[Chore]: Stream tokens vs characters in tool call parser tests (#26513)

Signed-off-by: Ben Browning <bbrownin@redhat.com>
This commit is contained in:
Ben Browning 2025-10-27 11:06:25 -04:00 committed by GitHub
parent 23ad820553
commit 3b96f85c36
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 80 additions and 41 deletions

View File

@ -0,0 +1,12 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
from transformers import AutoTokenizer
from vllm.transformers_utils.tokenizer import AnyTokenizer
@pytest.fixture(scope="function")
def default_tokenizer() -> AnyTokenizer:
return AutoTokenizer.from_pretrained("gpt2")

View File

@ -2,17 +2,15 @@
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
from transformers import AutoTokenizer
from vllm.entrypoints.openai.protocol import ExtractedToolCallInformation
from vllm.entrypoints.openai.tool_parsers.llama_tool_parser import Llama3JsonToolParser
from vllm.transformers_utils.tokenizer import AnyTokenizer
@pytest.fixture
def parser():
# Use a small tokenizer for testing
tokenizer = AutoTokenizer.from_pretrained("gpt2")
return Llama3JsonToolParser(tokenizer)
def parser(default_tokenizer: AnyTokenizer):
return Llama3JsonToolParser(default_tokenizer)
def test_extract_tool_calls_simple(parser):

View File

@ -11,6 +11,7 @@ from tests.entrypoints.openai.tool_parsers.utils import (
)
from vllm.entrypoints.openai.protocol import FunctionCall
from vllm.entrypoints.openai.tool_parsers import ToolParser, ToolParserManager
from vllm.transformers_utils.tokenizer import AnyTokenizer
# Test cases similar to pythonic parser but with Llama4 specific format
SIMPLE_FUNCTION_OUTPUT = "[get_weather(city='LA', metric='C')]"
@ -63,10 +64,9 @@ PYTHON_TAG_FUNCTION_OUTPUT = (
@pytest.mark.parametrize("streaming", [True, False])
def test_no_tool_call(streaming: bool):
mock_tokenizer = MagicMock()
def test_no_tool_call(streaming: bool, default_tokenizer: AnyTokenizer):
tool_parser: ToolParser = ToolParserManager.get_tool_parser("llama4_pythonic")(
mock_tokenizer
default_tokenizer
)
model_output = "How can I help you today?"
@ -205,11 +205,13 @@ TEST_CASES = [
@pytest.mark.parametrize("streaming, model_output, expected_tool_calls", TEST_CASES)
def test_tool_call(
streaming: bool, model_output: str, expected_tool_calls: list[FunctionCall]
streaming: bool,
model_output: str,
expected_tool_calls: list[FunctionCall],
default_tokenizer: AnyTokenizer,
):
mock_tokenizer = MagicMock()
tool_parser: ToolParser = ToolParserManager.get_tool_parser("llama4_pythonic")(
mock_tokenizer
default_tokenizer
)
content, tool_calls = run_tool_extraction(
@ -222,10 +224,9 @@ def test_tool_call(
assert actual.function == expected
def test_streaming_tool_call_with_large_steps():
mock_tokenizer = MagicMock()
def test_streaming_tool_call_with_large_steps(default_tokenizer: AnyTokenizer):
tool_parser: ToolParser = ToolParserManager.get_tool_parser("llama4_pythonic")(
mock_tokenizer
default_tokenizer
)
model_output_deltas = [
"<|python_start|>[get_weather(city='LA', metric='C'), "
@ -245,11 +246,10 @@ def test_streaming_tool_call_with_large_steps():
@pytest.mark.parametrize("streaming", [False])
def test_regex_timeout_handling(streaming: bool):
def test_regex_timeout_handling(streaming: bool, default_tokenizer: AnyTokenizer):
"""test regex timeout is handled gracefully"""
mock_tokenizer = MagicMock()
tool_parser: ToolParser = ToolParserManager.get_tool_parser("llama4_pythonic")(
mock_tokenizer
default_tokenizer
)
fake_problematic_input = "hello world[A(A=" + "\t)A(A=,\t" * 2

View File

@ -11,6 +11,7 @@ from tests.entrypoints.openai.tool_parsers.utils import (
)
from vllm.entrypoints.openai.protocol import FunctionCall
from vllm.entrypoints.openai.tool_parsers import ToolParser, ToolParserManager
from vllm.transformers_utils.tokenizer import AnyTokenizer
# https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/text_prompt_format.md#model-response-format-1
SIMPLE_FUNCTION_OUTPUT = "get_weather(city='San Francisco', metric='celsius')"
@ -68,9 +69,10 @@ ESCAPED_STRING_FUNCTION_CALL = FunctionCall(
@pytest.mark.parametrize("streaming", [True, False])
def test_no_tool_call(streaming: bool):
mock_tokenizer = MagicMock()
tool_parser: ToolParser = ToolParserManager.get_tool_parser("olmo3")(mock_tokenizer)
def test_no_tool_call(streaming: bool, default_tokenizer: AnyTokenizer):
tool_parser: ToolParser = ToolParserManager.get_tool_parser("olmo3")(
default_tokenizer
)
model_output = "How can I help you today?"
content, tool_calls = run_tool_extraction(
@ -183,10 +185,14 @@ TEST_CASES = [
@pytest.mark.parametrize("streaming, model_output, expected_tool_calls", TEST_CASES)
def test_tool_call(
streaming: bool, model_output: str, expected_tool_calls: list[FunctionCall]
streaming: bool,
model_output: str,
expected_tool_calls: list[FunctionCall],
default_tokenizer: AnyTokenizer,
):
mock_tokenizer = MagicMock()
tool_parser: ToolParser = ToolParserManager.get_tool_parser("olmo3")(mock_tokenizer)
tool_parser: ToolParser = ToolParserManager.get_tool_parser("olmo3")(
default_tokenizer
)
content, tool_calls = run_tool_extraction(
tool_parser, model_output, streaming=streaming
@ -199,9 +205,10 @@ def test_tool_call(
assert actual.function == expected
def test_streaming_tool_call_with_large_steps():
mock_tokenizer = MagicMock()
tool_parser: ToolParser = ToolParserManager.get_tool_parser("olmo3")(mock_tokenizer)
def test_streaming_tool_call_with_large_steps(default_tokenizer: AnyTokenizer):
tool_parser: ToolParser = ToolParserManager.get_tool_parser("olmo3")(
default_tokenizer
)
model_output_deltas = [
"<function_calls>get_weather(city='San",
" Francisco', metric='celsius')\n"
@ -221,10 +228,11 @@ def test_streaming_tool_call_with_large_steps():
@pytest.mark.parametrize("streaming", [False])
def test_regex_timeout_handling(streaming: bool):
def test_regex_timeout_handling(streaming: bool, default_tokenizer: AnyTokenizer):
"""test regex timeout is handled gracefully"""
mock_tokenizer = MagicMock()
tool_parser: ToolParser = ToolParserManager.get_tool_parser("olmo3")(mock_tokenizer)
tool_parser: ToolParser = ToolParserManager.get_tool_parser("olmo3")(
default_tokenizer
)
fake_problematic_input = "hello world[A(A=" + "\t)A(A=,\t" * 2

