Enable group size 64 for Machete (#20290)

Signed-off-by: czhu-cohere <conway.zhu@cohere.com>
This commit is contained in:
czhu-cohere 2025-07-01 18:05:44 -07:00 committed by GitHub
parent e81fbefe8a
commit 3abfe22154
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 25 additions and 8 deletions

View File

@ -14,6 +14,8 @@ import torch
from tests.kernels.utils import opcheck
from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.utils.machete_utils import (
query_machete_supported_group_sizes)
from vllm.model_executor.layers.quantization.utils.quant_utils import (
pack_rows, quantize_weights)
from vllm.platforms import current_platform
@ -46,8 +48,6 @@ MNK_SHAPES = [
(1024, 8192, 4096),
]
GROUP_SIZES_TO_TEST: list[Optional[int]] = [128, -1]
@dataclass
class TypeConfig:
@ -270,7 +270,7 @@ def test_machete_all_schedules(shape, types: TypeConfig):
if types.group_scale_type is None:
group_sizes = [None]
else:
group_sizes = GROUP_SIZES_TO_TEST
group_sizes = query_machete_supported_group_sizes(types.act_type)
for group_size in group_sizes:
if not group_size_valid(shape, group_size):
@ -299,7 +299,7 @@ def test_machete_heuristic(shape, types: TypeConfig):
if types.group_scale_type is None:
group_sizes = [None]
else:
group_sizes = GROUP_SIZES_TO_TEST
group_sizes = query_machete_supported_group_sizes(types.act_type)
for group_size in group_sizes:
if not group_size_valid(shape, group_size):

View File

@ -8,7 +8,7 @@ import torch
from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.utils.machete_utils import (
MACHETE_SUPPORTED_GROUP_SIZES, check_machete_supports_shape,
check_machete_supports_shape, query_machete_supported_group_sizes,
query_machete_supported_quant_types)
from vllm.model_executor.layers.quantization.utils.quant_utils import (
pack_quantized_values_into_int32, unpack_quantized_values_into_int32)
@ -40,10 +40,10 @@ class MacheteLinearKernel(MPLinearKernel):
"Machete, supported types are: "\
f"{query_machete_supported_quant_types(c.zero_points)}"
if c.group_size not in MACHETE_SUPPORTED_GROUP_SIZES:
if c.group_size not in query_machete_supported_group_sizes(c.act_type):
return False, f"Group size ({c.group_size}) not supported by "\
"Machete, supported group sizes are: "\
f"{MACHETE_SUPPORTED_GROUP_SIZES}"
f"{query_machete_supported_group_sizes(c.act_type)}"
return check_machete_supports_shape(c.partition_weight_shape[0],
c.partition_weight_shape[1])

View File

@ -7,7 +7,6 @@ import torch
from vllm.scalar_type import ScalarType, scalar_types
MACHETE_SUPPORTED_GROUP_SIZES = [-1, 128]
MACHETE_PREPACKED_BLOCK_SHAPE = [64, 128]
@ -22,6 +21,24 @@ def query_machete_supported_act_types(zero_points: bool) -> list[ScalarType]:
return [torch.float16, torch.bfloat16]
def query_machete_supported_group_sizes(act_type: torch.dtype) -> list[int]:
"""
Queries the supported group sizes for Machete based on the activation type.
Args:
act_type: The activation data type (torch.float16, torch.bfloat16).
Returns:
A list of supported group sizes. The group size must
be divisible by `TileShapeK = 128 * 8 // num_bits(act_type)`.
-1 indicates per-channel quantization.
"""
if act_type in [torch.float16, torch.bfloat16]:
return [-1, 64, 128]
else:
return [-1, 128]
def check_machete_supports_shape(in_features: int, out_featrues: int) \
-> tuple[bool, Optional[str]]:
if in_features % MACHETE_PREPACKED_BLOCK_SHAPE[0] != 0: