diff --git a/docs/models/supported_models.md b/docs/models/supported_models.md
index 3bba63dda03d4..9ef877bf3891d 100644
--- a/docs/models/supported_models.md
+++ b/docs/models/supported_models.md
@@ -663,6 +663,7 @@ These models primarily accept the [`LLM.generate`](./generative_models.md#llmgen
| `KeyeForConditionalGeneration` | Keye-VL-8B-Preview | T + IE+ + VE+ | `Kwai-Keye/Keye-VL-8B-Preview` | ✅︎ | ✅︎ |
| `KeyeVL1_5ForConditionalGeneration` | Keye-VL-1_5-8B | T + IE+ + VE+ | `Kwai-Keye/Keye-VL-1_5-8B` | ✅︎ | ✅︎ |
| `KimiVLForConditionalGeneration` | Kimi-VL-A3B-Instruct, Kimi-VL-A3B-Thinking | T + I+ | `moonshotai/Kimi-VL-A3B-Instruct`, `moonshotai/Kimi-VL-A3B-Thinking` | | ✅︎ |
+| `LightOnOCRForConditionalGeneration` | LightOnOCR-1B | T + I+ | `lightonai/LightOnOCR-1B`, etc | ✅︎ | ✅︎ |
| `Llama4ForConditionalGeneration` | Llama 4 | T + I+ | `meta-llama/Llama-4-Scout-17B-16E-Instruct`, `meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8`, `meta-llama/Llama-4-Maverick-17B-128E-Instruct`, etc. | | ✅︎ |
| `Llama_Nemotron_Nano_VL` | Llama Nemotron Nano VL | T + IE+ | `nvidia/Llama-3.1-Nemotron-Nano-VL-8B-V1` | ✅︎ | ✅︎ |
| `LlavaForConditionalGeneration` | LLaVA-1.5, Pixtral (HF Transformers) | T + IE+ | `llava-hf/llava-1.5-7b-hf`, `TIGER-Lab/Mantis-8B-siglip-llama3` (see note), `mistral-community/pixtral-12b`, etc. | | ✅︎ |
diff --git a/examples/offline_inference/vision_language.py b/examples/offline_inference/vision_language.py
index a92304837be16..5d9cac8dfabbf 100644
--- a/examples/offline_inference/vision_language.py
+++ b/examples/offline_inference/vision_language.py
@@ -734,6 +734,26 @@ def run_kimi_vl(questions: list[str], modality: str) -> ModelRequestData:
)
+# LightOnOCR
+def run_lightonocr(questions: list[str], modality: str) -> ModelRequestData:
+ assert modality == "image"
+
+ prompts = [
+ "<|im_start|>system<|im_end|>\n<|im_start|>user\n<|image_pad|><|im_end|>\n<|im_start|>assistant\n"
+ for _ in questions
+ ]
+
+ engine_args = EngineArgs(
+ model="lightonai/LightOnOCR-1B",
+ limit_mm_per_prompt={modality: 1},
+ )
+
+ return ModelRequestData(
+ engine_args=engine_args,
+ prompts=prompts,
+ )
+
+
def run_llama4(questions: list[str], modality: str) -> ModelRequestData:
assert modality == "image"
@@ -1709,6 +1729,7 @@ model_example_map = {
"keye_vl": run_keye_vl,
"keye_vl1_5": run_keye_vl1_5,
"kimi_vl": run_kimi_vl,
+ "lightonocr": run_lightonocr,
"llama4": run_llama4,
"llava": run_llava,
"llava-next": run_llava_next,
diff --git a/tests/models/registry.py b/tests/models/registry.py
index 6bcb12e9e2e09..8a3e2a6893e51 100644
--- a/tests/models/registry.py
+++ b/tests/models/registry.py
@@ -652,6 +652,10 @@ _MULTIMODAL_EXAMPLE_MODELS = {
extras={"thinking": "moonshotai/Kimi-VL-A3B-Thinking"},
trust_remote_code=True,
),
+ "LightOnOCRForConditionalGeneration": _HfExamplesInfo(
+ "lightonai/LightOnOCR-1B",
