mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-15 02:15:32 +08:00
[Model] EXAONE 4.0 model support (#21060)
Signed-off-by: Deepfocused <rlawhdrhs27@gmail.com> Signed-off-by: woongsik <rlawhdrhs27@gmail.com>
This commit is contained in:
parent
37bd8d6e4c
commit
3e04107d97
@ -331,6 +331,7 @@ Specified using `--task generate`.
|
|||||||
| `Ernie4_5_ForCausalLM` | Ernie4.5 | `baidu/ERNIE-4.5-0.3B-PT`, etc. | ✅︎ | ✅︎ | ✅︎ |
|
| `Ernie4_5_ForCausalLM` | Ernie4.5 | `baidu/ERNIE-4.5-0.3B-PT`, etc. | ✅︎ | ✅︎ | ✅︎ |
|
||||||
| `Ernie4_5_MoeForCausalLM` | Ernie4.5MoE | `baidu/ERNIE-4.5-21B-A3B-PT`, `baidu/ERNIE-4.5-300B-A47B-PT`, etc. |✅︎| ✅︎ | ✅︎ |
|
| `Ernie4_5_MoeForCausalLM` | Ernie4.5MoE | `baidu/ERNIE-4.5-21B-A3B-PT`, `baidu/ERNIE-4.5-300B-A47B-PT`, etc. |✅︎| ✅︎ | ✅︎ |
|
||||||
| `ExaoneForCausalLM` | EXAONE-3 | `LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct`, etc. | ✅︎ | ✅︎ | ✅︎ |
|
| `ExaoneForCausalLM` | EXAONE-3 | `LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct`, etc. | ✅︎ | ✅︎ | ✅︎ |
|
||||||
|
| `Exaone4ForCausalLM` | EXAONE-4 | `LGAI-EXAONE/EXAONE-4.0-32B`, etc. | ✅︎ | ✅︎ | ✅︎ |
|
||||||
| `Fairseq2LlamaForCausalLM` | Llama (fairseq2 format) | `mgleize/fairseq2-dummy-Llama-3.2-1B`, etc. | ✅︎ | ✅︎ | ✅︎ |
|
| `Fairseq2LlamaForCausalLM` | Llama (fairseq2 format) | `mgleize/fairseq2-dummy-Llama-3.2-1B`, etc. | ✅︎ | ✅︎ | ✅︎ |
|
||||||
| `FalconForCausalLM` | Falcon | `tiiuae/falcon-7b`, `tiiuae/falcon-40b`, `tiiuae/falcon-rw-7b`, etc. | | ✅︎ | ✅︎ |
|
| `FalconForCausalLM` | Falcon | `tiiuae/falcon-7b`, `tiiuae/falcon-40b`, `tiiuae/falcon-rw-7b`, etc. | | ✅︎ | ✅︎ |
|
||||||
| `FalconMambaForCausalLM` | FalconMamba | `tiiuae/falcon-mamba-7b`, `tiiuae/falcon-mamba-7b-instruct`, etc. | | ✅︎ | ✅︎ |
|
| `FalconMambaForCausalLM` | FalconMamba | `tiiuae/falcon-mamba-7b`, `tiiuae/falcon-mamba-7b-instruct`, etc. | | ✅︎ | ✅︎ |
|
||||||
|
|||||||
@ -169,6 +169,7 @@ _TEXT_GENERATION_EXAMPLE_MODELS = {
|
|||||||
"Ernie4_5_MoeForCausalLM": _HfExamplesInfo("baidu/ERNIE-4.5-21B-A3B-PT",
|
"Ernie4_5_MoeForCausalLM": _HfExamplesInfo("baidu/ERNIE-4.5-21B-A3B-PT",
|
||||||
trust_remote_code=True),
|
trust_remote_code=True),
|
||||||
"ExaoneForCausalLM": _HfExamplesInfo("LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct"), # noqa: E501
|
"ExaoneForCausalLM": _HfExamplesInfo("LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct"), # noqa: E501
|
||||||
|
"Exaone4ForCausalLM": _HfExamplesInfo("LGAI-EXAONE/EXAONE-4.0-32B"), # noqa: E501
|
||||||
"Fairseq2LlamaForCausalLM": _HfExamplesInfo("mgleize/fairseq2-dummy-Llama-3.2-1B"), # noqa: E501
|
"Fairseq2LlamaForCausalLM": _HfExamplesInfo("mgleize/fairseq2-dummy-Llama-3.2-1B"), # noqa: E501
|
||||||
"FalconForCausalLM": _HfExamplesInfo("tiiuae/falcon-7b"),
|
"FalconForCausalLM": _HfExamplesInfo("tiiuae/falcon-7b"),
|
||||||
"FalconH1ForCausalLM":_HfExamplesInfo("tiiuae/Falcon-H1-0.5B-Base",
|
"FalconH1ForCausalLM":_HfExamplesInfo("tiiuae/Falcon-H1-0.5B-Base",
|
||||||
|
|||||||
547
vllm/model_executor/models/exaone4.py
Normal file
547
vllm/model_executor/models/exaone4.py
Normal file
@ -0,0 +1,547 @@
|
|||||||
|
# SPDX-License-Identifier: Apache-2.0
|
||||||
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||||
|
# ruff: noqa: E501
|
||||||
|
|
||||||
|
# Adapted from
|
||||||
|
# https://github.com/lgai-exaone/transformers/blob/add-exaone4/src/transformers/models/exaone4/modeling_exaone4.py
|
||||||
|
# Copyright 2025 The LG CNS Gen AI Solution Delivery Team.
|
||||||
|
# Copyright 2025 The LG AI Research and HuggingFace Inc. team. All rights reserved.
|
||||||
|
#
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""Inference-only Exaone model compatible with HuggingFace weights."""
