mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-09 17:45:19 +08:00
Fix latency benchmark script (#118)
This commit is contained in:
parent
19d2899439
commit
3f942acfe1
@ -1,71 +1,75 @@
|
||||
import argparse
|
||||
import time
|
||||
from typing import List
|
||||
|
||||
from tqdm import tqdm
|
||||
import numpy as np
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
|
||||
from cacheflow.core.server import (
|
||||
add_server_arguments, process_server_arguments,
|
||||
init_local_server_and_frontend_with_arguments)
|
||||
from cacheflow.sampling_params import SamplingParams
|
||||
from cacheflow import LLM, SamplingParams
|
||||
|
||||
|
||||
def main(args: argparse.Namespace):
|
||||
server, frontend = init_local_server_and_frontend_with_arguments(args)
|
||||
print(args)
|
||||
|
||||
# Process all the requests in a single batch if possible.
|
||||
# NOTE(woosuk): If the request cannot be processed in a single batch,
|
||||
# the server will automatically process the request in multiple batches.
|
||||
llm = LLM(
|
||||
model=args.model,
|
||||
tensor_parallel_size=args.tensor_parallel_size,
|
||||
max_num_seqs=args.batch_size,
|
||||
max_num_batched_tokens=args.batch_size * args.input_len,
|
||||
)
|
||||
|
||||
sampling_params = SamplingParams(
|
||||
n=args.n,
|
||||
temperature=0.0 if args.use_beam_search else 1.0,
|
||||
top_p=1.0,
|
||||
use_beam_search=args.use_beam_search,
|
||||
stop_token_ids=set(),
|
||||
ignore_eos=True,
|
||||
max_tokens=args.output_len,
|
||||
)
|
||||
print(sampling_params)
|
||||
input_token_ids = [0] * args.input_len
|
||||
dummy_prompts = [""] * args.batch_size
|
||||
dummy_prompt_token_ids = [[0] * args.input_len] * args.batch_size
|
||||
|
||||
def profile_step(profile=False):
|
||||
def run_to_completion(profile: bool = False):
|
||||
if profile:
|
||||
torch.cuda.cudart().cudaProfilerStart()
|
||||
for _ in range(args.batch_size):
|
||||
dummy_prompt = ""
|
||||
frontend._add_query(dummy_prompt, input_token_ids, sampling_params)
|
||||
server.add_sequence_groups(frontend.get_inputs())
|
||||
start_time = time.time()
|
||||
while True:
|
||||
server.step()
|
||||
if not server.has_unfinished_requests():
|
||||
break
|
||||
|
||||
llm.generate(dummy_prompts, sampling_params, dummy_prompt_token_ids,
|
||||
use_tqdm=False)
|
||||
|
||||
end_time = time.time()
|
||||
latency = end_time - start_time
|
||||
if profile:
|
||||
torch.cuda.cudart().cudaProfilerStop()
|
||||
return latency
|
||||
|
||||
print("Warm up step")
|
||||
profile_step()
|
||||
print("Warming up...")
|
||||
run_to_completion(profile=False)
|
||||
|
||||
# Benchmark.
|
||||
latencies = []
|
||||
for _ in tqdm(range(3), desc="Profile step"):
|
||||
latencies.append(profile_step())
|
||||
for _ in tqdm(range(args.num_iters), desc="Profiling iterations"):
|
||||
latencies.append(run_to_completion(profile=False))
|
||||
print(f'Avg latency: {np.mean(latencies)} seconds')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Benchmark the latency of decoding a single sentence.')
|
||||
parser = add_server_arguments(parser)
|
||||
description='Benchmark the latency of processing a single batch of '
|
||||
'requests till completion.')
|
||||
parser.add_argument('--model', type=str, default='facebook/opt-125m')
|
||||
parser.add_argument('--tensor-parallel-size', '-tp', type=int, default=1)
|
||||
parser.add_argument('--input-len', type=int, default=32)
|
||||
parser.add_argument('--output-len', type=int, default=128)
|
||||
parser.add_argument('--batch-size', type=int, default=8)
|
||||
parser.add_argument('--n', type=int, default=1)
|
||||
parser.add_argument('--n', type=int, default=1,
|
||||
help='Number of generated sequences per prompt.')
|
||||
parser.add_argument('--use-beam-search', action='store_true')
|
||||
parser.add_argument('--num-iters', type=int, default=3,
|
||||
help='Number of iterations to run.')
|
||||
args = parser.parse_args()
|
||||
args = process_server_arguments(args)
|
||||
args.max_num_batched_tokens = max(
|
||||
args.max_num_batched_tokens, args.batch_size * args.input_len)
|
||||
print(args)
|
||||
main(args)
|
||||
|
||||
@ -35,18 +35,26 @@ class LLM:
|
||||
self,
|
||||
prompts: List[str],
|
||||
sampling_params: Optional[SamplingParams] = None,
|
||||
prompt_token_ids: Optional[List[List[int]]] = None,
|
||||
use_tqdm: bool = True,
|
||||
) -> List[RequestOutput]:
|
||||
if sampling_params is None:
|
||||
# Use default sampling params.
|
||||
sampling_params = SamplingParams()
|
||||
# Initialize tqdm.
|
||||
if use_tqdm:
|
||||
pbar = tqdm(total=len(prompts), desc="Processed prompts")
|
||||
|
||||
# Add requests to the server.
|
||||
for prompt in prompts:
|
||||
for i in range(len(prompts)):
|
||||
prompt = prompts[i]
|
||||
if prompt_token_ids is None:
|
||||
token_ids = None
|
||||
else:
|
||||
token_ids = prompt_token_ids[i]
|
||||
request_id = str(next(self.request_counter))
|
||||
self.llm_server.add_request(request_id, prompt, sampling_params)
|
||||
self.llm_server.add_request(request_id, prompt, sampling_params,
|
||||
token_ids)
|
||||
|
||||
# Run the server.
|
||||
outputs: List[RequestOutput] = []
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user