+ is_available_online=False,
+ ),
"Llama4ForConditionalGeneration": _HfExamplesInfo(
"meta-llama/Llama-4-Scout-17B-16E-Instruct",
max_model_len=10240,
diff --git a/vllm/model_executor/models/lightonocr.py b/vllm/model_executor/models/lightonocr.py
new file mode 100644
index 0000000000000..9839e4f8f707e
--- /dev/null
+++ b/vllm/model_executor/models/lightonocr.py
@@ -0,0 +1,195 @@
+# SPDX-License-Identifier: Apache-2.0
+# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
+from collections.abc import Iterable, Mapping, Sequence
+from typing import TypeVar
+
+import torch
+import torch.nn as nn
+from transformers import (
+ BatchFeature,
+ PixtralVisionConfig,
+)
+
+from vllm.config import VllmConfig
+from vllm.model_executor.models.mistral3 import (
+ Mistral3DummyInputsBuilder,
+ Mistral3ForConditionalGeneration,
+ Mistral3MultiModalProjector,
+ Mistral3ProcessingInfo,
+ _build_mistral3_info,
+ init_vision_tower_for_llava,
+)
+from vllm.model_executor.models.pixtral import PixtralHFEncoderInfo
+from vllm.model_executor.models.utils import (
+ AutoWeightsLoader,
+ WeightsMapper,
+ init_vllm_registered_model,
+ maybe_prefix,
+)
+from vllm.multimodal import MULTIMODAL_REGISTRY
+from vllm.multimodal.cache import BaseMultiModalProcessorCache
+from vllm.multimodal.inputs import MultiModalFieldConfig, MultiModalKwargs
+from vllm.multimodal.parse import ImageProcessorItems, MultiModalDataItems
+from vllm.multimodal.processing import (
+ BaseMultiModalProcessor,
+ PromptReplacement,
+ PromptUpdate,
+ PromptUpdateDetails,
+)
+from vllm.multimodal.profiling import BaseDummyInputsBuilder
+
+_I = TypeVar("_I", bound=Mistral3ProcessingInfo)
+
+
+class LightOnOCRMultiModalProcessor(BaseMultiModalProcessor[Mistral3ProcessingInfo]):
+ def _call_hf_processor(
+ self,
+ prompt: str,
+ mm_data: Mapping[str, object],
+ mm_kwargs: Mapping[str, object],
+ tok_kwargs: Mapping[str, object],
+ ) -> BatchFeature:
+ processed_outputs = super()._call_hf_processor(
+ prompt=prompt,
+ mm_data=mm_data,
+ mm_kwargs=mm_kwargs,
+ tok_kwargs=tok_kwargs,
+ )
+
+ # NOTE: LightOnOCR does not use break/end tokens, so we remove them here.
+ input_ids = processed_outputs.get("input_ids")
+ if input_ids is not None:
+ processor = self.info.get_hf_processor()
+ tokenizer = self.info.get_tokenizer()
+ vocab = tokenizer.get_vocab()
+
+ break_id = vocab.get(processor.image_break_token)
+ end_id = vocab.get(processor.image_end_token)
+
+ # create mask to remove break/end tokens
+ keep_mask = ~torch.isin(
+ input_ids,
+ torch.tensor([break_id, end_id]),
+ )
+
+ processed_outputs["input_ids"] = input_ids[keep_mask].unsqueeze(0)
+ if "attention_mask" in processed_outputs:
+ processed_outputs["attention_mask"] = processed_outputs[
+ "attention_mask"
+ ][keep_mask].unsqueeze(0)
+
+ # un-pad pixel_values per-image so caches remain independent.