|
||||||
|
|
||||||
|
from collections.abc import Iterable
|
||||||
|
from typing import Any, Optional, Union
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
|
||||||
|
from vllm.attention import Attention
|
||||||
|
from vllm.compilation.decorators import support_torch_compile
|
||||||
|
from vllm.config import CacheConfig, VllmConfig
|
||||||
|
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
|
||||||
|
from vllm.model_executor.layers.activation import SiluAndMul
|
||||||
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||||
|
from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
|
||||||
|
QKVParallelLinear,
|
||||||
|
RowParallelLinear)
|
||||||
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
||||||
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||||
|
from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||||
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||||
|
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
|
||||||
|
from vllm.model_executor.model_loader.weight_utils import (
|
||||||
|
default_weight_loader, maybe_remap_kv_scale_name)
|
||||||
|
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||||
|
from vllm.sequence import IntermediateTensors
|
||||||
|
from vllm.transformers_utils.configs.exaone4 import Exaone4Config
|
||||||
|
|
||||||
|
from .interfaces import SupportsLoRA, SupportsPP
|
||||||
|
from .utils import (AutoWeightsLoader, PPMissingLayer, extract_layer_index,
|
||||||
|
is_pp_missing_parameter,
|
||||||
|
make_empty_intermediate_tensors_factory, make_layers,
|
||||||
|
maybe_prefix)
|
||||||
|
|
||||||
|
|
||||||
|
class Exaone4GatedMLP(nn.Module):
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
hidden_size: int,
|
||||||
|
intermediate_size: int,
|
||||||
|
hidden_act: str,
|
||||||
|
quant_config: Optional[QuantizationConfig] = None,
|
||||||
|
bias: bool = False,
|
||||||
|
prefix: str = "",
|
||||||
|
) -> None:
|
||||||
|
super().__init__()
|
||||||
|
self.gate_up_proj = MergedColumnParallelLinear(
|
||||||
|
input_size=hidden_size,
|
||||||
|
output_sizes=[intermediate_size] * 2,
|
||||||
|
bias=bias,
|
||||||
|
quant_config=quant_config,
|
||||||
|
prefix=f"{prefix}.gate_up_proj",
|
||||||
|
)
|
||||||
|
self.down_proj = RowParallelLinear(
|
||||||
|
input_size=intermediate_size,
|
||||||
|
output_size=hidden_size,
|
||||||
|
bias=bias,
|
||||||
|
quant_config=quant_config,
|
||||||
|
prefix=f"{prefix}.down_proj",
|
||||||
|
)
|
||||||
|
if hidden_act != "silu":
|
||||||
|
raise ValueError(f"Unsupported activation: {hidden_act}. "
|
||||||
|
"Only silu is supported for now.")
|
||||||
|
self.act_fn = SiluAndMul()
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
gate_up, _ = self.gate_up_proj(x)
|
||||||
|
x = self.act_fn(gate_up)
|
||||||
|
x, _ = self.down_proj(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class Exaone4Attention(nn.Module):
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
config: Exaone4Config,
|
||||||
|
hidden_size: int,
|
||||||
|
num_heads: int,
|
||||||
|
num_kv_heads: int,
|
||||||
|
rope_theta: float = 1000000,
|
||||||
|
rope_scaling: Optional[dict[str, Any]] = None,
|
||||||
|
max_position_embeddings: int = 8192,
|
||||||
|
quant_config: Optional[QuantizationConfig] = None,
|
||||||
|
bias: bool = False,
|
||||||
|
cache_config: Optional[CacheConfig] = None,
|
||||||
|
prefix: str = "",
|
||||||
|
) -> None:
|
||||||
|
super().__init__()
|
||||||
|
self.hidden_size = hidden_size
|
||||||
|
tp_size = get_tensor_model_parallel_world_size()
|
||||||
|
self.total_num_heads = num_heads
|
||||||
|
assert self.total_num_heads % tp_size == 0
|
||||||
|
self.num_heads = self.total_num_heads // tp_size
|
||||||
|
self.total_num_kv_heads = num_kv_heads
|
||||||
|
if self.total_num_kv_heads >= tp_size:
|
||||||
|
# Number of KV heads is greater than TP size, so we partition
|
||||||
|
# the KV heads across multiple tensor parallel GPUs.
|
||||||
|
assert self.total_num_kv_heads % tp_size == 0
|
||||||
|
else:
|
||||||
|
# Number of KV heads is less than TP size, so we replicate
|
||||||
|
# the KV heads across multiple tensor parallel GPUs.
|
||||||
|
assert tp_size % self.total_num_kv_heads == 0
|
||||||
|
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
||||||
|
# MistralConfig has an optional head_dim introduced by Mistral-Nemo
|
||||||
|
self.head_dim = getattr(config, "head_dim", None)
|
||||||
|
if self.head_dim is None:
|
||||||
|
self.head_dim = self.hidden_size // self.total_num_heads
|
||||||
|
self.q_size = self.num_heads * self.head_dim
|
||||||
|
self.kv_size = self.num_kv_heads * self.head_dim
|
||||||
|
self.scaling = self.head_dim**-0.5
|
||||||
|
self.rope_theta = rope_theta
|
||||||
|
self.max_position_embeddings = max_position_embeddings
|
||||||
|
|
||||||
|
self.qkv_proj = QKVParallelLinear(
|
||||||
|
hidden_size=hidden_size,
|
||||||
|
head_size=self.head_dim,
|
||||||
|
total_num_heads=self.total_num_heads,
|
||||||
|
total_num_kv_heads=self.total_num_kv_heads,
|
||||||
|
bias=bias,
|
||||||
|
quant_config=quant_config,
|
||||||
|
prefix=f"{prefix}.qkv_proj",
|
||||||
|
)
|
||||||
|
|
||||||
|
self.o_proj = RowParallelLinear(
|
||||||
|
input_size=self.total_num_heads * self.head_dim,
|
||||||
|
output_size=hidden_size,
|
||||||
|
bias=bias,
|
||||||
|
quant_config=quant_config,
|
||||||
|
prefix=f"{prefix}.o_proj",
|
||||||
|
)
|
||||||
|
|
||||||
|
self.q_norm = RMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
||||||
|
self.k_norm = RMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
||||||
|
|
||||||
|
is_neox_style = True
|
||||||
|
if quant_config is not None and quant_config.get_name() == "gguf":
|
||||||
|
is_neox_style = False
|
||||||
|
|
||||||
|
self.apply_all_layers = False # apply rotary embeddings to every layer.
