template template_llava.jinja
"""
import base64
import requests
from openai import OpenAI
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
client = OpenAI(
# defaults to os.environ.get("OPENAI_API_KEY")
api_key=openai_api_key,
base_url=openai_api_base,
)
models = client.models.list()
model = models.data[0].id
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
# Use image url in the payload
chat_completion_from_url = client.chat.completions.create(
messages=[{
"role":
"user",
"content": [
{
"type": "text",
"text": "Whats in this image?"
},
{
"type": "image_url",
"image_url": {
"url": image_url
},
},
],
}],
model=model,
)
result = chat_completion_from_url.choices[0].message.content
print(f"Chat completion output:{result}")
# Use base64 encoded image in the payload
def encode_image_base64_from_url(image_url: str) -> str:
"""Encode an image retrieved from a remote url to base64 format."""
with requests.get(image_url) as response:
response.raise_for_status()
result = base64.b64encode(response.content).decode('utf-8')
return result
image_base64 = encode_image_base64_from_url(image_url=image_url)
chat_completion_from_base64 = client.chat.completions.create(
messages=[{
"role":
"user",
"content": [
{
"type": "text",
"text": "Whats in this image?"
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{image_base64}"
},
},
],
}],
model=model,
)
result = chat_completion_from_base64.choices[0].message.content
print(f"Chat completion output:{result}")

View File

@ -1,6 +1,7 @@
import base64
from io import BytesIO
from typing import Optional, Union
from urllib.parse import urlparse
import aiohttp
from PIL import Image
@ -28,6 +29,10 @@ class ImageFetchAiohttp:
"""Load PIL image from a url or base64 encoded openai GPT4V format"""
if image_url.startswith('http'):
parsed_url = urlparse(image_url)
if parsed_url.scheme not in ["http", "https"]:
raise ValueError("Invalid 'image_url': A valid 'image_url' "
"must have scheme 'http' or 'https'.")
# Avoid circular import
from vllm import __version__ as VLLM_VERSION
@ -44,8 +49,9 @@ class ImageFetchAiohttp:
image = load_image_from_base64(image_url.split(',', 1)[1])
else:
raise ValueError("Invalid image url: A valid image url must start "
"with either 'data:image' or 'http'.")
raise ValueError(
"Invalid 'image_url': A valid 'image_url' must start "
"with either 'data:image' or 'http'.")
return image
@ -56,7 +62,7 @@ async def async_get_and_parse_image(image_url: str) -> ImagePixelData:
def encode_image_base64(image: Image.Image, format: str = 'JPEG') -> str:
"""encode image to base64 format."""
"""Encode a pillow image to base64 format."""
buffered = BytesIO()
if format == 'JPEG':