+ pixel_values = processed_outputs.get("pixel_values")
+ if pixel_values is not None:
+ image_sizes = processed_outputs["image_sizes"]
+ assert len(pixel_values) == len(image_sizes)
+ processed_outputs["pixel_values"] = [
+ p[:, :h, :w] for p, (h, w) in zip(pixel_values, image_sizes)
+ ]
+
+ return processed_outputs
+
+ def _get_mm_fields_config(
+ self,
+ hf_inputs: BatchFeature,
+ hf_processor_mm_kwargs: Mapping[str, object],
+ ) -> Mapping[str, MultiModalFieldConfig]:
+ return dict(
+ pixel_values=MultiModalFieldConfig.batched("image"),
+ image_embeds=MultiModalFieldConfig.batched("image"),
+ )
+
+ def _get_prompt_updates(
+ self,
+ mm_items: MultiModalDataItems,
+ hf_processor_mm_kwargs: Mapping[str, object],
+ out_mm_kwargs: MultiModalKwargs,
+ ) -> Sequence[PromptUpdate]:
+ hf_config = self.info.get_hf_config()
+ image_token_id = hf_config.image_token_index
+
+ assert isinstance(hf_config.vision_config, PixtralVisionConfig)
+ encoder_info = PixtralHFEncoderInfo(hf_config)
+
+ def replace(item_idx: int):
+ images = mm_items.get_items("image", ImageProcessorItems)
+ size = images.get_image_size(item_idx)
+ ncols, nrows = encoder_info.get_patch_grid_size(
+ image_width=size.width, image_height=size.height
+ )
+ # break/end tokens are not used in LightOnOCR
+ tokens = [image_token_id] * (ncols * nrows)
+ return PromptUpdateDetails.select_token_id(tokens, image_token_id)
+
+ return [
+ PromptReplacement(
+ modality="image", target=[image_token_id], replacement=replace
+ )
+ ]
+
+
+def _build_LightOnOCR_processor(
+ info: _I,
+ dummy_inputs: BaseDummyInputsBuilder[_I],
+ *,
+ cache: BaseMultiModalProcessorCache | None = None,
+):
+ assert isinstance(info, Mistral3ProcessingInfo)
+ return LightOnOCRMultiModalProcessor(info, dummy_inputs, cache=cache)
+
+
+@MULTIMODAL_REGISTRY.register_processor(
+ _build_LightOnOCR_processor,
+ info=_build_mistral3_info,
+ dummy_inputs=Mistral3DummyInputsBuilder,
+)
+class LightOnOCRForConditionalGeneration(Mistral3ForConditionalGeneration):
+ hf_to_vllm_mapper = WeightsMapper(
+ orig_to_new_prefix={
+ "model.vision_encoder.": "vision_tower.",
+ "model.vision_projection.": "multi_modal_projector.",
+ "lm_head.": "language_model.lm_head.",
+ "model.language_model.": "language_model.model.",
+ }
+ )
+
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None:
+ nn.Module.__init__(self)
+ config = vllm_config.model_config.hf_config
+ quant_config = vllm_config.quant_config
+ multimodal_config = vllm_config.model_config.multimodal_config
+
+ self.config = config
+ self.multimodal_config = multimodal_config
+
+ self.vision_tower = init_vision_tower_for_llava(
+ config,
+ quant_config,
+ require_post_norm=False,
+ prefix=maybe_prefix(prefix, "vision_tower"),
+ )
+
+ self.multi_modal_projector = Mistral3MultiModalProjector(
+ vision_hidden_size=config.vision_config.hidden_size,
+ text_hidden_size=config.text_config.hidden_size,
+ projector_hidden_act=config.projector_hidden_act,
+ spatial_merge_size=config.spatial_merge_size,
+ patch_size=config.vision_config.patch_size,
+ multimodal_projector_bias=config.multimodal_projector_bias,
+ quant_config=quant_config,
+ prefix=maybe_prefix(prefix, "multi_modal_projector"),
+ )
+
+ self.language_model = init_vllm_registered_model(
+ vllm_config=vllm_config,
+ hf_config=config.text_config,
+ prefix=maybe_prefix(prefix, "language_model"),
+ )
+
+ self.make_empty_intermediate_tensors = (
+ self.language_model.make_empty_intermediate_tensors
+ )
+
+ def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
+ loader = AutoWeightsLoader(self)
+ return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
diff --git a/vllm/model_executor/models/registry.py b/vllm/model_executor/models/registry.py
index ea2f14916058f..118c225431a50 100644
--- a/vllm/model_executor/models/registry.py
+++ b/vllm/model_executor/models/registry.py
@@ -297,6 +297,10 @@ _MULTIMODAL_MODELS = {
),
"RForConditionalGeneration": ("rvl", "RForConditionalGeneration"),
"KimiVLForConditionalGeneration": ("kimi_vl", "KimiVLForConditionalGeneration"), # noqa: E501
+ "LightOnOCRForConditionalGeneration": (
+ "lightonocr",
+ "LightOnOCRForConditionalGeneration",
+ ),
"Llama_Nemotron_Nano_VL": ("nemotron_vl", "LlamaNemotronVLChatModel"),
"Llama4ForConditionalGeneration": ("mllama4", "Llama4ForConditionalGeneration"), # noqa: E501
"LlavaForConditionalGeneration": ("llava", "LlavaForConditionalGeneration"),