|
||||||
|
layer_idx = extract_layer_index(prefix)
|
||||||
|
interleaved_sliding_window = getattr(config,
|
||||||
|
"interleaved_sliding_window",
|
||||||
|
4096)
|
||||||
|
sliding_window_pattern = getattr(config, "sliding_window_pattern",
|
||||||
|
"LLLG")
|
||||||
|
|
||||||
|
if sliding_window_pattern:
|
||||||
|
layer_has_sliding_window = (
|
||||||
|
layer_idx + 1) % sliding_window_pattern.__len__() != 0
|
||||||
|
else:
|
||||||
|
layer_has_sliding_window = False
|
||||||
|
self.apply_all_layers = True
|
||||||
|
|
||||||
|
if layer_has_sliding_window:
|
||||||
|
self.sliding_window = interleaved_sliding_window
|
||||||
|
else:
|
||||||
|
self.sliding_window = None
|
||||||
|
|
||||||
|
self.rotary_emb = get_rope(
|
||||||
|
self.head_dim,
|
||||||
|
rotary_dim=self.head_dim,
|
||||||
|
max_position=max_position_embeddings,
|
||||||
|
base=rope_theta,
|
||||||
|
rope_scaling=rope_scaling,
|
||||||
|
is_neox_style=is_neox_style,
|
||||||
|
)
|
||||||
|
self.attn = Attention(
|
||||||
|
self.num_heads,
|
||||||
|
self.head_dim,
|
||||||
|
self.scaling,
|
||||||
|
num_kv_heads=self.num_kv_heads,
|
||||||
|
cache_config=cache_config,
|
||||||
|
quant_config=quant_config,
|
||||||
|
per_layer_sliding_window=self.sliding_window,
|
||||||
|
prefix=f"{prefix}.attn",
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
positions: torch.Tensor,
|
||||||
|
hidden_states: torch.Tensor,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
qkv, _ = self.qkv_proj(hidden_states)
|
||||||
|
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
||||||
|
|
||||||
|
q = q.unflatten(-1, (self.num_heads, self.head_dim))
|
||||||
|
q = self.q_norm(q)
|
||||||
|
q = q.flatten(-2, -1)
|
||||||
|
k = k.unflatten(-1, (self.num_kv_heads, self.head_dim))
|
||||||
|
k = self.k_norm(k)
|
||||||
|
k = k.flatten(-2, -1)
|
||||||
|
|
||||||
|
if self.sliding_window or self.apply_all_layers:
|
||||||
|
q, k = self.rotary_emb(positions, q, k)
|
||||||
|
attn_output = self.attn(q, k, v)
|
||||||
|
output, _ = self.o_proj(attn_output)
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
class Exaone4DecoderLayer(nn.Module):
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
config: Exaone4Config,
|
||||||
|
cache_config: Optional[CacheConfig] = None,
|
||||||
|
quant_config: Optional[QuantizationConfig] = None,
|
||||||
|
prefix: str = "",
|
||||||
|
) -> None:
|
||||||
|
super().__init__()
|
||||||
|
self.hidden_size = config.hidden_size
|
||||||
|
rope_theta = getattr(config, "rope_theta", 1000000)
|
||||||
|
rope_scaling = getattr(config, "rope_scaling", None)
|
||||||
|
if rope_scaling is not None and getattr(
|
||||||
|
config, "original_max_position_embeddings", None):
|
||||||
|
rope_scaling["original_max_position_embeddings"] = (
|
||||||
|
config.original_max_position_embeddings)
|
||||||
|
max_position_embeddings = getattr(config, "max_position_embeddings",
|
||||||
|
8192)
|
||||||
|
# Support abacusai/Smaug-72B-v0.1 with attention_bias
|
||||||
|
# Support internlm/internlm-7b with bias
|
||||||
|
attention_bias = getattr(config, "attention_bias", False) or getattr(
|
||||||
|
config, "bias", False)
|
||||||
|
|
||||||
|
self.self_attn = Exaone4Attention(
|
||||||
|
config=config,
|
||||||
|
hidden_size=self.hidden_size,
|
||||||
|
num_heads=config.num_attention_heads,
|
||||||
|
num_kv_heads=getattr(config, "num_key_value_heads",
|
||||||
|
config.num_attention_heads),
|
||||||
|
rope_theta=rope_theta,
|
||||||
|
rope_scaling=rope_scaling,
|
||||||
|
max_position_embeddings=max_position_embeddings,
|
||||||
|
quant_config=quant_config,
|
||||||
|
bias=attention_bias,
|
||||||
|
cache_config=cache_config,
|
||||||
|
prefix=f"{prefix}.self_attn",
|
||||||
|
)
|
||||||
|
self.mlp = Exaone4GatedMLP(
|
||||||
|
hidden_size=self.hidden_size,
|
||||||
|
intermediate_size=config.intermediate_size,
|
||||||
|
hidden_act=config.hidden_act,
|
||||||
|
quant_config=quant_config,
|
||||||
|
bias=getattr(config, "mlp_bias", False),
|
||||||
|
prefix=f"{prefix}.mlp",
|
||||||
|
)
|
||||||
|
self.post_attention_layernorm = RMSNorm(config.hidden_size,
|
||||||
|
eps=config.rms_norm_eps)
|
||||||
|
self.post_feedforward_layernorm = RMSNorm(config.hidden_size,
|
||||||
|
eps=config.rms_norm_eps)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
positions: torch.Tensor,
|
||||||
|
hidden_states: torch.Tensor,
|
||||||
|
residual: Optional[torch.Tensor],
|
||||||
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
||||||
|
residual = hidden_states
|
||||||
|
|
||||||
|
# Self Attention
|
||||||
|
hidden_states = self.self_attn(
|
||||||
|
positions=positions,
|
||||||
|
hidden_states=hidden_states,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Use post-LN
|
||||||
|
hidden_states = self.post_attention_layernorm(hidden_states)
|
||||||
|
hidden_states = residual + hidden_states
|
||||||
|
|
||||||
|
residual = hidden_states
|
||||||
|
