mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 01:35:01 +08:00
[Attention][Platform] Refactor MLA to support Custom Op (#23332)
Signed-off-by: whx-sjtu <2952154980@qq.com>
This commit is contained in:
parent
04f3c35cff
commit
3efb9f4d95
158
vllm/model_executor/layers/mla.py
Normal file
158
vllm/model_executor/layers/mla.py
Normal file
@ -0,0 +1,158 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
|
||||
from vllm.attention import Attention
|
||||
from vllm.config import CacheConfig
|
||||
from vllm.model_executor.custom_op import CustomOp
|
||||
from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
|
||||
|
||||
@dataclass
|
||||
class MLAModules:
|
||||
"""Modules used in MLA.
|
||||
"""
|
||||
kv_a_layernorm: torch.nn.Module
|
||||
kv_b_proj: torch.nn.Module
|
||||
rotary_emb: torch.nn.Module
|
||||
o_proj: torch.nn.Module
|
||||
fused_qkv_a_proj: Optional[torch.nn.Module]
|
||||
kv_a_proj_with_mqa: Optional[torch.nn.Module]
|
||||
q_a_layernorm: Optional[torch.nn.Module]
|
||||
q_b_proj: Optional[torch.nn.Module]
|
||||
q_proj: Optional[torch.nn.Module]
|
||||
|
||||
|
||||
@CustomOp.register("multi_head_latent_attention")
|
||||
class MultiHeadLatentAttention(CustomOp):
|
||||
"""MLA layer registered as CustomOp.
|
||||
Note that currently MLA ignores the enable/disable mechanism of CustomOp
|
||||
because there is only one in-tree implementation in forward_native.
|
||||
TODO: implement this with a new PluggableLayer mechanism.
|
||||
|
||||
This class takes positions and hidden_states as input.
|
||||
The input tensors can either contain prefill tokens or decode tokens.
|
||||
The class does the following:
|
||||
|
||||
1. MLA Preprocess.
|
||||
2. Perform multi-head attention to prefill tokens and
|
||||
multi-query attention to decode tokens separately.
|
||||
3. Return the output tensor.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
num_heads: int,
|
||||
scale: float,
|
||||
qk_nope_head_dim: int,
|
||||
qk_rope_head_dim: int,
|
||||
v_head_dim: int,
|
||||
q_lora_rank: Optional[int],
|
||||
kv_lora_rank: int,
|
||||
mla_modules: MLAModules,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: str = "",
