mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-09 16:05:35 +08:00
[Model] Add support for MPT (#334)
This commit is contained in:
parent
7717d0838b
commit
404422f42e
@ -46,6 +46,7 @@ vLLM seamlessly supports many Huggingface models, including the following archit
|
||||
- GPT BigCode (`bigcode/starcoder`, `bigcode/gpt_bigcode-santacoder`, etc.)
|
||||
- GPT-NeoX (`EleutherAI/gpt-neox-20b`, `databricks/dolly-v2-12b`, `stabilityai/stablelm-tuned-alpha-7b`, etc.)
|
||||
- LLaMA (`lmsys/vicuna-13b-v1.3`, `young-geng/koala`, `openlm-research/open_llama_13b`, etc.)
|
||||
- MPT (`mosaicml/mpt-7b`, `mosaicml/mpt-30b`, etc.)
|
||||
- OPT (`facebook/opt-66b`, `facebook/opt-iml-max-30b`, etc.)
|
||||
|
||||
Install vLLM with pip or [from source](https://vllm.readthedocs.io/en/latest/getting_started/installation.html#build-from-source):
|
||||
|
||||
@ -395,6 +395,9 @@ void single_query_cached_kv_attention_launcher(
|
||||
case 96:
|
||||
LAUNCH_ATTENTION_KERNEL(T, 96, BLOCK_SIZE, NUM_THREADS);
|
||||
break;
|
||||
case 112:
|
||||
LAUNCH_ATTENTION_KERNEL(T, 112, BLOCK_SIZE, NUM_THREADS);
|
||||
break;
|
||||
case 128:
|
||||
LAUNCH_ATTENTION_KERNEL(T, 128, BLOCK_SIZE, NUM_THREADS);
|
||||
break;
|
||||
|
||||
@ -29,6 +29,9 @@ Alongside each architecture, we include some popular models that use it.
|
||||
* - :code:`LlamaForCausalLM`
|
||||
- LLaMA, Vicuna, Alpaca, Koala, Guanaco
|
||||
- :code:`openlm-research/open_llama_13b`, :code:`lmsys/vicuna-13b-v1.3`, :code:`young-geng/koala`, :code:`JosephusCheung/Guanaco`, etc.
|
||||
* - :code: `MPTForCausalLM`
|
||||
- MPT, MPT-Instruct, MPT-Chat, MPT-StoryWriter
|
||||
- :code:`mosaicml/mpt-7b`, :code:`mosaicml/mpt-7b-storywriter`, :code:`mosaicml/mpt-30b`, etc.
|
||||
* - :code:`OPTForCausalLM`
|
||||
- OPT, OPT-IML
|
||||
- :code:`facebook/opt-66b`, :code:`facebook/opt-iml-max-30b`, etc.
|
||||
|
||||
@ -1,9 +1,10 @@
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
from transformers import AutoConfig, PretrainedConfig
|
||||
from transformers import PretrainedConfig
|
||||
|
||||
from vllm.logger import init_logger
|
||||
from vllm.transformers_utils.config import get_config
|
||||
from vllm.utils import get_cpu_memory
|
||||
|
||||
logger = init_logger(__name__)
|
||||
@ -49,7 +50,7 @@ class ModelConfig:
|
||||
self.use_dummy_weights = use_dummy_weights
|
||||
self.seed = seed
|
||||
|
||||
self.hf_config: PretrainedConfig = AutoConfig.from_pretrained(model)
|
||||
self.hf_config = get_config(model)
|
||||
self.dtype = _get_and_verify_dtype(self.hf_config, dtype)
|
||||
self._verify_tokenizer_mode()
|
||||
|
||||
|
||||
@ -12,7 +12,7 @@ from vllm import cache_ops
|
||||
from vllm import pos_encoding_ops
|
||||
from vllm.model_executor.input_metadata import InputMetadata
|
||||
|
||||
_SUPPORTED_HEAD_SIZES = [64, 80, 96, 128]
|
||||
_SUPPORTED_HEAD_SIZES = [64, 80, 96, 112, 128]
|
||||
|
||||
|
||||
class PagedAttention(nn.Module):
|
||||
|
||||
@ -16,7 +16,8 @@ _MODEL_REGISTRY = {
|
||||
"GPTBigCodeForCausalLM": GPTBigCodeForCausalLM,
|
||||
"GPTNeoXForCausalLM": GPTNeoXForCausalLM,
|
||||
"LlamaForCausalLM": LlamaForCausalLM,
|
||||
"LLaMAForCausalLM": LlamaForCausalLM,
|
||||
"LLaMAForCausalLM": LlamaForCausalLM, # For decapoda-research/llama-*
|
||||
"MPTForCausalLM": MPTForCausalLM,
|
||||
"OPTForCausalLM": OPTForCausalLM,