|
||||||
|
# Fully Connected
|
||||||
|
hidden_states = self.mlp(hidden_states)
|
||||||
|
|
||||||
|
# Use post-LN
|
||||||
|
hidden_states = self.post_feedforward_layernorm(hidden_states)
|
||||||
|
hidden_states = residual + hidden_states
|
||||||
|
|
||||||
|
return hidden_states, residual
|
||||||
|
|
||||||
|
|
||||||
|
@support_torch_compile
|
||||||
|
class Exaone4Model(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
config = vllm_config.model_config.hf_config
|
||||||
|
cache_config = vllm_config.cache_config
|
||||||
|
quant_config = vllm_config.quant_config
|
||||||
|
lora_config = vllm_config.lora_config
|
||||||
|
|
||||||
|
self.config = config
|
||||||
|
self.quant_config = quant_config
|
||||||
|
lora_vocab = ((lora_config.lora_extra_vocab_size *
|
||||||
|
(lora_config.max_loras or 1)) if lora_config else 0)
|
||||||
|
self.vocab_size = config.vocab_size + lora_vocab
|
||||||
|
if get_pp_group().is_first_rank or (config.tie_word_embeddings
|
||||||
|
and get_pp_group().is_last_rank):
|
||||||
|
self.embed_tokens = VocabParallelEmbedding(
|
||||||
|
self.vocab_size,
|
||||||
|
config.hidden_size,
|
||||||
|
org_num_embeddings=config.vocab_size,
|
||||||
|
quant_config=quant_config,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
self.embed_tokens = PPMissingLayer()
|
||||||
|
self.start_layer, self.end_layer, self.layers = make_layers(
|
||||||
|
config.num_hidden_layers,
|
||||||
|
lambda prefix: Exaone4DecoderLayer(
|
||||||
|
config=config,
|
||||||
|
cache_config=cache_config,
|
||||||
|
quant_config=quant_config,
|
||||||
|
prefix=prefix,
|
||||||
|
),
|
||||||
|
prefix=f"{prefix}.layers",
|
||||||
|
)
|
||||||
|
if get_pp_group().is_last_rank:
|
||||||
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||||
|
else:
|
||||||
|
self.norm = PPMissingLayer()
|
||||||
|
|
||||||
|
self.make_empty_intermediate_tensors = (
|
||||||
|
make_empty_intermediate_tensors_factory(
|
||||||
|
["hidden_states", "residual"], config.hidden_size))
|
||||||
|
|
||||||
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
||||||
|
return self.embed_tokens(input_ids)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
input_ids: Optional[torch.Tensor],
|
||||||
|
positions: torch.Tensor,
|
||||||
|
intermediate_tensors: Optional[IntermediateTensors],
|
||||||
|
inputs_embeds: Optional[torch.Tensor] = None,
|
||||||
|
) -> Union[torch.Tensor, IntermediateTensors]:
|
||||||
|
if get_pp_group().is_first_rank:
|
||||||
|
if inputs_embeds is not None:
|
||||||
|
hidden_states = inputs_embeds
|
||||||
|
else:
|
||||||
|
hidden_states = self.get_input_embeddings(input_ids)
|
||||||
|
residual = None
|
||||||
|
else:
|
||||||
|
assert intermediate_tensors is not None
|
||||||
|
hidden_states = intermediate_tensors["hidden_states"]
|
||||||
|
residual = intermediate_tensors["residual"]
|
||||||
|
|
||||||
|
for layer in self.layers[self.start_layer:self.end_layer]:
|
||||||
|
hidden_states, residual = layer(
|
||||||
|
positions,
|
||||||
|
hidden_states,
|
||||||
|
residual,
|
||||||
|
)
|
||||||
|
|
||||||
|
if not get_pp_group().is_last_rank:
|
||||||
|
return IntermediateTensors({
|
||||||
|
"hidden_states": hidden_states,
|
||||||
|
"residual": residual
|
||||||
|
})
|
||||||
|
|
||||||
|
hidden_states = self.norm(hidden_states)
|
||||||
|
return hidden_states
|
||||||
|
|
||||||
|
def load_weights(self, weights: Iterable[tuple[str,
|
||||||
|
torch.Tensor]]) -> set[str]:
|
||||||
|
stacked_params_mapping = [
|
||||||
|
# (param_name, shard_name, shard_id)
|
||||||
|
(".qkv_proj", ".q_proj", "q"),
|
||||||
|
(".qkv_proj", ".k_proj", "k"),
|
||||||
|
(".qkv_proj", ".v_proj", "v"),
|
||||||
|
(".gate_up_proj", ".gate_proj", 0),
|
||||||
|
(".gate_up_proj", ".up_proj", 1),
|
||||||
|
]
|
||||||
|
params_dict = dict(self.named_parameters())
|
||||||
|
loaded_params: set[str] = set()
|
||||||
|
for name, loaded_weight in weights:
|
||||||
|
if "rotary_emb.inv_freq" in name:
|
||||||
|
continue
|
||||||
|
if ("rotary_emb.cos_cached" in name
|
||||||
|
or "rotary_emb.sin_cached" in name):
|
||||||
|
# Models trained using ColossalAI may include these tensors in
|
||||||
|
# the checkpoint. Skip them.
|
||||||
|
continue
|
||||||
|
if (self.quant_config is not None and
|
||||||
|
(scale_name := self.quant_config.get_cache_scale(name))):
|
||||||
|
# Loading kv cache quantization scales
|
||||||
|
param = params_dict[scale_name]
|
||||||
|
weight_loader = getattr(param, "weight_loader",
|
||||||
|
default_weight_loader)
|
||||||
|
loaded_weight = (loaded_weight if loaded_weight.dim() == 0 else
|
||||||
|
loaded_weight[0])
|
||||||
|
weight_loader(param, loaded_weight)
|
||||||
|
loaded_params.add(scale_name)
|
||||||
|
continue
|
||||||
|
for param_name, weight_name, shard_id in stacked_params_mapping:
|
||||||
|
if weight_name not in name:
|
||||||
|
continue
|
||||||
|
name = name.replace(weight_name, param_name)