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.hidden_size = hidden_size
|
||||
self.qk_nope_head_dim = qk_nope_head_dim
|
||||
self.qk_rope_head_dim = qk_rope_head_dim
|
||||
self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
|
||||
self.v_head_dim = v_head_dim
|
||||
self.q_lora_rank = q_lora_rank
|
||||
self.kv_lora_rank = kv_lora_rank
|
||||
self.num_heads = num_heads
|
||||
self.fused_qkv_a_proj = mla_modules.fused_qkv_a_proj
|
||||
self.kv_a_proj_with_mqa = mla_modules.kv_a_proj_with_mqa
|
||||
self.q_a_layernorm = mla_modules.q_a_layernorm
|
||||
self.q_b_proj = mla_modules.q_b_proj
|
||||
self.q_proj = mla_modules.q_proj
|
||||
self.kv_a_layernorm = mla_modules.kv_a_layernorm
|
||||
self.kv_b_proj = mla_modules.kv_b_proj
|
||||
self.rotary_emb = mla_modules.rotary_emb
|
||||
self.o_proj = mla_modules.o_proj
|
||||
|
||||
# In the MLA backend, kv_cache includes both k_c and
|
||||
# pe (i.e. decoupled position embeddings). In particular,
|
||||
# the concat_and_cache_mla op requires
|
||||
# k_c.size(1) + k_pe.size(1) == kv_cache.size(2)
|
||||
# i.e.
|
||||
# kv_lora_rank + qk_rope_head_dim == head_size
|
||||
self.mla_attn = Attention(
|
||||
num_heads=self.num_heads,
|
||||
head_size=self.kv_lora_rank + self.qk_rope_head_dim,
|
||||
scale=scale,
|
||||
num_kv_heads=1,
|
||||
cache_config=cache_config,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.attn",
|
||||
use_mla=True,
|
||||
# MLA Args
|
||||
q_lora_rank=self.q_lora_rank,
|
||||
kv_lora_rank=self.kv_lora_rank,
|
||||
qk_nope_head_dim=self.qk_nope_head_dim,
|
||||
qk_rope_head_dim=self.qk_rope_head_dim,
|
||||
qk_head_dim=self.qk_head_dim,
|
||||
v_head_dim=self.v_head_dim,
|
||||
kv_b_proj=self.kv_b_proj,
|
||||
)
|
||||
|
||||
self.prefix = prefix
|
||||
self.debug_layer_idx = int(self.prefix.split(".")[-2])
|
||||
|
||||
def forward_native(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
q_c = None
|
||||
kv_lora = None
|
||||
|
||||
if self.q_lora_rank is not None:
|
||||
assert self.fused_qkv_a_proj is not None, \
|
||||
"fused_qkv_a_proj is required when q_lora_rank is not None"
|
||||
assert self.q_a_layernorm is not None, \
|
||||
"q_a_layernorm is required when q_lora_rank is not None"
|
||||
assert self.q_b_proj is not None, \
|
||||
"q_b_proj is required when q_lora_rank is not None"
|
||||
qkv_lora = self.fused_qkv_a_proj(hidden_states)[0]
|
||||
q_c, kv_lora = qkv_lora.split(
|
||||
[self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim],
|
||||
dim=-1,
|
||||
)
|
||||
q_c = self.q_a_layernorm(q_c)
|
||||
q = self.q_b_proj(q_c)[0]
|
||||
else:
|
||||
assert self.kv_a_proj_with_mqa is not None, \
|
||||
"kv_a_proj_with_mqa is required when q_lora_rank is None"
|
||||
assert self.q_proj is not None, \
|
||||
"q_proj is required when q_lora_rank is None"
|
||||
kv_lora = self.kv_a_proj_with_mqa(hidden_states)[0]
|
||||
q = self.q_proj(hidden_states)[0]
|
||||
|
||||
kv_c, k_pe = kv_lora.split([self.kv_lora_rank, self.qk_rope_head_dim],
|
||||
dim=-1)
|
||||
kv_c_normed = self.kv_a_layernorm(kv_c)
|
||||
|
||||
q = q.view(-1, self.num_heads, self.qk_head_dim)
|
||||
# Add head dim of 1 to k_pe
|
||||
k_pe = k_pe.unsqueeze(1)
|
||||
|
||||
q[..., self.qk_nope_head_dim:], k_pe = self.rotary_emb(
|
||||
positions, q[..., self.qk_nope_head_dim:], k_pe)
|
||||
|
||||
attn_out = self.mla_attn(
|
||||
q,
|
||||
kv_c_normed,
|
||||
k_pe,
|
||||
output_shape=(hidden_states.shape[0],
|
||||
self.num_heads * self.v_head_dim))
|
||||
return self.o_proj(attn_out)[0]
|
||||
|
||||
def forward_cuda(self, *args, **kwargs):
|
||||
return self.forward_native(*args, **kwargs)
|
||||
@ -47,6 +47,7 @@ from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
||||
ReplicatedLinear,
|
||||
RowParallelLinear)
|
||||
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
||||
from vllm.model_executor.layers.mla import MLAModules, MultiHeadLatentAttention
|
||||
from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.shared_fused_moe import SharedFusedMoE
|
||||
@ -492,72 +493,41 @@ class DeepseekV2MLAAttention(nn.Module):
|
||||
mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim))