View File

@ -11,6 +11,7 @@ from tests.entrypoints.openai.tool_parsers.utils import (
)
from vllm.entrypoints.openai.protocol import FunctionCall
from vllm.entrypoints.openai.tool_parsers import ToolParser, ToolParserManager
from vllm.transformers_utils.tokenizer import AnyTokenizer
# https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/text_prompt_format.md#model-response-format-1
SIMPLE_FUNCTION_OUTPUT = "get_weather(city='San Francisco', metric='celsius')"
@ -60,10 +61,9 @@ ESCAPED_STRING_FUNCTION_CALL = FunctionCall(
@pytest.mark.parametrize("streaming", [True, False])
def test_no_tool_call(streaming: bool):
mock_tokenizer = MagicMock()
def test_no_tool_call(streaming: bool, default_tokenizer: AnyTokenizer):
tool_parser: ToolParser = ToolParserManager.get_tool_parser("pythonic")(
mock_tokenizer
default_tokenizer
)
model_output = "How can I help you today?"
@ -165,11 +165,13 @@ TEST_CASES = [
@pytest.mark.parametrize("streaming, model_output, expected_tool_calls", TEST_CASES)
def test_tool_call(
streaming: bool, model_output: str, expected_tool_calls: list[FunctionCall]
streaming: bool,
model_output: str,
expected_tool_calls: list[FunctionCall],
default_tokenizer: AnyTokenizer,
):
mock_tokenizer = MagicMock()
tool_parser: ToolParser = ToolParserManager.get_tool_parser("pythonic")(
mock_tokenizer
default_tokenizer
)
content, tool_calls = run_tool_extraction(
@ -183,10 +185,9 @@ def test_tool_call(
assert actual.function == expected
def test_streaming_tool_call_with_large_steps():
mock_tokenizer = MagicMock()
def test_streaming_tool_call_with_large_steps(default_tokenizer: AnyTokenizer):
tool_parser: ToolParser = ToolParserManager.get_tool_parser("pythonic")(
mock_tokenizer
default_tokenizer
)
model_output_deltas = [
"[get_weather(city='San",
@ -207,11 +208,10 @@ def test_streaming_tool_call_with_large_steps():
@pytest.mark.parametrize("streaming", [False])
def test_regex_timeout_handling(streaming: bool):
def test_regex_timeout_handling(streaming: bool, default_tokenizer: AnyTokenizer):
"""test regex timeout is handled gracefully"""
mock_tokenizer = MagicMock()
tool_parser: ToolParser = ToolParserManager.get_tool_parser("pythonic")(
mock_tokenizer
default_tokenizer
)
fake_problematic_input = "hello world[A(A=" + "\t)A(A=,\t" * 2

View File

@ -11,6 +11,7 @@ from vllm.entrypoints.openai.protocol import (
ToolCall,
)
from vllm.entrypoints.openai.tool_parsers import ToolParser
from vllm.transformers_utils.tokenizer import AnyTokenizer
class StreamingToolReconstructor:
@ -110,12 +111,32 @@ def run_tool_extraction_nonstreaming(
return tool_parser.extract_tool_calls(model_output, request)
def split_string_into_token_deltas(tokenizer: AnyTokenizer, text: str) -> list[str]:
# Split a string into a series of deltas using the provided tokenizer. Each
# delta will be the string equivalent of a single token.
token_ids = tokenizer.encode(text, add_special_tokens=False)
previously_decoded_text = ""
deltas = []
for i in range(1, len(token_ids) + 1):
current_tokens = token_ids[:i]
current_text = tokenizer.decode(current_tokens)
new_text = current_text[len(previously_decoded_text) :]
previously_decoded_text = current_text
deltas.append(new_text)
return deltas
def run_tool_extraction_streaming(
tool_parser: ToolParser,
model_deltas: Iterable[str],
request: ChatCompletionRequest | None = None,
assert_one_tool_per_delta: bool = True,
) -> StreamingToolReconstructor:
if isinstance(model_deltas, str):
model_deltas = split_string_into_token_deltas(
tool_parser.model_tokenizer, model_deltas
)
request = request or ChatCompletionRequest(messages=[], model="test-model")
reconstructor = StreamingToolReconstructor(
assert_one_tool_per_delta=assert_one_tool_per_delta