|
||||||
|
# Skip loading extra bias for GPTQ models.
|
||||||
|
if name.endswith(".bias") and name not in params_dict:
|
||||||
|
continue
|
||||||
|
|
||||||
|
if is_pp_missing_parameter(name, self):
|
||||||
|
continue
|
||||||
|
|
||||||
|
param = params_dict[name]
|
||||||
|
weight_loader = param.weight_loader
|
||||||
|
weight_loader(param, loaded_weight, shard_id)
|
||||||
|
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
# Skip loading extra bias for GPTQ models.
|
||||||
|
if name.endswith(".bias") and name not in params_dict:
|
||||||
|
continue
|
||||||
|
# Remapping the name of FP8 kv-scale.
|
||||||
|
name = maybe_remap_kv_scale_name(name, params_dict)
|
||||||
|
if name is None:
|
||||||
|
continue
|
||||||
|
|
||||||
|
if is_pp_missing_parameter(name, self):
|
||||||
|
continue
|
||||||
|
|
||||||
|
param = params_dict[name]
|
||||||
|
weight_loader = getattr(param, "weight_loader",
|
||||||
|
default_weight_loader)
|
||||||
|
weight_loader(param, loaded_weight)
|
||||||
|
loaded_params.add(name)
|
||||||
|
return loaded_params
|
||||||
|
|
||||||
|
|
||||||
|
class Exaone4ForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
|
||||||
|
packed_modules_mapping = {
|
||||||
|
"qkv_proj": [
|
||||||
|
"q_proj",
|
||||||
|
"k_proj",
|
||||||
|
"v_proj",
|
||||||
|
],
|
||||||
|
"gate_up_proj": [
|
||||||
|
"gate_proj",
|
||||||
|
"up_proj",
|
||||||
|
],
|
||||||
|
}
|
||||||
|
|
||||||
|
# LoRA specific attributes
|
||||||
|
embedding_modules = {
|
||||||
|
"embed_tokens": "input_embeddings",
|
||||||
|
"lm_head": "output_embeddings",
|
||||||
|
}
|
||||||
|
embedding_padding_modules = ["lm_head"]
|
||||||
|
|
||||||
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||||
|
super().__init__()
|
||||||
|
config = vllm_config.model_config.hf_config
|
||||||
|
quant_config = vllm_config.quant_config
|
||||||
|
lora_config = vllm_config.lora_config
|
||||||
|
|
||||||
|
self.config = config
|
||||||
|
self.lora_config = lora_config
|
||||||
|
self.quant_config = quant_config
|
||||||
|
|
||||||
|
self.model = Exaone4Model(
|
||||||
|
vllm_config=vllm_config,
|
||||||
|
prefix=maybe_prefix(prefix, "model"),
|
||||||
|
)
|
||||||
|
if get_pp_group().is_last_rank:
|
||||||
|
self.unpadded_vocab_size = config.vocab_size
|
||||||
|
if lora_config:
|
||||||
|
self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
|
||||||
|
self.lm_head = ParallelLMHead(
|
||||||
|
self.unpadded_vocab_size,
|
||||||
|
config.hidden_size,
|
||||||
|
org_num_embeddings=config.vocab_size,
|
||||||
|
padding_size=DEFAULT_VOCAB_PADDING_SIZE
|
||||||
|
# We need bigger padding if using lora for kernel
|
||||||
|
# compatibility
|
||||||
|
if not lora_config else lora_config.lora_vocab_padding_size,
|
||||||
|
quant_config=quant_config,
|
||||||
|
)
|
||||||
|
if config.tie_word_embeddings:
|
||||||
|
self.lm_head.weight = self.model.embed_tokens.weight
|
||||||
|
|
||||||
|
logit_scale = getattr(config, "logit_scale", 1.0)
|
||||||
|
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
|
||||||
|
config.vocab_size,
|
||||||
|
logit_scale)
|
||||||
|
else:
|
||||||
|
self.lm_head = PPMissingLayer()
|
||||||
|
|
||||||
|
self.make_empty_intermediate_tensors = (
|
||||||
|
self.model.make_empty_intermediate_tensors)
|
||||||
|
|
||||||
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
||||||
|
return self.model.get_input_embeddings(input_ids)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
input_ids: torch.Tensor,
|
||||||
|
positions: torch.Tensor,
|
||||||
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
||||||
|
inputs_embeds: Optional[torch.Tensor] = None,
|
||||||
|
) -> Union[torch.Tensor, IntermediateTensors]:
|
||||||
|
model_output = self.model(input_ids, positions, intermediate_tensors,
|
||||||
|
inputs_embeds)
|
||||||
|
return model_output
|
||||||
|
|
||||||
|
def compute_logits(
|
||||||
|
self,
|
||||||
|
hidden_states: torch.Tensor,
|
||||||
|
sampling_metadata: SamplingMetadata,
|
||||||
|
) -> Optional[torch.Tensor]:
|
||||||
|
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||||
|
sampling_metadata)
|
||||||
|
return logits
|
||||||
|
|
||||||
|
def load_weights(self, weights: Iterable[tuple[str,
|
||||||
|
torch.Tensor]]) -> set[str]:
|
||||||
|
loader = AutoWeightsLoader(
|
||||||
|
self,
|
||||||
|
# With tie_word_embeddings, we can skip lm_head.weight
|
||||||
|
# The weight might appear unnecessarily in the files if the model is
|
||||||
|
# processed with quantization, LoRA, fine-tuning, etc.
|
||||||
|
skip_prefixes=(["lm_head."]