|
||||
}
|
||||
|
||||
|
||||
@ -3,6 +3,7 @@ from vllm.model_executor.models.gpt2 import GPT2LMHeadModel
|
||||
from vllm.model_executor.models.gpt_bigcode import GPTBigCodeForCausalLM
|
||||
from vllm.model_executor.models.gpt_neox import GPTNeoXForCausalLM
|
||||
from vllm.model_executor.models.llama import LlamaForCausalLM
|
||||
from vllm.model_executor.models.mpt import MPTForCausalLM
|
||||
from vllm.model_executor.models.opt import OPTForCausalLM
|
||||
|
||||
__all__ = [
|
||||
@ -11,5 +12,6 @@ __all__ = [
|
||||
"GPTBigCodeForCausalLM",
|
||||
"GPTNeoXForCausalLM",
|
||||
"LlamaForCausalLM",
|
||||
"MPTForCausalLM",
|
||||
"OPTForCausalLM",
|
||||
]
|
||||
|
||||
279
vllm/model_executor/models/mpt.py
Normal file
279
vllm/model_executor/models/mpt.py
Normal file
@ -0,0 +1,279 @@
|
||||
# Adapted from https://huggingface.co/mosaicml/mpt-7b/tree/main
|
||||
import math
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from vllm.model_executor.input_metadata import InputMetadata
|
||||
from vllm.model_executor.layers.activation import get_act_fn
|
||||
from vllm.model_executor.layers.attention import PagedAttentionWithALiBi
|
||||
from vllm.model_executor.layers.sampler import Sampler
|
||||
from vllm.model_executor.weight_utils import (hf_model_weights_iterator,
|
||||
load_tensor_parallel_weights)
|
||||
from vllm.model_executor.parallel_utils.parallel_state import (
|
||||
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
|
||||
from vllm.model_executor.parallel_utils.tensor_parallel import (
|
||||
VocabParallelEmbedding, ColumnParallelLinear, RowParallelLinear)
|
||||
from vllm.sequence import SequenceOutputs
|
||||
from vllm.transformers_utils.configs.mpt import MPTConfig
|
||||
|
||||
KVCache = Tuple[torch.Tensor, torch.Tensor]
|
||||
|
||||
|
||||
def _get_alibi_slopes(
|
||||
total_num_heads: int,
|
||||
alibi_bias_max: int,
|
||||
) -> torch.Tensor:
|
||||
next_power_of_2 = 2**math.ceil(math.log2(total_num_heads))
|
||||
m = torch.arange(1, next_power_of_2 + 1, dtype=torch.float32)
|
||||
m = m.mul(alibi_bias_max / next_power_of_2)
|
||||
slopes = 1.0 / torch.pow(2, m)
|
||||
if next_power_of_2 != total_num_heads:
|
||||
slopes = torch.concat([slopes[1::2], slopes[::2]])[:total_num_heads]
|
||||
return slopes
|
||||
|
||||
|
||||
class MPTAttention(nn.Module):
|
||||
|
||||
def __init__(self, config: MPTConfig):
|
||||
super().__init__()
|
||||
self.d_model = config.d_model
|
||||
self.total_num_heads = config.n_heads
|
||||
self.clip_qkv = config.attn_config["clip_qkv"]
|
||||
self.qk_ln = config.attn_config["qk_ln"]
|
||||
self.alibi_bias_max = config.attn_config["alibi_bias_max"]
|
||||
assert not config.attn_config["prefix_lm"]
|
||||
assert config.attn_config["alibi"]
|
||||
|
||||
self.qkv_proj = ColumnParallelLinear(
|
||||
self.d_model,
|
||||
3 * self.d_model,
|
||||
bias=not config.no_bias,
|
||||
gather_output=False,
|
||||
perform_initialization=False,
|
||||
)
|
||||
if self.qk_ln:
|
||||
self.q_ln = nn.LayerNorm(self.d_model)
|
||||
self.k_ln = nn.LayerNorm(self.d_model)
|
||||
self.out_proj = RowParallelLinear(
|
||||
self.d_model,
|
||||
self.d_model,
|
||||
bias=not config.no_bias,
|
||||
input_is_parallel=True,
|
||||
perform_initialization=False,
|
||||
)
|
||||
|
||||
tp_world_size = get_tensor_model_parallel_world_size()