|
||||
self.scaling = self.scaling * mscale * mscale
|
||||
|
||||
# In the MLA backend, kv_cache includes both k_c and
|
||||
# pe (i.e. decoupled position embeddings). In particular,
|
||||
# the concat_and_cache_mla op requires
|
||||
# k_c.size(1) + k_pe.size(1) == kv_cache.size(2)
|
||||
# i.e.
|
||||
# kv_lora_rank + qk_rope_head_dim == head_size
|
||||
self.mla_attn = Attention(
|
||||
num_heads=self.num_local_heads,
|
||||
head_size=self.kv_lora_rank + self.qk_rope_head_dim,
|
||||
scale=self.scaling,
|
||||
num_kv_heads=1,
|
||||
cache_config=cache_config,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.attn",
|
||||
use_mla=True,
|
||||
# MLA Args
|
||||
q_lora_rank=self.q_lora_rank,
|
||||
kv_lora_rank=self.kv_lora_rank,
|
||||
qk_nope_head_dim=self.qk_nope_head_dim,
|
||||
qk_rope_head_dim=self.qk_rope_head_dim,
|
||||
qk_head_dim=self.qk_head_dim,
|
||||
v_head_dim=self.v_head_dim,
|
||||
mla_modules = MLAModules(
|
||||
kv_a_layernorm=self.kv_a_layernorm,
|
||||
kv_b_proj=self.kv_b_proj,
|
||||
rotary_emb=self.rotary_emb,
|
||||
o_proj=self.o_proj,
|
||||
fused_qkv_a_proj=self.fused_qkv_a_proj
|
||||
if self.q_lora_rank is not None else None,
|
||||
kv_a_proj_with_mqa=self.kv_a_proj_with_mqa
|
||||
if self.q_lora_rank is None else None,
|
||||
q_a_layernorm=self.q_a_layernorm
|
||||
if self.q_lora_rank is not None else None,
|
||||
q_b_proj=self.q_b_proj if self.q_lora_rank is not None else None,
|
||||
q_proj=self.q_proj if self.q_lora_rank is None else None,
|
||||
)
|
||||
self.mla_attn = MultiHeadLatentAttention(
|
||||
self.hidden_size,
|
||||
self.num_local_heads,
|
||||
self.scaling,
|
||||
self.qk_nope_head_dim,
|
||||
self.qk_rope_head_dim,
|
||||
self.v_head_dim,
|
||||
self.q_lora_rank,
|
||||
self.kv_lora_rank,
|
||||
mla_modules,
|
||||
cache_config,
|
||||
quant_config,
|
||||
prefix,
|
||||
)
|
||||
|
||||
self.prefix = prefix
|
||||
self.debug_layer_idx = int(self.prefix.split(".")[-2])
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
q_c = None
|
||||
kv_lora = None
|
||||
|
||||
if self.q_lora_rank is not None:
|
||||
qkv_lora = self.fused_qkv_a_proj(hidden_states)[0]
|
||||
q_c, kv_lora = qkv_lora.split(
|
||||
[self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim],
|
||||
dim=-1,
|
||||
)
|
||||
q_c = self.q_a_layernorm(q_c)
|
||||
q = self.q_b_proj(q_c)[0]
|
||||
else:
|
||||
kv_lora = self.kv_a_proj_with_mqa(hidden_states)[0]
|
||||
q = self.q_proj(hidden_states)[0]
|
||||
|
||||
kv_c, k_pe = kv_lora.split([self.kv_lora_rank, self.qk_rope_head_dim],
|
||||
dim=-1)
|
||||
kv_c_normed = self.kv_a_layernorm(kv_c)
|
||||
|
||||
q = q.view(-1, self.num_local_heads, self.qk_head_dim)
|
||||
# Add head dim of 1 to k_pe
|
||||
k_pe = k_pe.unsqueeze(1)
|
||||
|
||||
q[..., self.qk_nope_head_dim:], k_pe = self.rotary_emb(
|
||||
positions, q[..., self.qk_nope_head_dim:], k_pe)
|
||||
|
||||
attn_out = self.mla_attn(
|
||||
q,
|
||||
kv_c_normed,
|
||||
k_pe,
|
||||
output_shape=(hidden_states.shape[0],
|
||||
self.num_local_heads * self.v_head_dim))
|
||||
return self.o_proj(attn_out)[0]
|
||||
return self.mla_attn(positions, hidden_states)
|
||||
|
||||
|
||||
class DeepseekV2DecoderLayer(nn.Module):
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user