|
||||||
|
if self.config.tie_word_embeddings else None),
|
||||||
|
)
|
||||||
|
return loader.load_weights(weights)
|
||||||
@ -57,6 +57,7 @@ _TEXT_GENERATION_MODELS = {
|
|||||||
"Ernie4_5_ForCausalLM": ("ernie45", "Ernie4_5_ForCausalLM"),
|
"Ernie4_5_ForCausalLM": ("ernie45", "Ernie4_5_ForCausalLM"),
|
||||||
"Ernie4_5_MoeForCausalLM": ("ernie45_moe", "Ernie4_5_MoeForCausalLM"),
|
"Ernie4_5_MoeForCausalLM": ("ernie45_moe", "Ernie4_5_MoeForCausalLM"),
|
||||||
"ExaoneForCausalLM": ("exaone", "ExaoneForCausalLM"),
|
"ExaoneForCausalLM": ("exaone", "ExaoneForCausalLM"),
|
||||||
|
"Exaone4ForCausalLM": ("exaone4", "Exaone4ForCausalLM"),
|
||||||
"FalconForCausalLM": ("falcon", "FalconForCausalLM"),
|
"FalconForCausalLM": ("falcon", "FalconForCausalLM"),
|
||||||
"Fairseq2LlamaForCausalLM": ("fairseq2_llama", "Fairseq2LlamaForCausalLM"),
|
"Fairseq2LlamaForCausalLM": ("fairseq2_llama", "Fairseq2LlamaForCausalLM"),
|
||||||
"GemmaForCausalLM": ("gemma", "GemmaForCausalLM"),
|
"GemmaForCausalLM": ("gemma", "GemmaForCausalLM"),
|
||||||
|
|||||||
@ -31,9 +31,10 @@ from vllm.logger import init_logger
|
|||||||
# yapf: disable
|
# yapf: disable
|
||||||
from vllm.transformers_utils.configs import (ChatGLMConfig, Cohere2Config,
|
from vllm.transformers_utils.configs import (ChatGLMConfig, Cohere2Config,
|
||||||
DbrxConfig, DeepseekVLV2Config,
|
DbrxConfig, DeepseekVLV2Config,
|
||||||
EAGLEConfig, ExaoneConfig,
|
EAGLEConfig, Exaone4Config,
|
||||||
JAISConfig, KimiVLConfig,
|
ExaoneConfig, JAISConfig,
|
||||||
MedusaConfig, MiniMaxText01Config,
|
KimiVLConfig, MedusaConfig,
|
||||||
|
MiniMaxText01Config,
|
||||||
MiniMaxVL01Config, MllamaConfig,
|
MiniMaxVL01Config, MllamaConfig,
|
||||||
MLPSpeculatorConfig, MPTConfig,
|
MLPSpeculatorConfig, MPTConfig,
|
||||||
NemotronConfig, NVLM_D_Config,
|
NemotronConfig, NVLM_D_Config,
|
||||||
@ -87,6 +88,7 @@ _CONFIG_REGISTRY: dict[str, type[PretrainedConfig]] = {
|
|||||||
"medusa": MedusaConfig,
|
"medusa": MedusaConfig,
|
||||||
"eagle": EAGLEConfig,
|
"eagle": EAGLEConfig,
|
||||||
"exaone": ExaoneConfig,
|
"exaone": ExaoneConfig,
|
||||||
|
"exaone4": Exaone4Config,
|
||||||
"minimax_text_01": MiniMaxText01Config,
|
"minimax_text_01": MiniMaxText01Config,
|
||||||
"minimax_vl_01": MiniMaxVL01Config,
|
"minimax_vl_01": MiniMaxVL01Config,
|
||||||
"nemotron": NemotronConfig,
|
"nemotron": NemotronConfig,
|
||||||
|
|||||||
@ -7,6 +7,7 @@ from vllm.transformers_utils.configs.dbrx import DbrxConfig
|
|||||||
from vllm.transformers_utils.configs.deepseek_vl2 import DeepseekVLV2Config
|
from vllm.transformers_utils.configs.deepseek_vl2 import DeepseekVLV2Config
|
||||||
from vllm.transformers_utils.configs.eagle import EAGLEConfig
|
from vllm.transformers_utils.configs.eagle import EAGLEConfig
|
||||||
from vllm.transformers_utils.configs.exaone import ExaoneConfig
|
from vllm.transformers_utils.configs.exaone import ExaoneConfig
|
||||||
|
from vllm.transformers_utils.configs.exaone4 import Exaone4Config
|
||||||
# RWConfig is for the original tiiuae/falcon-40b(-instruct) and
|
# RWConfig is for the original tiiuae/falcon-40b(-instruct) and
|
||||||
# tiiuae/falcon-7b(-instruct) models. Newer Falcon models will use the
|
# tiiuae/falcon-7b(-instruct) models. Newer Falcon models will use the
|
||||||
# `FalconConfig` class from the official HuggingFace transformers library.
|
# `FalconConfig` class from the official HuggingFace transformers library.
|
||||||
@ -40,6 +41,7 @@ __all__ = [
|
|||||||
"MedusaConfig",
|
"MedusaConfig",
|
||||||
"EAGLEConfig",
|
"EAGLEConfig",
|
||||||
"ExaoneConfig",
|
"ExaoneConfig",
|
||||||
|
"Exaone4Config",
|
||||||
"MiniMaxText01Config",
|
"MiniMaxText01Config",
|
||||||
"MiniMaxVL01Config",
|
"MiniMaxVL01Config",
|
||||||
"MllamaConfig",
|
"MllamaConfig",
|
||||||
|
|||||||
252
vllm/transformers_utils/configs/exaone4.py
Normal file
252
vllm/transformers_utils/configs/exaone4.py
Normal file
@ -0,0 +1,252 @@
|
|||||||
|
# SPDX-License-Identifier: Apache-2.0
|
||||||
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||||
|
# ruff: noqa: E501
|
||||||
|
|
||||||
|
# Copied from
|
||||||
|
# https://github.com/lgai-exaone/transformers/blob/add-exaone4/src/transformers/models/exaone4/configuration_exaone4.py
|
||||||
|
# Copyright 2025 The LG CNS Gen AI Solution Delivery Team.
|
||||||
|
# Copyright 2025 The LG AI Research and HuggingFace Inc. team. All rights reserved.
|
||||||
|
#
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
from transformers.configuration_utils import (PretrainedConfig,
|
||||||
|
layer_type_validation)
|
||||||
|
from transformers.utils import logging
|
||||||
|
|
||||||
|
logger = logging.get_logger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
def check_is_sliding(config, layer_idx):
|
||||||
|
"""
|
||||||
|
Check if the current layer is a sliding window attention (local attention) layer.