|
||||
assert self.total_num_heads % tp_world_size == 0
|
||||
self.num_heads = self.total_num_heads // tp_world_size
|
||||
|
||||
# Create the alibi slopes and slice them.
|
||||
tp_rank = get_tensor_model_parallel_rank()
|
||||
head_start = tp_rank * self.num_heads
|
||||
head_end = (tp_rank + 1) * self.num_heads
|
||||
alibi_slopes = _get_alibi_slopes(self.total_num_heads,
|
||||
self.alibi_bias_max)
|
||||
alibi_slopes = alibi_slopes[head_start:head_end].tolist()
|
||||
|
||||
self.head_dim = self.d_model // self.total_num_heads
|
||||
scaling = self.head_dim**-0.5
|
||||
self.attn = PagedAttentionWithALiBi(self.num_heads, self.head_dim,
|
||||
scaling, alibi_slopes)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
position_ids: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: KVCache,
|
||||
input_metadata: InputMetadata,
|
||||
cache_event: Optional[torch.cuda.Event],
|
||||
) -> torch.Tensor:
|
||||
del position_ids # unused.
|
||||
qkv, _ = self.qkv_proj(hidden_states)
|
||||
if self.clip_qkv is not None:
|
||||
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
|
||||
q, k, v = qkv.chunk(chunks=3, dim=-1)
|
||||
if self.qk_ln:
|
||||
q = self.q_ln(q)
|
||||
k = self.k_ln(k)
|
||||
k_cache, v_cache = kv_cache
|
||||
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata,
|
||||
cache_event)
|
||||
output, _ = self.out_proj(attn_output)
|
||||
return output
|
||||
|
||||
|
||||
class MPTMLP(nn.Module):
|
||||
|
||||
def __init__(self, config: MPTConfig):
|
||||
super().__init__()
|
||||
hidden_size = config.d_model
|
||||
expansion_ratio = config.expansion_ratio
|
||||
intermediate_size = expansion_ratio * hidden_size
|
||||
self.up_proj = ColumnParallelLinear(hidden_size,
|
||||
intermediate_size,
|
||||
bias=not config.no_bias,
|
||||
gather_output=False,
|
||||
perform_initialization=False)
|
||||
self.act = get_act_fn("gelu")
|
||||
self.down_proj = RowParallelLinear(intermediate_size,
|
||||
hidden_size,
|
||||
bias=not config.no_bias,
|
||||
input_is_parallel=True,
|
||||
perform_initialization=False)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x, _ = self.up_proj(x)
|
||||
x = self.act(x)
|
||||
x, _ = self.down_proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class MPTBlock(nn.Module):
|
||||
|
||||
def __init__(self, config: MPTConfig):
|
||||
super().__init__()
|
||||
hidden_size = config.d_model
|
||||
self.norm_1 = nn.LayerNorm(hidden_size)
|
||||
self.attn = MPTAttention(config)
|
||||
self.norm_2 = nn.LayerNorm(hidden_size)
|
||||
self.ffn = MPTMLP(config)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
position_ids: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: KVCache,
|
||||
input_metadata: InputMetadata,
|
||||
cache_event: Optional[torch.cuda.Event],
|
||||
) -> torch.Tensor:
|
||||
x = self.norm_1(hidden_states)
|
||||
x = self.attn(
|
||||
position_ids=position_ids,
|
||||
hidden_states=x,
|
||||
kv_cache=kv_cache,
|
||||
input_metadata=input_metadata,
|
||||
cache_event=cache_event,
|
||||
)
|
||||
hidden_states = hidden_states + x
|
||||
x = self.norm_2(hidden_states)
|
||||
x = self.ffn(x)
|
||||
hidden_states = hidden_states + x
|
||||
return hidden_states
|
||||
|
||||
|
||||
class MPTModel(nn.Module):
|
||||
|
||||
def __init__(self, config: MPTConfig):
|
||||
super().__init__()
|
||||
assert config.embedding_fraction == 1.0
|
||||
assert config.norm_type == "low_precision_layernorm"
|
||||
|
||||
self.wte = VocabParallelEmbedding(config.vocab_size,
|
||||
config.d_model,
|
||||
perform_initialization=False)
|
||||
self.blocks = nn.ModuleList(
|
||||
[MPTBlock(config) for _ in range(config.n_layers)])
|
||||
self.norm_f = nn.LayerNorm(config.d_model)
|
||||
if config.no_bias:
|
||||
for module in self.modules():
|
||||
if hasattr(module, "bias"):
|
||||
if isinstance(module.bias, nn.Parameter):