|
||||||
|
"""
|
||||||
|
if config.sliding_window is None:
|
||||||
|
return False
|
||||||
|
if config.layer_types is not None:
|
||||||
|
return config.layer_types[layer_idx] == "sliding_attention"
|
||||||
|
if isinstance(config.sliding_window_pattern, int):
|
||||||
|
return ((layer_idx + 1) % config.sliding_window_pattern) != 0
|
||||||
|
elif isinstance(config.sliding_window_pattern, str):
|
||||||
|
assert isinstance(config.sliding_window, int), (
|
||||||
|
f"Sliding window must be positive integer, but got {config.sliding_window}"
|
||||||
|
)
|
||||||
|
return (layer_idx != config.num_hidden_layers - 1
|
||||||
|
and config.sliding_window_pattern[layer_idx % len(
|
||||||
|
config.sliding_window_pattern)] == "L")
|
||||||
|
else:
|
||||||
|
logger.warning_once(
|
||||||
|
"Sliding window is set, but none of `sliding_window_pattern` or `layer_types` is set. "
|
||||||
|
"Defaulting to use 'full_attention' for all layers.")
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
class Exaone4Config(PretrainedConfig):
|
||||||
|
r"""
|
||||||
|
This is the configuration class to store the configuration of a [`Exaone4Model`]. It is used to
|
||||||
|
instantiate a EXAONE 4.0 model according to the specified arguments, defining the model architecture. Instantiating a
|
||||||
|
configuration with the defaults will yield a similar configuration to that of the EXAONE-4.0-Instruct [LGAI-EXAONE/EXAONE-4.0-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-Instruct)
|
||||||
|
NOTE: `EXAONE-4.0-Instruct` is a placeholder model ID. The exact model ID will be updated in the future.
|
||||||
|
|
||||||
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model
|
||||||
|
outputs. Read the documentation from [`PretrainedConfig`] for more information.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
vocab_size (`int`, *optional*, defaults to 102400):
|
||||||
|
Vocabulary size of the EXAONE 4.0 model. Defines the number of different tokens that can be represented by the
|
||||||
|
`inputs_ids` passed when calling [`Exaone4Model`].
|
||||||
|
hidden_size (`int`, *optional*, defaults to 4096):
|
||||||
|
Dimension of the hidden representations.
|
||||||
|
intermediate_size (`int`, *optional*, defaults to `hidden_size * 4`):
|
||||||
|
Dimensionality of the MLP representations.
|
||||||
|
num_hidden_layers (`int`, *optional*, defaults to 32):
|
||||||
|
Number of hidden layers in the Transformer encoder.
|
||||||
|
num_attention_heads (`int`, *optional*, defaults to 32):
|
||||||
|
Number of attention heads for each attention layer in the Transformer decoder.
|
||||||
|
num_key_value_heads (`int`, *optional*):
|
||||||
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
||||||
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
||||||
|
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
||||||
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
||||||
|
by meanpooling all the original heads within that group. For more details checkout [this
|
||||||
|
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
||||||
|
`num_attention_heads`.
|
||||||
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
||||||
|
The non-linear activation function (function or string) in the decoder.
|
||||||
|
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
||||||
|
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
||||||
|
just in case (e.g., 32768 for EXAONE 3.5).
|
||||||
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
||||||
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||||
|
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
||||||
|
The epsilon used by the layer normalization layers.
|
||||||
|
use_cache (`bool`, *optional*, defaults to `True`):
|
||||||
|
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
||||||
|
relevant if ``config.is_decoder=True``.
|
||||||
|
bos_token_id (`int`, *optional*, defaults to 0):
|
||||||
|
Beginning of stream token id.
|
||||||
|
eos_token_id (`int`, *optional*, defaults to 2):
|
||||||
|
End of stream token id.
|
||||||
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
||||||
|
Whether to tie weight embeddings
|
||||||
|
rope_theta (`float`, *optional*, defaults to 10000.0):
|
||||||
|
The base period of the RoPE embeddings.
|
||||||
|
rope_scaling (`Dict`, *optional*):
|
||||||
|
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
||||||
|
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
||||||
|
accordingly.
|
||||||
|
Expected contents:
|
||||||
|
`rope_type` (`str`):
|
||||||
|
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
||||||
|
'llama3'], with 'default' being the original RoPE implementation.
|
||||||
|
`factor` (`float`, *optional*):
|
||||||
|
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
||||||
|
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
||||||
|
original maximum pre-trained length.
|
||||||
|
`original_max_position_embeddings` (`int`, *optional*):
|
||||||
|
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
||||||
|
pretraining.
|
||||||
|
`attention_factor` (`float`, *optional*):
|
||||||
|
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
||||||
|
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
||||||
|
`factor` field to infer the suggested value.
|
||||||
|
`beta_fast` (`float`, *optional*):
|
||||||
|
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
||||||
|
ramp function. If unspecified, it defaults to 32.
|
||||||
|
`beta_slow` (`float`, *optional*):
|
||||||
|
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
||||||
|
ramp function. If unspecified, it defaults to 1.
|
||||||
|
`short_factor` (`List[float]`, *optional*):
|
||||||
|
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
||||||
|
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
||||||
|
size divided by the number of attention heads divided by 2
|
||||||
|
`long_factor` (`List[float]`, *optional*):
|
||||||
|
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
||||||
|
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
||||||
|
size divided by the number of attention heads divided by 2
|
||||||
|
`low_freq_factor` (`float`, *optional*):
|
||||||
|
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
||||||
|
`high_freq_factor` (`float`, *optional*):
|
||||||
|
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
||||||
|
attention_dropout (`float`, *optional*, defaults to 0.0):
|
||||||
|
The dropout ratio for the attention probabilities.
|
||||||
|
sliding_window (`int`, *optional*):
|
||||||
|
The size of the sliding window for the sliding window attention.
|
||||||
|
sliding_window_pattern (`str`, *optional*):
|
||||||
|
The pattern to use for sliding window attention. Can be one of:
|
||||||
|
- `None`: No sliding window attention is used
|
||||||
|
- `int`: Every `sliding_window` layers, use global attention, else use local attention.
|
||||||
|
- `str`: A sequence of "L" (local attention) and "G" (global attention) characters that defines the
|
||||||
|
attention pattern. The pattern starts from layer 0 and repeats every `sliding_window` layers. The
|
||||||
|
final layer always uses global attention regardless of the pattern.
|
||||||
|
For instance, sliding_window_pattern="LLLG" same as sliding_window=4, which means:
|
||||||
|
- Layer 0, 1, 2: local attention,
|
||||||
|
- Layer 3: global attention,
|
||||||
|
...(repeated)
|
||||||
|
layer_types (`list`, *optional*):
|
||||||
|
Attention pattern for each layer. Prioritized over `sliding_window_pattern`.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
|
||||||
|
```python
|
||||||
|
>>> from transformers import Exaone4Model, Exaone4Config
|
||||||
|
|
||||||
|
>>> # Initializing a EXAONE configuration
|
||||||
|
>>> configuration = Exaone4Config()
|
||||||
|
|
||||||
|
>>> # Initializing a model from configuration
|
||||||
|
>>> model = Exaone4Model(configuration)
|
||||||
|
|
||||||
|
>>> # Accessing the model configuration
|
||||||
|
>>> configuration = model.config
|
||||||
|
```"""
|
||||||
|
|
||||||
|
model_type = "exaone4"
|
||||||
|
keys_to_ignore_at_inference = ["past_key_values"]
|
||||||
|
# Default tensor parallel plan for base model `LlamaModel`
|
||||||
|
base_model_tp_plan = {
|
||||||
|
"layers.*.self_attn.q_proj": "colwise",
|
||||||
|
"layers.*.self_attn.k_proj": "colwise",
|
||||||
|
"layers.*.self_attn.v_proj": "colwise",
|
||||||
|
"layers.*.self_attn.o_proj": "rowwise",
|
||||||
|
"layers.*.mlp.gate_proj": "colwise",
|
||||||
|
"layers.*.mlp.up_proj": "colwise",
|
||||||
|
"layers.*.mlp.down_proj": "rowwise",
|
||||||
|
}
|
||||||
|
base_model_pp_plan = {
|
||||||
|
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
|
||||||
|
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
|
||||||
|
"norm": (["hidden_states"], ["hidden_states"]),
|
||||||
|
}
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
vocab_size=102400,
|
||||||
|
hidden_size=4096,
|
||||||
|
intermediate_size=None,
|
||||||
|
num_hidden_layers=32,
|
||||||
|
num_attention_heads=32,
|
||||||
|
num_key_value_heads=None,
|
||||||
|
hidden_act="silu",
|
||||||
|
max_position_embeddings=2048,
|
||||||
|
initializer_range=0.02,
|
||||||
|
rms_norm_eps=1e-5,
|
||||||
|
use_cache=True,
|
||||||
|
bos_token_id=0,
|
||||||
|
eos_token_id=2,
|
||||||
|
tie_word_embeddings=False,
|
||||||
|
rope_theta=10000.0,
|
||||||
|
rope_scaling=None,
|
||||||
|
attention_dropout=0.0,
|
||||||
|
sliding_window=None,
|
||||||
|
sliding_window_pattern=None,
|
||||||
|
layer_types=None,
|
||||||
|
**kwargs,
|
||||||
|
):
|
||||||
|
self.vocab_size = vocab_size
|
||||||
|
self.hidden_size = hidden_size
|
||||||
|
self.num_hidden_layers = num_hidden_layers
|
||||||
|
self.num_attention_heads = num_attention_heads
|
||||||
|
if num_key_value_heads is None:
|
||||||
|
num_key_value_heads = num_attention_heads
|
||||||
|
self.num_key_value_heads = num_key_value_heads
|
||||||
|
if intermediate_size:
|
||||||
|
self.intermediate_size = intermediate_size
|
||||||
|
else:
|
||||||
|
self.intermediate_size = hidden_size * 4
|
||||||
|
self.hidden_act = hidden_act
|
||||||
|
self.max_position_embeddings = max_position_embeddings
|
||||||
|
self.initializer_range = initializer_range
|
||||||
|
self.rms_norm_eps = rms_norm_eps
|
||||||
|
self.use_cache = use_cache
|
||||||
|
self.attention_dropout = attention_dropout
|
||||||
|
self.rope_theta = rope_theta
|
||||||
|
self.rope_scaling = rope_scaling
|
||||||
|
self.sliding_window = sliding_window
|
||||||
|
self.sliding_window_pattern = sliding_window_pattern
|
||||||
|
|
||||||
|
self.layer_types = layer_types
|
||||||
|
if self.layer_types is None:
|
||||||
|
self.layer_types = [
|
||||||
|
"sliding_attention"
|
||||||
|
if check_is_sliding(self, i) else "full_attention"
|
||||||
|
for i in range(self.num_hidden_layers)
|
||||||
|
]
|
||||||
|
layer_type_validation(self.layer_types)
|
||||||
|
|
||||||
|
super().__init__(bos_token_id=bos_token_id,
|
||||||
|
eos_token_id=eos_token_id,
|
||||||
|
tie_word_embeddings=tie_word_embeddings,
|
||||||
|
**kwargs)
|
||||||
|
|
||||||
|
|
||||||
|
__all__ = ["Exaone4Config"]
|
||||||
Loading…
x
Reference in New Issue
Block a user