|
||||
# Remove the bias term in Linear and LayerNorm.
|
||||
module.register_parameter("bias", None)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
position_ids: torch.Tensor,
|
||||
kv_caches: List[KVCache],
|
||||
input_metadata: InputMetadata,
|
||||
cache_events: Optional[List[torch.cuda.Event]],
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.wte(input_ids)
|
||||
for i in range(len(self.blocks)):
|
||||
if cache_events is None:
|
||||
cache_event = None
|
||||
else:
|
||||
cache_event = cache_events[i]
|
||||
block = self.blocks[i]
|
||||
hidden_states = block(
|
||||
position_ids,
|
||||
hidden_states,
|
||||
kv_caches[i],
|
||||
input_metadata,
|
||||
cache_event,
|
||||
)
|
||||
hidden_states = self.norm_f(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class MPTForCausalLM(nn.Module):
|
||||
|
||||
def __init__(self, config: MPTConfig):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
assert config.tie_word_embeddings
|
||||
|
||||
self.transformer = MPTModel(config)
|
||||
# TODO(zhuohan): create a new weight after implementing pipeline
|
||||
# parallelism
|
||||
self.lm_head_weight = self.transformer.wte.weight
|
||||
self.sampler = Sampler(config.vocab_size)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[KVCache],
|
||||
input_metadata: InputMetadata,
|
||||
cache_events: Optional[List[torch.cuda.Event]],
|
||||
) -> Dict[int, SequenceOutputs]:
|
||||
hidden_states = self.transformer(input_ids, positions, kv_caches,
|
||||
input_metadata, cache_events)
|
||||
next_tokens = self.sampler(self.lm_head_weight, hidden_states,
|
||||
input_metadata)
|
||||
return next_tokens
|
||||
|
||||
_column_parallel_weights = ["wte.weight", "up_proj.weight", "up_proj.bias"]
|
||||
_row_parallel_weights = ["out_proj.weight", "down_proj.weight"]
|
||||
|
||||
def load_weights(self,
|
||||
model_name_or_path: str,
|
||||
cache_dir: Optional[str] = None,
|
||||
use_np_cache: bool = False):
|
||||
tp_world_size = get_tensor_model_parallel_world_size()
|
||||
tp_rank = get_tensor_model_parallel_rank()
|
||||
state_dict = self.state_dict()
|
||||
for name, loaded_weight in hf_model_weights_iterator(
|
||||
model_name_or_path, cache_dir, use_np_cache):
|
||||
if "Wqkv" in name:
|
||||
# NOTE(woosuk): MPT's fused QKV has the shape of
|
||||
# [3 * num_heads * head_size, hidden_size].
|
||||
# When tensor model parallelism is used, we need to shard
|
||||
# the weight along the hidden dimension.
|
||||
total_num_heads = self.config.num_attention_heads
|
||||
hidden_size = self.config.hidden_size
|
||||
head_size = hidden_size // total_num_heads
|
||||
num_heads = total_num_heads // tp_world_size
|
||||
head_start = tp_rank * num_heads
|
||||
head_end = (tp_rank + 1) * num_heads
|
||||
|
||||
if name.endswith(".weight"):
|
||||
loaded_weight = loaded_weight.view(3, total_num_heads,
|
||||
head_size, hidden_size)
|
||||
loaded_weight = loaded_weight[:, head_start:head_end, :, :]
|
||||
loaded_weight = loaded_weight.reshape(-1, hidden_size)
|
||||
elif name.endswith(".bias"):
|
||||
loaded_weight = loaded_weight.view(3, total_num_heads,
|
||||
head_size)
|
||||
loaded_weight = loaded_weight[:, head_start:head_end, :]
|
||||
loaded_weight = loaded_weight.reshape(-1)
|
||||
else:
|
||||
raise ValueError(f"Unexpected parameter name {name}")
|
||||
name = name.replace("Wqkv", "qkv_proj")
|
||||
param = state_dict[name]
|
||||
load_tensor_parallel_weights(param, loaded_weight, name,
|
||||
self._column_parallel_weights,
|
||||
self._row_parallel_weights, tp_rank)
|
||||
15
vllm/transformers_utils/config.py
Normal file
15
vllm/transformers_utils/config.py
Normal file
@ -0,0 +1,15 @@
|
||||
from transformers import AutoConfig, PretrainedConfig
|
||||
|
||||
from vllm.transformers_utils.configs import * # pylint: disable=wildcard-import
|
||||
|
||||
_CONFIG_REGISTRY = {
|
||||
"mpt": MPTConfig,
|
||||
}
|
||||
|
||||
|
||||
def get_config(model: str) -> PretrainedConfig:
|
||||
config = AutoConfig.from_pretrained(model, trust_remote_code=True)
|
||||
if config.model_type in _CONFIG_REGISTRY:
|
||||
config_class = _CONFIG_REGISTRY[config.model_type]
|
||||
config = config_class.from_pretrained(model)
|
||||
return config
|
||||
5
vllm/transformers_utils/configs/__init__.py
Normal file
5
vllm/transformers_utils/configs/__init__.py
Normal file
@ -0,0 +1,5 @@
|
||||
from vllm.transformers_utils.configs.mpt import MPTConfig
|
||||
|
||||
__all__ = [
|
||||
"MPTConfig",
|
||||
]
|
||||
74
vllm/transformers_utils/configs/mpt.py
Normal file
74
vllm/transformers_utils/configs/mpt.py
Normal file
@ -0,0 +1,74 @@
|
||||
# Adapted from
|
||||
# https://huggingface.co/mosaicml/mpt-7b/blob/main/configuration_mpt.py
|
||||
from typing import Any, Dict, Optional, Union
|
||||
|
||||
from transformers import PretrainedConfig
|
||||
|
||||
_ATTN_CONFIG_DEFAULTS = {
|
||||
"attn_type": "multihead_attention",
|
||||
"attn_pdrop": 0.0,
|
||||
"attn_impl": "triton",
|
||||
"qk_ln": False,
|
||||
"clip_qkv": None,
|
||||
"softmax_scale": None,
|
||||
"prefix_lm": False,
|
||||
"attn_uses_sequence_id": False,
|
||||
"alibi": False,
|
||||
"alibi_bias_max": 8,
|
||||
}
|
||||
|
||||
|
||||
class MPTConfig(PretrainedConfig):
|
||||
model_type = "mpt"
|
||||
attribute_map = {
|
||||
"hidden_size": "d_model",
|
||||
"num_attention_heads": "n_heads",
|
||||
"num_hidden_layers": "n_layers",
|
||||
}
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int = 2048,
|
||||
n_heads: int = 16,
|
||||
n_layers: int = 24,
|
||||
expansion_ratio: int = 4,
|
||||
max_seq_len: int = 2048,
|
||||
vocab_size: int = 50368,
|
||||
resid_pdrop: float = 0.0,
|
||||
emb_pdrop: float = 0.0,
|
||||
learned_pos_emb: bool = True,
|
||||
attn_config: Optional[Dict[str, Any]] = None,
|
||||
init_device: str = "cpu",
|
||||
logit_scale: Optional[Union[float, str]] = None,
|
||||
no_bias: bool = False,
|
||||
verbose: int = 0,
|
||||
embedding_fraction: float = 1.0,
|
||||
norm_type: str = "low_precision_layernorm",
|
||||
use_cache: bool = False,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
self.d_model = d_model
|
||||
self.n_heads = n_heads
|
||||
self.n_layers = n_layers
|
||||
self.expansion_ratio = expansion_ratio
|
||||
self.max_seq_len = max_seq_len
|
||||
self.vocab_size = vocab_size
|
||||
self.resid_pdrop = resid_pdrop
|
||||
self.emb_pdrop = emb_pdrop
|
||||
self.learned_pos_emb = learned_pos_emb
|
||||
if attn_config is None:
|
||||
self.attn_config = _ATTN_CONFIG_DEFAULTS
|
||||
else:
|
||||
self.attn_config = attn_config
|
||||
self.init_device = init_device
|
||||
self.logit_scale = logit_scale
|
||||
self.no_bias = no_bias
|
||||
self.verbose = verbose
|
||||
self.embedding_fraction = embedding_fraction
|
||||
self.norm_type = norm_type
|
||||
self.use_cache = use_cache
|
||||
if "name" in kwargs:
|
||||
del kwargs["name"]
|
||||
if "loss_fn" in kwargs:
|
||||
del kwargs["loss_fn"]
|
||||
super().__init__(**kwargs)
|
||||
Loading…
x
Reference in New Issue
Block a user